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Poly­freeness of even Artin groups of FC type

RUBÉN BLASCO­GARCÍA

CONCHITA MARTÍNEZ­PÉREZ

LUIS PARIS

We prove that even Artin groups of FC type are poly­free and residually finite.

20F36

1 Introduction

One of the families of groups where the interaction between algebraic and geometric

techniques has been most fruitful is the family of Artin groups, also known as Artin­

Tits groups or generalized braid groups. There are very few works dealing with all

the Artin groups, and the theory mainly consists on the study of more or less extended

subfamilies. The subfamily of right­angled Artin groups is one of the most studied, in

particular because of they resounding applications in homology of groups by Bestvina–

Brady [4] and in low dimensional topology by Haglund–Wise [12] and Agol [1]. We

refer to Charney [7] for an introductory survey on these groups.

The main goal of the present paper is to prove that some known structural property of

right­angled Artin groups also holds for a larger family of groups (see Theorem 3.17).

The property is the “poly­freeness” and the family is that of even Artin groups of FC

type.

A group G is called poly­free if there exists a tower of subgroups

1 = G0 E G1 E · · ·E GN = G

for which each quotient Gi+1/Gi is a free group. Recall that a group is locally indicable

if every non­trivial finitely generated subgroup admits an epimorphism onto Z , and a

group is right orderable if it admits a total order invariant under right multiplication.

Poly­free groups are locally indicable, and locally indicable groups are right orderable

(see Rhemtulla–Rolfsen [17]). The fact that right­angled Artin groups are poly­free

was independently proved by Duchamp–Krob [11], Howie [14] and Hermiller–Šunić

[13].

http://www.ams.org/mathscinet/search/mscdoc.html?code=20F36
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Artin groups of FC type were introduced by Charney–Davis [8] in their study of the

K(π, 1) conjecture for Artin groups. They are particularly interesting because there

are CAT(0) cubical complexes on which they act. This family contains both, the right­

angled Artin groups, and the Artin groups of spherical type (those corresponding to

finite Coxeter groups). An Artin group is called even if it is defined by relations of

the form (st)k = (ts)k , k ≥ 1. There are some papers in the literature dealing with

even Coxeter groups (see for example [2]) but as far as we know, there is no other

paper dealing with even Artin groups (although they are mentioned in [3]). However,

we think that even Artin groups deserve to be studied because they have remarkable

properties. One of them is that such a group retracts onto any parabolic subgroup (see

Section 2).

Our proof is partially inspired by the one of Duchamp–Krob [11] for right­angled Artin

groups in the sense that, as them, we define a suitable semi­direct product of an Artin

group based on a proper subgraph with a free group, and we show that this semi­direct

product is isomorphic to the original Artin group. However, in our case, this approach

is more complicated, essentially because we have to deal with relations that are also

more complicated.

In Section 4 we prove that even Artin groups of FC type are residually finite. This

result is a more or less direct consequence of Boler–Evans [5], but it deserves to be

pointed out since it increases the list of Artin groups shown to be residually finite.

Actually, this list is quite short. It contains the spherical type Artin groups (since they

are linear), the right­angled Artin groups (since they are residually nilpotent), and few

other examples. In particular, it is not known whether all Artin groups of FC type are

residually finite.
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2 Preliminaries

2.1 Artin groups

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (ms,t)s,t∈S

indexed by the elements of S, with coefficients in N ∪ {∞}, and satisfying ms,s = 1

for all s ∈ S and ms,t = mt,s ≥ 2 for all s, t ∈ S, s 6= t . We will represent such a

Coxeter matrix M by a labelled graph Γ , whose set of vertices is S, and where two

distinct vertices s, t ∈ S are linked by an edge labelled with ms,t if ms,t 6= ∞ . We will

also often use the notation V(Γ) to denote the set of vertices of Γ (that is, V(Γ) = S).

Remark The labelled graph Γ defined above is not the Coxeter graph of M as defined

in Bourbaki [6]. It is another fairly common way to represent a Coxeter matrix.

If a, b are two letters and m is an integer ≥ 2, we set Π(a, b : m) = (ab)
m
2 if m is even,

and Π(a, b : m) = (ab)
m−1

2 a if m is odd. In other words, Π(a, b : m) denotes the word

aba · · · of length m . The Artin group of Γ , A = AΓ , is defined by the presentation

A = 〈S | Π(s, t : ms,t) = Π(t, s : ms,t) for all s, t ∈ S, s 6= t and ms,t 6= ∞〉 .

The Coxeter group of Γ , W = WΓ , is the quotient of A by the relations s2 = 1, s ∈ S.

