P. John and . Alao, The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention, Molecular cancer, vol.6, issue.11, 2007.

V. Baldin, . Lukas, . Mj-marcote, G. Pagano, and . Draetta, Cyclin D1 is a nuclear protein required for cell cycle progression in G1., Genes & Development, vol.7, issue.5, pp.812-821, 1993.
DOI : 10.1101/gad.7.5.812

C. Biane, F. Delaplace, and T. Melliti, Abductive network action inference for targeted therapy, Static Analysis and Systems Biology, 2016.

M. Gregory, I. Botting, G. Rastogi, M. Chhabra, N. Nlend et al., Mechanism of resistance and novel targets mediating resistance to EGFR and c-Met tyrosine kinase inhibitors in non-small cell lung cancer, PloS one, issue.8, pp.10-0136155, 2015.

L. N. Burga, H. Hu, A. Juvekar, N. M. Tung, S. L. Troyan et al., Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice, Breast Cancer Research, vol.76, issue.Suppl 2, p.30, 2011.
DOI : 10.1016/j.lfs.2004.08.025

L. Cantley and B. Neel, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway, Proceedings of the National Academy of Sciences of the United States of America, pp.964240-4245, 1999.
DOI : 10.1146/annurev.biochem.67.1.481

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC33561/pdf

F. Chang, . Lee, . Navolanic, . Steelman, . Shelton et al., Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy, Leukemia, vol.17, issue.3, pp.590-603, 2003.
DOI : 10.1038/sj.leu.2402824

A. Ciliberto, B. Novák, and J. J. Tyson, Steady States and Oscillations in the p53/Mdm2 Network, Cell Cycle, vol.4, issue.3, pp.488-493, 2005.
DOI : 10.4161/cc.4.3.1548

M. Cohen-armon, L. Visochek, D. Rozensal, A. Kalal, I. Geistrikh et al., DNA-Independent PARP-1 Activation by Phosphorylated ERK2 Increases Elk1 Activity: A Link to Histone Acetylation, Molecular Cell, vol.25, issue.2, pp.297-308, 2007.
DOI : 10.1016/j.molcel.2006.12.012

URL : http://doi.org/10.1016/j.molcel.2006.12.012

P. Creixell, E. M. Schoof, C. D. Simpson, J. Longden, C. J. Miller et al., Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling, Cell, vol.163, issue.1, pp.202-217, 2015.
DOI : 10.1016/j.cell.2015.08.056

C. M. Croce, Oncogenes and Cancer, New England Journal of Medicine, vol.358, issue.5, pp.502-511, 2008.
DOI : 10.1056/NEJMra072367

P. Csermely, T. Korcsmàros, J. Huba, . Kiss, R. London et al., Structure and dynamics of molecular networks: A novel paradigm of drug discovery, Pharmacology & Therapeutics, vol.138, issue.3, pp.333-408, 2013.
DOI : 10.1016/j.pharmthera.2013.01.016

M. Cully, H. You, J. Arnold, . Levine, W. Tak et al., Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis, Nature Reviews Cancer, vol.65, issue.3, pp.184-192, 2006.
DOI : 10.1016/S0002-9440(10)62573-4

C. Deng, BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution, Nucleic Acids Research, vol.34, issue.5, pp.1416-1426, 2006.
DOI : 10.1093/nar/gkl010

URL : http://doi.org/10.1093/nar/gkl010

P. Eroles, A. Bosch, J. A. Pérez-fidalgo, and A. Lluch, Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways, Cancer Treatment Reviews, vol.38, issue.6, pp.698-707, 2012.
DOI : 10.1016/j.ctrv.2011.11.005

H. Farmer, N. Mccabe, J. Christopher, . Lord, N. Andrew et al., Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy, Nature, vol.11, issue.7035, pp.434917-921, 2005.
DOI : 10.1177/1087057103008003013

S. Gupta, Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review), International Journal of Oncology, vol.22, issue.1, pp.15-20, 2003.
DOI : 10.3892/ijo.22.1.15

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

G. William and . Kaelin, The concept of synthetic lethality in the context of anticancer therapy, Nature Reviews Cancer, vol.5, issue.9, pp.689-98, 2005.

