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Abstract. Distributed Ledgers (e.g. Bitcoin) occupy currently the first
lines of the economical and political media and many speculations are
done with respect to their level of coherence and their computability
power. Interestingly, there is no consensus on the properties and ab-
stractions that fully capture the behaviour of distributed ledgers. The
interest in formalising the behaviour of distributed ledgers is twofold.
Firstly, it helps to prove the correctness of the algorithms that implement
existing distributed ledgers and explore their limits with respect to an
unfriendly environment and target applications. Secondly, it facilitates
the identification of the minimal building blocks necessary to implement
the distributed ledger in a specific environment.
Even though the behaviour of distributed ledgers is similar to abstractions
that have been deeply studied for decades in distributed systems no
abstraction is sufficiently powerful to capture the distributed ledger
behaviour.
This paper introduces the Distributed Ledger Register, a register that
mimics the behaviour of one of the most popular distributed ledger, i.e.
the Bitcoin ledger. The aim of our work is to provide formal guarantees
on the coherent evolution of Bitcoin. We furthermore show that the
Bitcoin blockchain maintenance algorithm verifies the distributed ledger
register properties under strict conditions. Moreover, we prove that the
Distributed Ledger Register verifies the regularity register specification. It
follows that the strongest coherency implemented by Bitcoin is regularity
under strong assumptions (i.e. partial synchronous systems and sparse
reads). This study contradicts the common belief that Bitcoin implements
strong coherency criteria in a totally asynchronous system. To the best
of our knowledge, our work is the first one that makes the connection
between the distributed ledgers and the classical theory of distributed
shared registers.

1 Introduction

Blockchain has become one of the most omnipresent buzzwords in economical,
political and scientific media. Bitcoin [16] and Ethereum [19], the most popular
blockchain applications nowadays are cited as the universal solution for managing
a broad range of goods ranging bank accounts and client transactions operations



to energy or notarial agreements management. Political analysts predict that
blockchains will be used in the near future as regular bases in administration or
national and international economical exchanges.

Bitcoin and Ethereum, beyond their incontestable assets such as decentrali-
sation, simple design and relative easy use, are neither riskiness nor limitations
free. For example, the most popular issue that has been reported regarding
Ethereum functioning was the theft of 60 million dollars due to the exploitation
of an error in a smart contract code. It seems clear that neither Bitcoin nor
Ethereum are mature enough to be used in critical economical and administrative
applications, as shown by a recent scientific analysis [6] which enlightens the
main limitations exposed by Bitcoin, including low quality of services, storage
limitations, low throughput, high cost, security weakness, and weak coherency.
The point is that an increasing number of areas promote the use of blockchains for
the development of their applications, and undeniably, the properties enjoyed by
these blockchains should be studied to fit the applications requirements, together
with their relationships with blockchain-based applications.

Such challenges can be mitigated by laying down the theoretical foundations
of blockchains, and more generally distributed ledgers. Connection between the
distributed computing theory and Bitcoin distributed ledger has been pioneered
by Garay et al [10]. The main focus of the distributed community [5,7,9–11,13,18]
has so far been the distributed ledger agreement aspects. Our paper investigates
consistency properties of the distributed ledger and tries to make the connection
between the distributed ledgers and the distributed registers theory.

Our contribution. Interestingly, the Bitcoin related literature is not yet agreeing
on the level of coherency offered by Bitcoin. Some of the studies, as for example
the one carried off by Decker et al [8] advocate for strong consistency. Before
discussing the level of consistency verified by Bitcoin one should first capture
the properties of this system in terms of safety and liveness. To the best of our
knowledge, none of the previous cited works formalised the consistency properties
offered by the Bitcoin blockchain. The aim of our work is to provide formal
guarantees on the coherent evolution of Bitcoin. Our work is the first one that
makes the connection between the distributed ledgers and the classical theory
of distributed shared registers. First, we show that the classical definitions of
registers including their stabilisation extensions do not capture Bitcoin behaviour.
Then, we formalise the Distributed Ledger Register that mimics the behaviour
of Bitcoin. We finally show that the Bitcoin blockchain maintenance algorithm
verifies the distributed ledger register properties.

Paper Roadmap The remaining of the paper is organised as follows. Section 2
recalls the main principles of the Bitcoin system, and Section 3 presents its
computational model. Section 4 provides a brief summary of shared registers and
their extensions. We end this section by enlightening why these definitions do
not fully captures the Bitcoin behaviour. In Section 5, we extend the registers
theory with a new register that we call the Distributed Ledger Register, and we



show that Bitcoin implements such a register. Section 6 concludes and presents
some open problems.