For T ⊂ S, we denote by AT (resp. WT ) the subgroup of A (resp. W ) generated by

T , and by ΓT the full subgraph of Γ spanned by T . Here we mean that each edge of

ΓT is labelled with the same number as its corresponding edge of Γ . By Bourbaki [6],

the group WT is the Coxeter group of ΓT , and, by van der Lek [15], AT is the Artin

group of ΓT . The group AT (resp. WT ) is called a standard parabolic subgroup of A

(resp. of W ).

As pointed out in the introduction, the theory of Artin groups consists in the study of

more or less extended families. The one concerned by the present paper is the family

of even Artin groups of FC type. These are defined as follows. We say that A = AΓ

is of spherical type if its associated Coxeter group, WΓ , is finite. A subset T of S is

called free of infinity if ms,t 6= ∞ for all s, t ∈ T . We say that A is of FC type if AT is

of spherical type for every free of infinity subset T of S. Finally, we say that A is even

if ms,t is even for all distinct s, t ∈ S (here, ∞ is even).

Remark As we said in the introduction, we think that even Artin groups deserve

special attention since they have particularly interesting properties as the following

ones. Assume that A is even.
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(1) Let s, t ∈ S, s 6= t . If we set ms,t = 2ks,t , then the Artin relation Π(s, t : ms,t) =

Π(t, s : ms,t) becomes (st)ks,t = (ts)ks,t . This form of relation is less innocuous

than it seems (see Subsection 2.3 for example).

(2) Let T be a subset of S. Then the inclusion map AT →֒ A always admits a

retraction πT : A → AT which sends s to s if s ∈ T , and sends s to 1 if s 6∈ T .

2.2 Britton’s lemma

Let G be a group generated by a finite set S. We denote by (S∪ S−1)∗ the free monoid

over S∪S−1 , that is, the set of words over S∪S−1 , and we denote by (S∪S−1)∗ → G ,

w 7→ w̄, the map that sends a word to the element of G that it represents. Recall that

a set of normal forms for G is a subset N of (S ∪ S−1)∗ such that the map N → G ,

w 7→ w̄, is a one­to­one correspondence.

Let G be a group with two subgroups A,B ≤ G , and let ϕ : A → B be an isomorphism.

A useful consequence of Britton’s lemma yields a set of normal forms for the HNN­

extension G∗ϕ = 〈G, t | t−1at = ϕ(a), a ∈ A〉 in terms of a set N of normal forms for

G and sets of representatives of the cosets of A and B in G (see Lyndon–Schupp [16]).

Explicitly, choose a set TA of representatives of the left cosets of A in G containing 1,

and a set TB of representatives of the left cosets of B in G also containing 1.

Proposition 2.1 (Britton’s normal forms) Let Ñ be the set of words of the form

w0tε1w1 · · · tεmwm , where m ≥ 0, εi ∈ {±1} and wi ∈ N for all i, such that:

(a) w̄i ∈ TA if εi = −1, for i ≥ 1,

(b) w̄i ∈ TB if εi = 1, for i ≥ 1,

(c) there is no subword of the form tεt−ε .

Then Ñ is a set of normal forms for the HNN­extension G∗ϕ .

2.3 Variations of the even Artin­type relations

For a, b in a group G , we denote by ba = a−1ba the conjugate of b by a. The aim

of this subsection is to illustrate how the Artin relations in even Artin groups can be

expressed in terms of conjugates. This observation will be a key point in our proof of

Theorem 3.17.

Let s, t be two generators of an Artin group A . The relation st = ts can be expressed

as ts = t . Analogously, from tsts = stst , we obtain s−1tst = tsts−1 , and therefore
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ts−1

= t−1tst and ts2

= tst(ts)−1 . We deduce that ts−1

, ts2

∈ 〈t, ts〉. Doing the same

thing with the relation tststs = ststst one easily gets

ts−1

= t−1 (ts)−1 ts2

ts t and ts3

= ts2

ts t (ts)−1 (ts2

)−1 .

This can be extended to any even Artin­type relation (ts)k = (st)k giving

(2–1)
ts−1

= t−1 (ts)−1 · · · (tsk−2
)−1 tsk−1

tsk−2
· · · ts t ,

tsk

= tsk−1

· · · ts t (ts)−1 · · · (tsk−1

)−1 .

As a consequence we see that tsi

∈ 〈t, ts, ts2

, . . . , tsk−1

〉 for any integer i.

3 Poly­freeness of even Artin groups of FC type

In this section we prove that even Artin groups of FC type are poly­free (Theorem

3.17). We begin with a characterization of these groups in terms of their defining

graphs.

Lemma 3.1 Let AΓ be an even Artin group. Then AΓ is of FC type if and only if

every triangular subgraph of Γ has at least two edges labelled with 2.

Proof From the classification of finite Coxeter groups (see Bourbaki [6], for example)

follows that an even Artin group AΓ is of spherical type if and only if Γ is complete

and for each vertex there is at most one edge with label greater than 2 involving it.