C. Kandoth, D. Michael, F. Mclellan, K. Vandin, B. Ye et al., Mutational landscape and significance across 12 major cancer types, Nature, vol.339, issue.7471, pp.502333-339, 2013.
DOI : 10.1126/science.1235122

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927368

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Research, vol.45, issue.D1, pp.353-361, 2017.
DOI : 10.1093/nar/gkw1092

URL : http://doi.org/10.1093/nar/gkw1092

K. Kehn, . Berro, . Alhaj, . Bottazzi, . Yeh et al., Functional consequences of cyclin D1/BRCA1 interaction in breast cancer cells, Oncogene, vol.98, issue.35, pp.265060-5069, 2007.
DOI : 10.1128/MCB.19.7.4843

W. Kolch, M. Halasz, M. Granovskaya, N. Boris, and . Kholodenko, The dynamic control of signal transduction networks in cancer cells, Nature Reviews Cancer, vol.5, issue.9, 2015.
DOI : 10.1101/cshperspect.a009043

E. Kumaraswamy, L. Karen, . Wendt, A. Laura, . Augustine et al., BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function, Oncogene, vol.99, issue.33, pp.344333-4346, 2015.
DOI : 10.1093/jnci/djk133

R. Layek, A. Datta, M. Bittner, R. Edward, and . Dougherty, Cancer therapy design based on pathway logic, Bioinformatics, vol.27, issue.4, pp.548-555, 2011.
DOI : 10.1093/bioinformatics/btq703

J. Yun-lee, M. Hong, . Seung-tae-kim, . Se-hoon, K. Park et al., The impact of concomitant genomic alterations on treatment outcome for trastuzumab therapy in HER2-positive gastric cancer, p.9289, 2015.

P. Lin, P. Sunil, and . Khatri, Application of Max-SAT-based ATPG to optimal cancer therapy design, BMC Genomics, vol.13, issue.Suppl 6, p.5, 2012.
DOI : 10.1109/GENSiPS.2011.6169450

L. Livraghi and J. E. Garber, PARP inhibitors in the management of breast cancer: current data and future prospects, BMC Medicine, vol.27, issue.1, 2015.
DOI : 10.1200/JCO.2008.19.7681

H. Lodish and L. Zipursky, Molecular cell biology, Biochemistry and Molecular Biology Education, vol.29, pp.126-133, 2001.

M. Malanga, J. M. Pleschke, E. Hanna, . Kleczkowska, R. Felix et al., Poly(ADP-ribose) Binds to Specific Domains of p53 and Alters Its DNA Binding Functions, Journal of Biological Chemistry, vol.55, issue.19, pp.27311839-11843, 1998.
DOI : 10.1038/sj.onc.1201274

P. Marquis, Extending abduction from propositional to first-order logic, Lecture Notes in Artificial Intelligence, vol.535, pp.141-155, 1991.
DOI : 10.1007/3-540-54507-7_12

D. Lindsey, D. B. Mayo, and . Donner, The PTEN, Mdm2, p53 tumor suppressoroncoprotein network, Trends in Biochemical Sciences, vol.27, issue.9, pp.462-467, 2002.

U. M. Moll and O. Petrenko, The MDM2-p53 Interaction, Molecular Cancer Research, vol.1, issue.14, pp.1001-1008, 2004.

P. Mullan, D. Quinn, and . Harkin, The role of BRCA1 in transcriptional regulation and cell cycle control, Oncogene, vol.62, issue.43, pp.5854-5863, 2006.
DOI : 10.1074/jbc.M200748200

D. Murrugarra, A. Veliz-cuba, B. Aguilar, and R. Laubenbacher, Identification of control targets in Boolean molecular network models via computational algebra, BMC Systems Biology, vol.75, issue.6, p.94, 2016.
DOI : 10.1007/s11538-013-9829-2

A. Steven, . Narod, D. William, and . Foulkes, BRCA1 and BRCA2: 1994 and beyond, Nature Reviews ? CANCER, vol.4, issue.9, pp.665-676, 2004.