2 Bitcoin Background

In 2008, Satoshi Nakamoto, a pseudonymous author, published a white paper
describing the Bitcoin network, a way to create, distribute and manage a currency
that does not rely on a trusted third party [17]. Since then many crypto-currencies
have been proposed, including the popular Ethereum [19]. An implementation of
Bitcoin was released shortly after under the name Bitcoin Core. In the following
we focus on the functioning of Bitcoin, since Ethereum follows almost the same
pattern and its differences are not relevant for our study. Most of the following is
drawn from [3].

The Bitcoin network is a peer-to-peer payment network that relies on dis-
tributed algorithms and cryptographic functions to allow entities to pseudony-
mously buy goods with digital currencies called bitcoins. Bitcoin mainly relies on
three types of data structures (i.e transactions, blocks and the distributed ledger
– also called the blockchain) and three types of entities (i.e., user, Bitcoin node
and miner) to offer such functionalities.

Transactions allow users to transfer bitcoins from a set of input accounts to a
set of output accounts. An account is described by a key, derived from the public
key of the public/private key generated by Bitcoin users. Note that to hide their
profile, users should generate a new public/private key for each transaction they
are recipient of. Keys are used to prove the ownership of bitcoins. Recipients of
a transaction are credited once the transaction is confirmed in the blockchain.
Users voluntarily pay a small transaction fee which will be kept by the miner
that will succeed in confirming users transaction in the blockchain. In this case,
the total amount of bitcoins in the input accounts is greater than the amount of
bitcoins transferred to the output accounts.

To describe the evolution of user accounts, Anceaume et al [3] have adopted
a place/transition model as depicted in Figure 1. User accounts are represented
by places (circles) and transactions by transitions (vertical bars). The place from
which an arc runs to a transition is an input place of the transition, and the
place to which an arc runs to, is an output place of the transition. The number
of bitcoins in a user account represents the tokens of the place. A transition may
fire if there are sufficiently many tokens in its input places, and it consumes all
of them upon firing. Places and transitions are dynamically created. In Figure 1,
Alice creates transaction T1 to transfer the 50 bitcoins of her account a1 to Bob
and Carol’s accounts: 30 bitcoins to b1 and 20 to c1. Transaction T4 contains
a transaction fee equal to (25 + 20) − (20 + 21 + 3) = 1 bitcoin. Transaction
T2 is a special transaction called coinbase. Coinbase transactions are the way
bitcoins are created, and their amount is currently set to 12.5 bitcoins plus the
transaction fees included in the block (more details are given in the sequel).

A transaction T is locally valid at Bitcoin node p if p has received all the
transactions that have credited all the input accounts of T and has never received
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Fig. 1. Modelling the evolution of users’ accounts

transactions already using any of those inputs. Indeed, an important aspect of
Bitcoin accounts is their indivisibly, meaning that once an account has been
created by a user, it will be credited by a single transaction and will be debited
by a single subsequent transaction. If there exists some transaction T ′ such that
both T and T ′ share some input account, then this input account is said to be in
a double-spending situation. We say that transaction T is conflict-free if none
of the input accounts of T is involved in a double-spending situation and all
of the transactions that credited T ’s inputs are conflict-free. By construction,
the induction is finite because Bitcoin creates money only through coinbase
transactions, which do not rely on input accounts.

The solution adopted in Bitcoin to mitigate double-spending attacks, without
relying on a central trusted authority, consists in gathering transactions into
blocks and totally ordering them in a publicly accessible and distributively
managed ledger. This is the role of miners.

A block contains a list of transactions, a reference to its parent block (hence
the name of blockchain), and a proof-of-work, that is a nonce such that the
hash of the block matches a given target. This target is calibrated so that the
average generation time of a block by the network is equal to 10 minutes despite
fluctuations of the peer-to-peer network.