Suppose that AΓ is of FC type. Let Ω be a triangular subgraph of Γ . Then AΩ is even

and of spherical type, hence, by the above, Ω has at least two edges labelled with 2.

Suppose now that every triangular subgraph of Γ has at least two edges labelled with

2. Let Ω be a complete subgraph of Γ . Then Ω is even and every triangular subgraph

of Ω has at least two edges labelled with 2, hence, by the above, AΩ is of spherical

type. So, AΓ is of FC type.

The proof of Theorem 3.17 is based on the following.

Proposition 3.2 Assume that AΓ is even and of FC type. Then there is a free group F

such that AΓ = F ⋊A1 , where A1 is an even Artin group of FC type based on a proper

subgraph of Γ .
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We proceed now with some notations needed for the proof of Proposition 3.2. Fix

some vertex z of Γ . Recall that the link of z in Γ is the full subgraph lk(z,Γ) of Γ

with vertex set V(lk(z,Γ)) = {s ∈ S | s 6= z and ms,z 6= ∞}. As ever, we see lk(z,Γ)

as a labelled graph, where the labels are the same as in the original graph Γ . We set

L = lk(z,Γ), and we denote by Γ1 the full subgraph of Γ spanned by S \ {z}. We

denote by A1 and AL the subgroups of AΓ generated by V(Γ1) and V(L), respectively.

Recall from Section 2 that A1 and AL are the Artin groups associated with the graphs

Γ1 and L , respectively (so this notation is consistent).

As pointed out in Section 2, since AΓ is even, the inclusion map A1 →֒ A has a

retraction π1 : AΓ → A1 which sends z to 1 and sends s to s if s 6= z. Similarly, the

inclusion map AL →֒ A1 has a retraction πL : A1 → AL which sends s to s if s ∈ V(L),

and sends s to 1 if s 6∈ V(L). It follows that AΓ and A1 split as semi­direct products

AΓ = Ker(π1) ⋊ A1 and A1 = Ker(πL) ⋊ AL .

For s ∈ V(L) we denote by ks the integer such that mz,s = 2ks . Lemma 3.1 implies the

following statement. This will help us to describe AL as an iterated HNN extension.

Lemma 3.3 Let s, t be two linked vertices of L .

(1) Either ks = 1, or kt = 1.

(2) If ks > 1, then ms,t = 2.

Let L1 be the full subgraph of L spanned by the vertices s ∈ V(L) such that ks = 1.

Lemma 3.3 implies that L\L1 is totally disconnected. We set V(L\L1) = {x1, . . . , xn}.

Again, from Lemma 3.3, we deduce that, for each i ∈ {1, . . . , n}, if the vertex xi is

linked to some vertex s ∈ V(L1), then the label of the edge between xi and s must be

2. For each i ∈ {1, . . . , n} we set Si = lk(xi,L), and we denote by Xi the full subgraph

of L spanned by {x1, . . . , xi} ∪ V(L1) and X0 = L1 . Note that Si is a subgraph of L1

and, therefore, is a subgraph of Xi . The subgraphs of Γ that we have defined so far are

sitting as follows inside Γ

Si ⊆ L1 = X0 ⊆ X1 ⊆ . . . ⊆ Xn = L ⊆ Γ1 ⊆ Γ

where i ∈ {1, . . . , n} The defining map of each of the HNN extensions will be

the identity in the subgroup generated by the vertices commuting with xi , that is,

ϕi = Id : ASi → ASi . Then, writing down the associated presentation, we see that

AXi = (AXi−1
)∗ϕi with stable letter xi . So, we get the following.

Lemma 3.4 We have AL = ((AL1
∗ϕ1

) ∗ϕ2
· · · )∗ϕn .
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Now, fix a set N1 of normal forms for AL1
(for example, the set of shortlex geodesic

words with respect to some ordering in the standard generating system). We want to

use Britton’s lemma to obtain a set of normal forms for AL in terms of N1 . To do

so, first, for each i ∈ {1, . . . , n}, we need to determine a set of representatives of

the right cosets of ASi in AL1
. The natural way to do it is as follows. Consider the

projection map πSi : AL1
→ ASi which sends s ∈ V(L) to s if s ∈ V(Si) and sends s to

1 otherwise. Observe that AL1
= ASi ⋉ Ker(πSi). Then, Ker(πSi ) is a well­defined set

of representatives of the right cosets of ASi in AL1
.

In our next result we will use this set of representatives together with Britton’s lemma

to construct a set NL of normal forms for AL . More precisely, NL denotes the set of

words of the form

w0xε1
α1

w1 · · · xεm
αm

wm ,

where wj ∈ N1 for all j ∈ {0, 1, . . . ,m}, αj ∈ {1, . . . , n}, w̄j ∈ Ker(πSαj
) and

εj ∈ {±1} for all j ∈ {1, . . . ,m}, and there is no subword of the form xεαx−ε
α with

α ∈ {1, . . . , n}.

