Neighbour-Sum-2-Distinguishing Edge-Weightings: Doubling the 1-2-3 Conjecture

Olivier Baudon 1 Julien Bensmail 2 Mohammed Senhaji 1 Eric Sopena 1
2 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : The 1-2-3 Conjecture asks whether every graph with no connected component isomorphic to K2 can be 3-edge-weighted so that every two adjacent vertices u and v can be distinguished via the sum of their incident weights, that is the incident sums of u and v differ by at least 1. We here investigate the consequences on the 1-2-3 Conjecture of requiring a stronger distinction condition. Namely, we consider two adjacent vertices distinguished when their incident sums differ by at least 2. As a guiding line, we conjecture that every graph with no connected component isomorphic to K2 admits a 5-edge-weighting permitting to distinguish the adjacent vertices in this stronger way. We verify this conjecture for several classes of graphs, including bipartite graphs and cubic graphs. We then consider algorithmic aspects, and show that it is NP-complete to determine the smallest k such that a given bipartite graph admits such a k-edge-weighting. In contrast, we show that the same problem can be solved in polynomial time for a given tree.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01522853
Contributeur : Julien Bensmail <>
Soumis le : lundi 15 mai 2017 - 16:15:36
Dernière modification le : jeudi 15 juin 2017 - 09:09:35

Fichier

v3_123doubled.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01522853, version 1

Collections

Citation

Olivier Baudon, Julien Bensmail, Mohammed Senhaji, Eric Sopena. Neighbour-Sum-2-Distinguishing Edge-Weightings: Doubling the 1-2-3 Conjecture. 2017. <hal-01522853>

Partager

Métriques

Consultations de
la notice

185

Téléchargements du document

72