We say that a block b is locally valid if it only contains locally valid transactions.
Bitcoin nodes locally maintain a copy of the blockchain, and once validated,
propagate newly transactions and blocks to all the entities of Bitcoin. Blocks
are generated by miners, a subset of the Bitcoin nodes involved in the proof-
of-work competition. The incentive to participate to such a competition is
provided by the coinbase transactions that are credited to the successful miner



accounts. This competition may result in multiple blocks referencing the very
same parent block, and hence the creation of a tree with several chains. This
situation is known as blockchain fork. Bitcoin defines the notion of best chain
(the common history of the distributed ledger on which all Bitcoin nodes agree),
which corresponds to the longest chain starting from the genesis block of the
distributed ledger (the blockchain is bootstrapped with the genesis block). In the
case of Ethereum the best chain is the heaviest one. The level of confirmation
of a block b belonging to the best chain of the distributed ledger is equal to the
number of blocks included in the best chain starting from b. Nakamoto [17] as
well as subsequent studies [10,12,15] has shown that if the proportion of malicious
miners is ≤ 10%, then with probability ≤ 0.1%, a transaction can be rejected if
its level of confirmation in a local copy of the blockchain is less than 6. In case of
Ethereum this level is not well defined, and seems to be around 12 [1]. We say
that a transaction is deeply confirmed once it reaches such a confirmation level.

3 Computing model

We model the Bitcoin system as a partially synchronous distributed system
(Distributed Ledger system) composed of an arbitrary finite number of users,
miners and bitcoin nodes. In the following we assume that all bitcoin nodes
have enough computation resources to mine blocks. Thus we do not distinguish
anymore miners from bitcoin nodes.

Each miner in the distributed system is a state machine, whose state, called
“local state”, is defined by the current values of its local variables. A configuration,
or global state, of the Distributed Ledger system is composed of the local state of
each miner in the system. The passage of time is measured by a fictional global
clock. Miners do not have access to the fictional global time. At each time t, each
miner is characterised by its local state.

It is assumed that the system has a built-in communication abstraction,
denoted broadcast, that allows miners to communicate by exchanging messages
via a broadcast() and deliver() operations. This communication abstraction is
defined by the following properties.

– τ -delivery. There exists τ > 0 such that if a miner invokes broadcast(m) then
every correct miner eventually delivers m within τ time units.

– Validity. If a correct miner delivers a message m from p then p has previously
invoked broadcast(m).

By correct miner, we mean a miner that follows the prescribed protocols.
We suppose on the other hand that some of them can suffer arbitrary failures—
such miners are said incorrect. For instance, an incorrect miner can manipulate
the communication primitive by broadcasting inconsistent messages, or by not
broadcasting messages or by stopping its execution. We assume that less than a
third of the computational power of the system is owned by incorrect miners. No
such restrictions hold for incorrect users.



4 Background on Distributed Registers

This section recalls the main properties of classical distributed registers, and
shows that with these definitions, we cannot entirely describe the properties of
the blockchain. Hence the need for a new type of register.

A distributed register is a shared variable accessed by a set of processes
through two operations, namely REG .write() and REG .read(). Informally, the
REG .write() operation updates the value stored in the shared variable while the
REG .read() obtains the value contained in the shared variable. Every operation
issued on a register is, generally, not instantaneous and can be characterised by
two events occurring at its boundaries: an invocation event and a reply event.
Both events occur at two different instants, called the invocation time and the
reply time, with respect to the fictional global time. In the following tB(op) and
tE(op) will respectively denote the invocation and reply times of operation op
(i.e., op = REG .write() or op = REG .read()).

Given two operations op and op′ on a register, we say that op precedes op′

(op ≺ op′) if and only if tE(op) < tB(op′). If op does not precede op′ and op′ does
not precede op, then op and op′ are concurrent (noted op||op′).

An operation op is terminated if both the invocation event and the reply
event occurred (i.e., the entity executing the operation does not crash between
the invocation time and the reply time). A terminated operation can either be
successful and thus returns true or can return abort when, for example, some
operational conditions are not met. More details will be given in the following.
On the other hand, an operation that does not terminate is said failed.

4.1 Classical Distributed Registers

The semantic of a distributed shared register can be classified as safe, regular or
atomic [14]. In this paper, we will refer mainly to the safe and regular semantics.
The safe register ensures that a read which does not overlap with a write returns
the last completed write. The result of a read overlapping a write can be any
value from the register domain. The regular register verifies the safe semantic
when reads are not concurrent with writes. For reads concurrent with writes the
read will return either the last written value or the value of the concurrent write.
The safe distributed register is defined by the following properties:

– Liveness: Any invocation of REG .write() or REG .read() eventually termi-
nates.