Lemma 3.5 The set NL is a set of normal forms for AL .

Proof For i ∈ {0, 1, . . . , n}, we denote by NL,i the set of words of the form

(3–1) w0xε1
α1

w1 · · · xεm
αm

wm ,

where wj ∈ N1 for all j ∈ {0, 1, . . . ,m}, αj ∈ {1, . . . , i}, w̄j ∈ Ker(πSαj
) and

εj ∈ {±1} for all j ∈ {1, . . . ,m}, and there is no subword of the form xεαx−ε
α with

α ∈ {1, . . . , i}. We prove by induction on i that NL,i is a set of normal forms for AXi .

Since AL = AXn , this will prove the lemma.

The case i = 0 is true by definition since AL1
= AX0

and NL,0 = N1 . So, we can

assume that i ≥ 1 plus the inductive hypothesis. Recall that AXi = (AXi−1
)∗ϕi , where

ϕi is the identity map on ASi . By induction, NL,i−1 is a set of normal forms for

AXi−1
. We want to apply Proposition 2.1, so we also need a set Ti of representatives

of the right cosets of ASi in AXi−1
. Since AL1

= ASi ⋉ Ker(πSi ), we see that we may

take as Ti the set of elements of AXi−1
whose normal forms, written as in Equation

3–1, satisfy w̄0 ∈ Ker(πSi). Now, take g ∈ AXi and use Proposition 2.1 with the set

NL,i−1 of normal forms and the set Ti of representatives to write a uniquely determined

expression for g. The set of these expressions is clearly NL,i .

Given g ∈ AL , we denote by n(g) the normal form of g in NL .
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The following sets will be crucial in our argument. The set T0 is the set of g ∈ AL

such that n(g) does not begin with s−1 or sks for any s ∈ V(L). In other words,

T0 denotes the set of elements in AL such that n(g) has w0 = 1, ε1 = 1, and no

consecutive sequence of xα1
’s of length kxα1

at the beginning. On the other hand, we

set T = T0Ker(πL). The reason why these sets are so important to us is that T will serve

as index set for a free basis for the free group F of Proposition 3.2, that is, F = F(B)

is the free group with basis a set B = {bg | g ∈ T} in one­to­one correspondence

with T . We will also consider a smaller auxiliary free group F0 = F(B0) with basis

B0 = {bh | h ∈ T0}. Observe that, since T0 ⊆ AL , we have that any g ∈ T can be

written in a unique way as g = hu with h ∈ T0 and u ∈ Ker(πL).

At this point, we can explain the basic idea of the proof of Proposition 3.2. We will

define an action of A1 on F and form the corresponding semi­direct product. Then

we will construct an explicit isomorphism between this semi­direct product and the

original group AΓ that takes F onto Ker(π1). More explicitly, this isomorphism will

be an extension of the homomorphism ϕ : F → Ker(π1) which sends bg to zg for all

g ∈ T .

We proceed now to define the action of A1 on F . This action should mimic the obvious

conjugation action of A1 on Ker(π1). As a first step, we start defining an action of AL

on F0 . This will be later extended to the desired action of A1 on F .

Given h ∈ T0 , we denote by supp(h) the set of xi ∈ V(L \ L1) which appear in the

normal form n(h). We will need the following technical result.

Lemma 3.6 Let s ∈ V(L) and h ∈ T0 .

(1) If s ∈ V(L1) and s ∈ V(Si) for every xi ∈ supp(h) (including the case h = 1),

then hs 6∈ T0 and hs−1 6∈ T0 , but shs−1, s−1hs ∈ T0 .

(2) If s = x ∈ V(L \ L1) and h = xkx−1 , then hs 6∈ T0 and hs−1 ∈ T0 .

(3) If s = x ∈ V(L \ L1) and h = 1, then hs ∈ T0 and hs−1 6∈ T0 .

(4) We have hs, hs−1 ∈ T0 in all the other cases.

Proof Since h ∈ T0 , h has a normal form

xε1
α1

w1 · · · xεm
αm

wm ,

with each wj the normal form of an element in Ker(πSαj
). In the case when s =

x ∈ V(L \ L1), multiplying this expression by x on the right, we get, after a possible

cancellation x−1x, a normal form. So, hx 6∈ T0 if and only if h = xkx−1 . Similarly, we

have hx−1 6∈ T0 if and only if h = 1.
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Now, suppose that s ∈ V(L1). Assume that s ∈ Sαj
for j = j0 +1, . . . ,m , but s 6∈ Sαj0

.