D. Nguyen, M. Zajac-kaye, L. Rubinstein, D. Voeller, E. Joseph et al., Poly(ADP-ribose) polymerase inhibition enhances p53-dependent and -independent DNA damage responses induced by DNA damaging agent, Cell Cycle, vol.2, issue.23, pp.104074-4082, 2011.
DOI : 10.1074/jbc.M300554200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272289

L. Perfetto, L. Briganti, A. Calderone, A. C. Perpetuini, M. Iannuccelli et al., SIGNOR: a database of causal relationships between biological entities, Nucleic Acids Research, vol.44, issue.D1, pp.44-548, 2016.
DOI : 10.1093/nar/gkv1048

C. Patrick and . Phillips, Epistasis -the essential role of gene interactions in the structure and evolution of genetic systems, Nature Reviews Genetics, vol.9, issue.11, pp.855-867, 2008.

C. Pizzuti, Computing prime implicants by integer programming, Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence, pp.332-336, 1996.
DOI : 10.1109/TAI.1996.560473

W. Quine, On Cores and Prime Implicants of Truth Functions, The American Mathematical Monthly, vol.66, issue.9, pp.755-760, 1959.
DOI : 10.2307/2310460

M. Spiliotaki, D. Mavroudis, K. Kapranou, H. Markomanolaki, G. Kallergi et al., Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy, Breast Cancer Research, vol.105, issue.6, p.485, 2014.
DOI : 10.1093/jnci/djt306

V. Stambolic, . Macpherson, . Sas, . Lin, . Snow et al., Regulation of PTEN Transcription by p53, Molecular Cell, vol.8, issue.2, pp.317-325, 2001.
DOI : 10.1016/S1097-2765(01)00323-9

K. Strimbu and J. A. Tavel, What are biomarkers?, Current Opinion in HIV and AIDS, vol.5, issue.6, pp.463-466, 2011.
DOI : 10.1097/COH.0b013e32833ed177

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078627

M. Strnisková, M. Baran?ík, and T. Ravingerová, MItogen-activated protein kinases and their role in regulation of cellular processes, General Physiology and Biophysics, vol.21, issue.3, pp.231-255, 2002.

M. Toshiyuki, C. John, and . Reed, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, vol.80, issue.2, pp.293-299, 1995.
DOI : 10.1016/0092-8674(95)90412-3

F. Tsuruta, N. Masuyama, and Y. Gotoh, The Phosphatidylinositol 3-Kinase (PI3K)-Akt Pathway Suppresses Bax Translocation to Mitochondria, Journal of Biological Chemistry, vol.73, issue.16, pp.14040-14047, 2002.
DOI : 10.1016/S0014-5793(96)01370-1

M. Vidal, A unifying view of 21st century systems biology, FEBS Letters, vol.297, issue.24, pp.3891-3894, 2009.
DOI : 10.1016/j.febslet.2009.10.073

M. Vidal, E. Michael, A. Cusick, and . Barabási, Interactome Networks and Human Disease, Cell, vol.144, issue.6, pp.986-998, 2011.
DOI : 10.1016/j.cell.2011.02.016

URL : http://doi.org/10.1016/j.cell.2011.02.016

S. Von-der-heyde, C. Bender, F. Henjes, J. Sonntag, U. Korf et al., Boolean ErbB network reconstructions and perturbation simulations reveal individual drug response in different breast cancer cell lines, BMC Systems Biology, vol.8, issue.1, p.75, 2014.
DOI : 10.1186/1752-0509-8-75

X. Wang, A. Q. Fu, E. Megan, . Mcnerney, P. Kevin et al., Widespread genetic epistasis among cancer genes, Nature Communications, vol.6, 2014.
DOI : 10.1080/0266476042000214501

G. Jorge, R. Zanudo, and . Albert, Cell fate reprogramming by control of intracellular network dynamics, PLoS Comput Biol, vol.11, issue.4, p.1004193, 2015.

H. Zhang, . Somasundaram, . Peng, . Tian, . Zhang et al., BRCA1 physically associates with p53 and stimulates its transcriptional activity, Oncogene, vol.16, issue.13, pp.161713-1721, 1998.
DOI : 10.1038/sj.onc.1201932

W. Zhang and H. T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells, Cell Research, vol.37, issue.1, pp.9-18, 2002.
DOI : 10.1038/35098202

Q. Zhong, N. Simonis, Q. Li, B. Charloteaux, F. Heuze et al., Edgetic perturbation models of human inherited disorders, Molecular Systems Biology, vol.353, issue.321, p.321, 2009.
DOI : 10.1172/JCI0215043

URL : http://doi.org/10.1038/msb.2009.80