– Safety : A REG .read() operation returns the last value written before its
invocation (i.e. the value written by the latest write preceding this read
operation), or any value of the register domain in case the read() operation
is concurrent to a write() operation.

The regular distributed register is defined by the following properties:

– Liveness: Any invocation of REG .write() or REG .read() eventually termi-
nates.



– Safety : A REG .read() operation returns the last value written before its
invocation (i.e. the value written by the latest write preceding this read
operation), or a value written by a write operation concurrent with it.

An atomic register is a regular register that verifies the no new/old inversion
property defined as follows:

– no new/old inversion: For any two read operations, the set of writes that
do not strictly follow either of them must be perceived by both reads as
occurring in the same order.

4.2 Extension to Stabilising Distributed Registers

Recently, classical registers definitions [14] have been extended to the self-
stabilising area [4] for which the system can be hit by arbitrary errors. We
assume that there is a time τ1w at which the first write operation invoked in the
system terminated.
The stabilising safe register is defined by the following properties:

– Liveness. Any invocation of REG .write() or REG .read() terminates.
– Eventual safety. There is a finite time τstab > τ1w after which each REG .read()
r returns a value v that was written by a REG .write() operation w such that
(a) w is the last write operation executed before r, or (b) v is any value in
the register domain if a write operation is concurrent with r.

The stabilising regular register is defined by the following properties:

– Liveness. Any invocation of REG .write() or REG .read() terminates.
– Eventual regularity. There is a finite time τstab > τ1w after which each

REG .read() r returns a value v that was written by a REG .write() operation
w such that (a) w is the last write operation executed before r, or (b) w is a
write operation concurrent with r.

Similarly, the stabilising atomic register is the eventual version of the atomic
register defined above.

4.3 Bitcoin and Distributed Shared Registers

Interestingly enough, none of these definitions capture the behaviour of the Bitcoin
blockchain. Classically, values written in a register are potentially independent,
and during the execution, the size of the register remains the same. In contrast,
a new block cannot be written in the blockchain if it does not depend on the
previous one, and successive writings in the blockchain increases its size. Looking
at the stabilising register, it implements some type of eventual consistency, in
the sense that, there exists a prefix of the system execution for which there are
no guarantees on the value of the shared register: register semantics hold only
from a certain time in the execution. In contrast, the prefix of the blockchain



eventually converges at every entity, while no guarantees hold for the last created
blocks.

Therefore, we need to further extend the distributed shared registers specifi-
cation to a new register, which captures the semantics of Bitcoin. We call this
new register the Distributed Ledger Register. We first show that the Distributed
Ledger Register satisfies the regular properties and then prove that the Bitcoin
blockchain maintenance verifies the Distributed Ledger Register properties.

5 Distributed Ledger Register

In this section, we aim at specifying a new type of read/write register that mimics
the behaviour of the Bitcoin distributed ledger (i.e., Bitcoin blockchain), and that
must be both writable and readable by any number of miners. In the following,
this new register will be named the multi-writer multi-reader Distributed Ledger
Register, or simply the DLR. Prior to formalising the properties of the distributed
ledger register, we first illustrate its functioning.

As described in the introduction, each miner needs to locally manage a data
structure from which it can extract the blockchain. Specifically, this data structure
is a tree, denoted by T B, and the blockchain, denoted by B, is the longest chain
in this tree. By construction, the root of T B is the genesis block, a common block
for all the miners. In terms of read and write operations, the blockchain protocol
informally translates as follows: When a miner wishes to create a new block, it
first invokes a read operation on T B. This read returns the longest chain of T B,
denoted by B. From B, the miner creates its new block, appends it to B, and
invokes a write operation with B as parameter. The miner broadcasts B in the
system. Note that from a practical point of view, only the new block is broadcast
to the system, and if necessary miners wait from their neighbours for blocks in B
they are not aware of.

Let us now formalise the operations and the properties guaranteed by the
distributed ledger register. The DLR has a tree structure, whose root is the
genesis block, and where each branch is a sequence of blocks. The value of DLR
is its longest sequence of blocks, starting from the root. The value of the DLR is
called the blockchain and is denoted by B. The DLR is equipped with a write
and read operations. The DLR.write operation allows any miner to try to change
the value of DLR with value B, where B is a sequence of blocks. The DLR.read()
operation allows any miner to retrieve the value of DLR.

Note 1. Note that the value returned by the read() operation is different in Bitcoin
and Ethereum. In Bitcoin, the longest chain is returned while in Ethereum the
heaviest one is returned.