Then the normal form for hs is

xε1
α1

w1 · · ·wj0−1x
εj0
αj0

w′

j0
· · · x

εm−1
αm−1

w′

m−1xεm
αm

w′

m ,

where w′

j0
is the normal form for w̄j0 s, and, for j ∈ {j0 + 1, . . . ,m}, w′

j is the normal

form for s−1w̄js. Hence, hs ∈ T0 . Similarly, hs−1 ∈ T0 . On the contrary, assume that

s ∈ Sαj
for all those xj appearing in the normal form for h. Then the normal form for

hs is

sxε1
α1

w′

1 · · · xεm
αm

w′

m ,

where w′

j is the normal form for s−1w̄js for all j ∈ {1, . . . ,m}. This form begins with

s, hence hs 6∈ T0 . However, the normal form for s−1hs is obtained from the above

form by removing the s at the beginning, hence s−1hs ∈ T0 . Similarly, hs−1 6∈ T0 and

shs−1 ∈ T0 .

Hidden in the proof of Lemma 3.6 is the fact that, if g1, g2 ∈ AL1
and h ∈ T0 , then

g1hg2 ∈ AL1
T0 . Moreover, by Lemma 3.5, every element of AL1

T0 is uniquely written

in the form gh with g ∈ AL1
and h ∈ T0 . In this case we set u(gh) = h. So, by Lemma

3.6, if s ∈ V(L1) and h ∈ T0 , then u(hs) = s−1hs if s ∈ V(Si) for every xi ∈ supp(h),

and u(hs) = hs otherwise. If s = x ∈ V(L\L1), then u(hx) is not defined if h = xkx−1 ,

and u(hx) = hx otherwise.

We turn now to define the action of AL on F0 . We start with the action of the generators.

Let s ∈ V(L). For h ∈ T0 we set

bh ∗ s =

{

bu(hs) if hs ∈ AL1
T0 ,

bxkx−1 · · · bx b1 b−1
x · · · b−1

xkx−1 if s = x ∈ V(L \ L1) and h = xkx−1 .

Then we extend the map B → F0 , bh 7→ bh ∗ s, to a homomorphism F0 → F0 ,

f 7→ f ∗ s.

Lemma 3.7 The above defined homomorphism ∗s : F0 → F0 is an automorphism.

Proof The result will follow if we show that the map has an inverse. Our candidate

to inverse will be the map ∗s−1 : F0 → F0 defined by

bh ∗ s−1
=







bu(hs−1) if hs−1 ∈ AL1
T0 ,

b−1
1 b−1

x · · · b−1
xkx−2 bxkx−1 bxkx−2 · · · bx b1 if s = x ∈ V(L \ L1)

and h = 1 .

Assume first that either s ∈ V(L1), or h 6∈ {1, xkx−1} with s = x ∈ V(L \ L1). In

this case we only have to check that u(u(hs)s−1) = h = u(u(hs−1)s). Observe that the
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condition s ∈ V(L1) and s ∈ Si for every xi ∈ supp(h) is equivalent to s ∈ V(L1) and

s ∈ Si for every xi ∈ supp(u(hs)), thus, if that condition holds, we have u(hs) = s−1hs

and u(u(hs)s−1) = u((s−1hs)s−1) = ss−1hss−1 = h. If the condition fails, then

u(hs) = hs and u(u(hs)s−1) = u((hs)s−1) = hss−1 = h. Analogously, one checks that

h = u(u(hs−1)s).

Now, we assume that s = x ∈ V(L \ L1) and either h = 1 or h = xkx−1 . If h = xkx−1 ,

then

(bh ∗ x) ∗ x−1
= (bxkx−1 · · · bx b1 b−1

x · · · b−1
xkx−1 ) ∗ x−1

= bxkx−2 · · · b1 (b1 ∗ x−1) b−1
1 · · · b−1

xkx−2

= bxkx−2 · · · b1 b−1
1 b−1

x · · · b−1
xkx−2 bxkx−1 bxkx−2 · · · bx b1 b−1

1 · · · b−1
xkx−2 = bxkx−1 = bh .

On the other hand,

(bh ∗ x−1) ∗ x = bxkx−2 ∗ x = bxkx−1 = bh .

The case when h = 1 is analogous.

To show that this action, defined just for the generators of AL , yields an action of AL

on F0 , we need to check that it preserves the Artin relations. We do it in the next two

lemmas.

Lemma 3.8 Let s, t ∈ V(L) such that ms,t = 2. Then (g ∗ s) ∗ t = (g ∗ t) ∗ s for all

g ∈ F0 .

Proof Since s and t are linked in V(L), Lemma 3.1 implies that at least one of the

vertices s, t lies in V(L1). Without loss of generality we may assume s ∈ V(L1), i.e.,

ks = 1. Let h ∈ T0 . Then bh ∗ s = bu(hs) .

Assume first that either ht ∈ T0 , or t ∈ Si for every xi ∈ supp(h). In this last case, we

have t ∈ Si for any xi ∈ supp(u(hs)). Therefore

(bh ∗ s) ∗ t = bu(hs) ∗ t = bu(u(hs)t) and (bh ∗ t) ∗ s = bu(ht) ∗ s = bu(u(ht)s) .

Depending on whether hs lies in T0 or not we have u(hs) = hs or u(hs) = s−1hs, and

the same for t . So, we have four cases to consider. If hs, ht ∈ T0 , then hst = hts ∈ T0

and

u(u(hs)t) = u((hs)t) = hst = hts = u((ht)s) = u(u(ht)s) .

If hs ∈ T0 and ht 6∈ T0 , then hst 6∈ T0 but t−1hts ∈ T0 , hence

u(u(hs)t) = u((hs)t) = t−1hst = t−1hts = u((t−1ht)s) = u(u(ht)s) .
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Similarly, if hs 6∈ T0 and ht ∈ T0 , then u(u(hs)t) = u(u(ht)s). If hs, ht 6∈ T0 , then

s−1hst 6∈ T0 and t−1hts 6∈ T0 , thus

u(u(hs)t) = u((s−1hs)t) = t−1s−1hst = s−1t−1hts = u((t−1ht)s) = u(u(ht)s) .

We are left with the case where t = y ∈ V(L \ L1) and h = yky−1 . Then, since s and y

are linked, for every α ∈ {0, 1, . . . , ky − 1} we have u(yαs) = s−1yαs = yα , thus

(bh ∗ s) ∗ y = bh ∗ y = byky−1 · · · by b1 b−1
y · · · b−1

yky−1 ,

(bh ∗ y) ∗ s = (byky−1 · · · by b1 b−1
y · · · b−1

yky−1) ∗ s = byky−1 · · · by b1 b−1
y · · · b−1

yky−1 .

If w is a word over {s, t}, where s, t ∈ V(L), and if h ∈ T0 , we define bh ∗ w by

induction on the length of w by setting bh ∗ 1 = bh and bh ∗ (ws) = (bh ∗ w) ∗ s.

Lemma 3.9 Let s, t ∈ V(L) such that ms,t = 2k > 2. Then bh ∗ ((st)k) = bh ∗ ((ts)k)

for all h ∈ T0 .

Proof Note that, since s and t are linked and the edge between them is labelled with

2k > 2, Lemma 3.1 implies that s, t ∈ V(L1). Take h ∈ T0 . Then, in a similar way as

in the proof of Lemma 3.8, we have hs ∈ T0 if and only if u(hstst · · · t)s ∈ T0 and this

is also equivalent to u(htsts · · · t)s ∈ T0 . The same thing happens for t . So, we may

distinguish essentially the same cases as in the first part of the proof of Lemma 3.8 and

get the following. If hs, ht ∈ T0 , then

(bh) ∗ (st)k
= bh(st)k = bh(ts)k = (bh) ∗ (ts)k .

If hs ∈ T0 and ht 6∈ T0 , then

(bh) ∗ (st)k
= bt−kh(st)k = bt−kh(ts)k = (bh) ∗ (ts)k .

Similarly, if hs 6∈ T0 and ht ∈ T0 , then (bh) ∗ (st)k = (bh) ∗ (ts)k . If hs, ht 6∈ T0 , then

(bh) ∗ (st)k
= b(st)−kh(st)k = b(ts)−kh(ts)k = (bh) ∗ (ts)k .

All the previous discussion implies the following.

Lemma 3.10 The mappings ∗s, s ∈ V(L), yield a well­defined right­action F0×AL →

F0 , (u, g) 7→ u ∗ g.

Moreover, this action behaves as one might expect. To show this, we will need the

following technical lemma.
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Lemma 3.11 Let g ∈ AL1
T0 , and let n(g) = w0xε1

α1
w1 · · · xεn

αn
wn be its normal form.

Then any prefix of n(g) also represents an element in AL1
T0 .

Proof The only case where it is not obvious is when the prefix is of the form

w0xε1
α1

w1 · · · x
εj
αj uj with uj a prefix of wj . Let h be the element of AL represented

by w0xε1
α1

w1 · · · x
εj
αj uj , and let h′ be the element represented by w0xε1

α1
w1 · · · x

εj
αj . It is

clear that h′ ∈ AL1
T0 . Moreover, h = h′ūj , hence, as pointed out after the proof of

Lemma 3.6, we have h ∈ AL1
T0 .

Lemma 3.12 For every g ∈ AL1
T0 we have b1 ∗ g = bu(g) .