In order to take into account the level of confirmation of a block (see Section 2),
we introduce the notion of a k-valid write.

Definition 1 (k-valid write). Operation DLR(k).write(B) is k-valid if and only
if there exist a time t > 0 and an integer k > 0 such that a virtual DLR(k).read()



invoked at time t′ > t after the invocation of DLR(k).write(B) returns a chain
B′ such that B is a prefix of B′ and length(B′) ≥ length(B) + k, where function
length(B) returns the number of blocks that compose chain B.

Operation DLR.write(B) returns true if DLR.write(B) is k-valid otherwise it
returns abort.

As described in Section 2 the value of k depends on the proportion β of
malicious miners in the system. It has been shown by Nakamoto [17], that if
the proportion β of malicious miners is ≤ 10%, then with probability ≤ 0.1%,
a transaction can be rejected if its level of confirmation in a local copy of the
blockchain is less than or equal to than 6.

The presence of the genesis block is very similar to the classical assumption in
registers theory which states that before the first read at least one virtual write
operation happened. Therefore, for the distributed ledger register we consider
that before the first read there was at least a virtual k-valid write.

5.1 Specification of the Distributed Ledger Register

A DLR multi-reader multi-writer register is defined by the following properties.

– Liveness Any invocation of a DLR.write(B) or a DLR.read() terminates.
– k-coherency Any DLR.read() returns a value B whose prefix B′ is the

value of the register written by the last k-valid DLR.write(B′) operation that
precedes DLR.read().

As recalled in the previous section, the semantic of a distributed shared
register can be classified as safe, regular or atomic according to the returned
values read in presence of concurrent writes [14]. In the following we establish
the relation between those classical registers and the newly defined distributed
ledger register.

Theorem 1. The Distributed Ledger Register verifies the regular register seman-
tic.

Proof. The liveness property of DLR register being identical to the liveness
property for the regular register, we only need to prove that the distributed
ledger register verifies the safety property of the regular register.

Consider a read operation of DLR r that is not concurrent with any write
operations. By the k-coherency property, the value B returned by r is a value
whose prefix B′ is the value of the register written by the last k-valid DLR.write(B′)
operation that preceded r. Let w be this k-valid write operation. By construction
r returns the value written by w, which makes the safety property of regularity
satisfied. Now suppose that r is concurrent with write operations that started
after operation w. By the k-coherency property, r may return any of the chains
written by these writes. However, all these chains have as common prefix the
chain written by w, which completes the proof.



Theorem 2. The Distributed Ledger Register does not verify the atomic register
semantic.

Proof. From Theorem 1 DLR verifies the regular register specification. We now
show that DLR does not verify the no new/old inversion property. Consider two
read operations r1 and r2 such that r1 happens before r2. Let w=DLR.write(B)
be the last k-valid write that precedes r1 and r2. Consider two different k-valid
write operations w1=DLR.write(B′) and w2=DLR.write(B′′) that happen after
w and that are concurrent with r1 and r2. By definition of k-validity, B is a
prefix for both B′ and B′′, while both B′ and B′′ are different. By the k-coherency
property, r1 may return B′ while r2 may return B′′ which violates the no new/old
inversion property.

5.2 Bitcoin and the Distributed Ledger Register

The DLR-Algorithm below describes the maintenance of the Bitcoin blockchain in
terms of read/write invocations over the blockchain tree. Each miner manages one
local variable, called T B, that stores the blockchain tree, and has access to two
functions, the best chain function whose argument is (T B), and the update tree()
functions whose arguments are T B and a sequence of blocks B. Specifically,

– Function best chain(T B) returns the longest chain of T B starting from the
genesis block.

– Function update tree(T B, B) fusions T B with the sequence of B. Specifically,
if T B contains a branch which prefixes B, then this branch is replaced by
B, otherwise B is added to T B. Note that B must be well-formed and must
start with genesis block.

As described above, the DLR-algorithm, whose pseudo-code appears in Fig-
ure 2, run by a miner is quite simple. The block creation process requires that a
miner invokes the DLR.read() on T B to get the best chain B (see Figure 3). From
B, the miner can create its block (by solving the required proof-of-work), appends
it to B, and invokes the DLR.write(B) on T B (see Figure 3). This operation
updates its local tree, and then diffuse the updated longest chain in the network
by invoking the broadcast primitive. The DLR.write(B) operation does not return
until the new potential block is valid, i.e. k other blocks have been appended
to the local tree after it. Therefore, the miner will read its local tree until the
above condition is verified. The DLR-algorithm assumes that miners continuously
DLR.write new blocs otherwise the liveness of the algorithm would not hold, as
shown in the sequel.

It may happen that, due to concurrent writes, the longest returned blockchain
has not B as a prefix. In that case the miner knows that its DLR.write(B) operation
is not successful, i.e., returns abort. It returns true otherwise.

We now prove that DLR-Algorithm conditionally verifies the distributed
ledger register properties.

Lemma 1. DLR-Algorithm verifies the liveness property of the DLR register.



DLR-Algorithm % run by a miner %

(01) B = DLR.read()
(02) create the well-formed block b from B
(03) append b to B
(04) DLR.write(B)
(05) return

Fig. 2. Algorithm run by any miner

Operation DLR.read () is % issued by a reader %
(01) return(best chain(T B) )

Operation DLR.write (B) is % issued by a writer %
(02) update tree(T B, B)
(03) broadcast (<propose B>)
(04) repeat
(05) B′ = DLR.read ()
(06) until length(B′) ≥ length(B) + k
(07) if B= prefix(B′) return true
(08) else return abort
———————————————————–
(09) upon deliver(<propose B>) update tree(T B, B)

Fig. 3. read() and write() operations of the DLR register.

Proof. The liveness property is trivial and follows directly from the code. Indeed,
a DLR.read() operation always returns since the read is executed locally. For
the write operations the only blocking part of the code is the repeat loop. By
assumption of the DLR-Algorithm, miners continuously try to create blocks which
gives rise to the invocation of the DLR.write() operation every 10 in expectation.
Thus the loop stops, which allows the DLR.write() operation to either return true
or abort, which terminates the DLR-Algorithm.

Lemma 2. Each non aborted DLR.write() invoked by the DLR-Algorithm verifies
the k-validity property.

Proof. Let w be any non-aborting DLR.write() operation that writes some chain
B at time say t > 0. Note that this operation returns only when the best chain in
the T B tree, say B′, has B as a prefix and has at least k additional blocks. Let r
be a DLR.read() that happens after w. If r is invoked by the same miner than
the property trivially follows. Assume now that r has been invoked by a miner
different from the writer. By the τ -delivery property of the broadcast primitive,
there is a time t′ > τ + t such that B′ has reached every miner in the system.
Hence any read r invoked after τ + t returns B′.



Lemma 3. DLR-Algorithm verifies the k-coherency property of the DLR register
under the hypothesis that each read is invoked after that τ time units have elapsed
since the last k-valid write.

Proof. Let r be a read() operation invoked at time t′. Let w be the last k-valid
write that happened before r at time t < t′. At t, the longest chain read by w is
B′. By the the τ -delivery property of the boradcast primitive, then in the worst
case at time t+ τ , chain B reaches every miner in the system, and in particular
the reader. Any read() invoked at t′ ≥ t + τ verifies the k-coherency property.
Note that a read() operation invoked at t ≤ t′ < t+ τ may return the last k-valid
write that happened before w .

The following theorem is a direct consequence of the three above lemmata.

Theorem 3. DLR-Algorithm verifies the DLR specification under the hypothesis
that each read is invoked after that τ time units have elapsed since the last k-valid
write.

Note that when reads are invoked without any constraints the DLR-Algorithm
does not verify the k-coherency.

6 Conclusions and Open Questions

In this paper we have shown that classical distributed shared registers do not
capture totally the behaviour of Bitcoin ledger, which has led us to propose a
specification of a distributed ledger register with a regular flavour.

We have then proven that the blockchain maintenance of Bitcoin verifies
the distributed ledger register specification under strict conditions and only in
partially synchronous systems. The first conclusion of our study is that Bitcoin
does not implement strong coherency criteria even in partially synchronous
systems. This finding explains the constant adjustments that Bitcoin experienced
since its creation.

Our paper opens several research directions. The implementation of the
distributed ledger register with strong coherency guarantees (i.e. similar to the
linearisability) in a adversarial asynchronous environment is a real challenge that
might be mitigated by relying on tools such as k-quorums abstraction defined
in [2]. Another interesting research direction is the identification of the minimal
building blocks necessary to implement a blockchain-based transactional system
in an adversarial model.
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