Proof Set again n(g) = w0xε1
α1

w1 · · · xεn
αn

wn . Let vsε be a prefix of n(g) with s a vertex

and ε ∈ {±1}. Note that Lemma 3.11 implies that vsε and v represent elements in

AL1
T0 . We are going to prove that, if b1 ∗ v̄ = bu(v̄) , then also b1 ∗ v̄sε = bu(v̄sε) . Note

that this will imply the result. As v̄sε lies in AL1
T0 , the element u(v̄sε) is well­defined.

Observe that u(u(v̄)sε) is also well­defined. We have b1 ∗ (v̄sε) = bu(v̄) ∗ sε = bu(u(v̄)sε) .

So, we only need to show that u(u(v̄)sε) = u(v̄sε). Set v̄ = qh with h ∈ T0 and q ∈ AL1
.

Then u(v̄) = h, thus, by Lemma 3.6, u(u(v̄)sε) = u(hsε) = u(qhsε) = u(v̄sε).

Our next objective is to extend the action of AL on F0 to an action of A1 on F . Recall

that T = T0Ker(πL) and that any h ∈ T can be written in a unique way as h = h0u

with h0 ∈ T0 and u ∈ Ker(πL). Taking this into account we set bh = bh0u = bh0
· u.

We extend this notation to any element ω =
∏

bεi

hi
∈ F0 by setting ω · u =

∏

bεi

hiu
.

Now, let g ∈ A1 and h ∈ T . We write h = h0u with h0 ∈ T0 and u ∈ Ker(πL). So,

with the previous notation, we have bh = bh0
· u. Then we set

bh ∗ g = (bh0
∗ πL(g)) · (πL(g)−1ug) .

We can also write this action as follows. Let ω =
∏

bεi

hi
∈ F0 and let u ∈ Ker(πL).

Then

(3–2) (ω · u) ∗ g = (ω ∗ πL(g)) · (πL(g)−1ug) .

Lemma 3.13 The above defined map F × A1 → F , (ω, g) 7→ ω ∗ g, is a well­defined

right­action of A1 on F .

Proof The lemma is essentially a consequence of the fact that the action of AL on

F0 is well­defined. Let g1, g2 ∈ A1 and let bh = bh0
· u ∈ B , where h0 ∈ T0 and

u ∈ Ker(πL). Then, using Equation 3–2,

(bh ∗ g1) ∗ g2 = ((bh0
· u) ∗ g1) ∗ g2 =

(

(bh0
∗ πL(g1)) · (πL(g1)−1ug1)

)

∗ g2

= ((bh0
∗ πL(g1)) ∗ πL(g2)) · (πL(g2)−1(πL(g1)−1ug1)g2)

= (bh0
∗ πL(g1g2)) · (πL(g1g2)−1ug1g2) = bh ∗ g1g2 .
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Recall the homomorphism ϕ : F → Ker(π1) that sends bh to zh for all h ∈ T . We

consider the semi­direct product G = A1 ⋉F associated with the above action, and we

turn to define an extension of ϕ to G .

Lemma 3.14 The map G → A , (g, ω) 7→ gϕ(ω), is a well­defined homomorphism.

Proof We have to check that, for all g1 , g2 ∈ A1 and all ω1 , ω2 ∈ F , we have

ϕ(g1, ω1)ϕ(g2, ω2) = g1g2ϕ(ω1)g2ϕ(ω2)

= ϕ(g1g2, (ω1 ∗ g2)ω2) = g1g2ϕ((ω1 ∗ g2)ω2) .

Since the restriction of ϕ to F is a group homomorphism, this is equivalent to show

that ϕ(ω1)g2 = ϕ(ω1 ∗ g2). It is enough to prove this for the group generators. So, we

can assume that ω1 = bh for some h ∈ T , and that g2 = s for some vertex s ∈ V(Γ),

s 6= z. We have ϕ(bh)s = s−1zhs = s−1h−1zhs, and we need to check that this is

equal to ϕ(bh ∗ s). To see it we set h = h0u, with h0 ∈ T0 and u ∈ Ker(πL), so that

bh = bh0
· u.

Observe first that, if s 6∈ V(L), then πL(s) = 1, thus bh ∗ s = bh0
· (us) = bh0us = bhs ,

and therefore

ϕ(bh ∗ s) = ϕ(bhs) = zhs
= ϕ(bh)s .

So, from now on, we will assume that s ∈ V(L). Then πL(s) = s, thus bs
h =

(bh0
∗ s) · (s−1us), and therefore

ϕ(bh ∗ s) = ϕ(bh0
∗ s)s−1us

= s−1ϕ(bh0
∗ s)s−1us .

So, we only have to prove that ϕ(bh0
∗ s) = zh0s . We distinguish three different cases.

If h0s ∈ T0 , then bh0
∗ s = bh0s , thus

ϕ(bh0
∗ s) = ϕ(bh0s) = zh0s .

If h0s 6∈ T0 , s ∈ V(L1) and s ∈ Si for every xi ∈ supp(h0), then bh0
∗ s = bs−1h0s , thus

ϕ(bh0
∗ s) = ϕ(bs−1h0s) = zs−1h0s

= zh0s .

Finally, if s = x ∈ V(L \ L1) and h0 = xkx−1 , then

bh0
∗ x = bxkx−1 · · · bx b1 b−1

x · · · b−1
xkx−1 ,

thus

ϕ(bh0
∗ x) = ϕ(bxkx−1 · · · bx b1 b−1

x · · · b−1
xkx−1 )

= zxkx−1

· · · zx z (zx)−1 · · · (zxkx−1

)−1
= zxkx

= zh0x .
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Now, we want to define the inverse map of ϕ. We do it by giving the images of the

Artin generators of A , that is, the vertices of Γ .

Lemma 3.15 There is a well­defined homomorphism ψ : A → G that sends s to s

for all s ∈ V(Γ) \ {z}, and sends z to b1 .

Proof We have to check that the Artin relations are preserved by ψ . Note that it

suffices to check it for the Artin relations that involve z and some s ∈ V(Γ) \ {z}. If

s 6∈ V(L), then there is nothing to check because, in that case, s and z are not linked in

Γ , hence there is no relation between them. If s ∈ V(L), then we can rewrite the Artin

relation as

zsks
= zsks−1

· · · zs z (zs)−1 · · · (zsks−1

)−1 .

We include here the case s ∈ V(L1), where we have ks = 1 and the above formula is

zs = z. Applying ψ to the left hand side of this equation we get

ψ(zsks
) = s−ks b1 sks = s−1 bsks−1 s = bsks−1 · · · bs b1 b−1

s · · · b−1
sks−1 ,

which is exactly what we get applying ψ to the right hand side.

Lemma 3.14 and Lemma 3.15 show part of the following result.

Proposition 3.16 The maps ϕ : G → A and ψ : A → G are well­defined group

isomorphisms.

Proof We have already seen that both maps are group homomorphisms. We claim

that they are inverses of each other. This will prove the result. Let s ∈ V(Γ), s 6= z. We

have (ϕ ◦ ψ)(s) = ϕ(s) = s and (ψ ◦ ϕ)(s) = ψ(s) = s. Also (ϕ ◦ ψ)(z) = ϕ(b1) = z

and (ψ ◦ ϕ)(b1) = ψ(z) = b1 . Moreover, Lemma 3.12 implies that b1 and the Artin

generators of A1 generate the whole group G , so ψ ◦ϕ is the identity of G . Similarly,

ϕ ◦ ψ is the identity of A .

Now, we obtain immediately our main result.

Theorem 3.17 Every even Artin group of FC type is poly­free.

Proof By Proposition 3.16, AΓ ≃ G = F ⋊A1 . By induction we may assume that A1

is poly­free, thus A is also poly­free.
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4 Residually finiteness

In this section we will show that even Artin groups of FC type are residually finite.

Recall that a group G is said to be residually finite if, for every g ∈ G \ {1}, there is

a normal subgroup of finite index in G not containing g. It is well­known that being

residually finite is not closed under short exact sequences, in the sense that, if N is

a normal subgroup of G and both N and G/N are residually finite, then one cannot

deduce the same for G itself. However, the situation changes if we work under some

extra hypothesis. For example, a direct product of residually finite groups is residually

finite. This can be generalized to the following result of Boler–Evans [5] that will be

crucial in our argument.

Theorem 4.1 (Boler–Evans [5]) Let G1,G2 be residually finite groups, and let

L ≤ G1,G2 such that both split as Gi = Hi ⋊ L . Then the amalgamated free product

G = G1 ∗L G2 is residually finite.

Using this we get the following.

Theorem 4.2 Every even Artin group of FC type is residually finite.

Proof We argue by induction on the number of vertices of Γ . Assume first that Γ is

complete. Then, by definition, AΓ is of spherical type, hence, by Cohen–Wales [9] and

Digne [10], AΓ is linear, and therefore AΓ is residually finite.

Assume that Γ is not complete. Then we can choose two distinct vertices s, t ∈ S =

V(Γ) such that ms,t = ∞ . Set X = S \ {s}, Y = S \ {t} and Z = S \ {s, t}. From the

presentation of A follows that A = AX ∗AZ
AY . Moreover, since A is even, the inclusion

map AZ →֒ AX has a retraction πX,Z : AX → AZ which sends r to r for all r ∈ Z and

sends t to 1, hence AX = Ker(πX,Z)⋊AZ . Similarly, the inclusion map AZ →֒ AY has a

retraction πY,Z : AY → AZ , hence AY = Ker(πY,Z) ⋊ AZ . By the inductive hypothesis,

AX and AY are residually finite, hence, by Theorem 4.1, A is also residually finite.
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