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Humanoid Navigation and Heavy Load Transportation in a Cluttered
Environment

Antoine Rioux and Wael Suleiman

Abstract— Although in recent years several studies aimed
at the navigation of robots in cluttered environments, just a
few have addressed the problem of robots navigating while
moving a large or heavy object. This is especially useful when
transporting loads with variable weights and shapes without
having to change the robot hardware. On one hand, a major
advantage of using a humanoid robot to move an object is that
it has arms to firmly grasp it and control it. On the other
hand, humanoid robots tend to have higher drift than their
wheeled counterparts as well as having significant lateral swing
while walking, which propagates to anything they carry. In this
work, we present algorithms for a humanoid robot navigating
in a cluttered environment while pushing a cart-like object. In
addition, the algorithms make use of the hands and arms to
articulate the cart when executing tight turns using whole body
control scheme to reduce the lateral swing effect on the load
and ensure a safe transport. Experiments conducted on a real
Nao robot assessed the proposed approach and algorithms, they
show that the payload of a humanoid robot can be significantly
increased without changing the humanoid robot’s hardware,
and therefore enact the capacity of humanoid robots in real-
life situations.

I. INTRODUCTION

One of the advantages of having arms on a robot is that it
can carry a load. This capacity can be useful for a wide range
of actions, including transporting objects from one place to
another. However, the maximum payload is generally pretty
low and generates a lot of instability if it is held at the arm’s
length. While it is possible to increase the strength of the
motors in the legs and arms, it is not the best solution since
a motor’s power is proportional to its size, weight and price.
Instead of putting the entire load directly on the robot, a
cart-like object can be used to help supporting the weight.
The cart can then be pushed by the robot and moved around
more easily without having to modify the robot’s hardware
to fit the load.

Many researches have been done on navigating robots in
a cluttered environment, but adding a controllable object
supporting a heavy load and navigating it safely has not
been widely examined. Furthermore, using a humanoid robot,
which has unstable balance and great motion swinging,
increases the difficulty of the task in hand. The objective
is to plan a stable and safe trajectory that uses a whole body
control scheme.

To address the problem of navigating a cart-like object
supporting a load with a humanoid robot in a cluttered
environment, the following sub-problems should be solved:
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Fig. 1.

The Nao robot holding the cart-like object

(D planning, (II) sensing and (III) controlling the cart-
like object. To plan a safe trajectory between obstacles, an
anytime search-based planner exploits a given set of motion
primitives that consider both the robot and the cart footprint.
The second step is to find the humanoid robot’s footprints,
the humanoid’s feet and hands trajectories are then computed
in order to minimize the swing effect and follow the cart
trajectory using a task priority whole body control scheme.
The main contribution of the paper is providing a frame-
work for humanoid navigation in a cluttered environment
while manipulating a cart-like objet that carries a heavy load.
This paper is organized as follows. Section 2 presents an
overview of related works. Section 3 describes the robot-
cart model and the implemented algorithms. In Section 4,
simulation and real results are presented and analyzed.

II. RELATED WORK

Many studies have been done on robots moving objects
to a specific goal. Most of them though are executed with
multiple wheeled robots that position themselves around
the object to push it in the desired direction. One of the
first examples of this behavior for a movable target tried
to reproduce how ants move a prey bigger than them by
trial and error [1]. Another added the possibility of pulling
the object by using a rudimentary one degree of freedom
arm [2], while [3] have the additional benefit of being able
to manipulate an object in 3D when necessary, instead of 2D.
In these researches, the manipulator comes in contact with
the object at only one point, which barely allows any control
over the object while moving and manipulating it. Holonomic
wheeled robots are indeed less complex to control than
humanoids, they are mainly useful at sliding box-like object



on the ground. Therefore, a robot with humanoid arms allow
a better control of the structure of an object and is more
suitable to control cart-like objects with loads.

Other works have explored the usage of humanoid robots
that push objects while keeping a firm grip on the handles.
In theory, two arms are enough to fully constrain and control
all the degrees of freedom of a cart. It was demonstrated that
Honda’s ASIMO is capable of moving a large cart in rooms
and hallways [4]. However, the cart is mostly controlled
as a Dubins car instead of taking advantage of the full
possibility of the humanoid robot’s holonomic movement.
Also, the arms serve only as a mean of attaching the cart to
the robot and are not taken into consideration to control the
cart further.

Another project used a biped robot to push a person on
a wheelchair [5]. To keep balance while performing the
desired task, this HRP-2 and the ASIMO both implement an
approach with a Zero-Moment Point (ZMP) offset. Although
the HRP-2 has a heavy load to move on the wheelchair, the
possible movements are akin to those of the ASIMO robot as
the cart is controlled like a Dubins car. Furthermore, none
of these examples minimize the footprint of the robot-cart
contraption by turning the object because they are considered
as one static bloc. In a tight and cluttered environment, taking
advantage of the arms to manipulate the cart-like object is
beneficial and possibly necessary.

In [6], a planning method for humanoids to navigate
among movable obstacles has been proposed. The main
purpose of that method is to find a path from a starting
to a goal points in a complex environment where the robot
can easily move objects to create a clear path, if it exists
one. Our objective is however different, as we are interested
in not only navigating in a cluttered environment, but also
transporting a heavy load that is significantly bigger than the
humanoid payload.

In the work of [7], a PR2 robot possessing a wheeled
holonomic base and two 7 DoF (Degree of Freedom) arms
is used to push a small cart and control its orientation.
However, despite having humanoid arms to orient the cart,
since the PR2 has wheels instead of legs, no lateral swing
is transmitted to the transported object causing oscillations
and instability, which is a problem with humanoid robots.
Furthermore, the cart is very small and light weight with
respect to the PR2, in contrast to our proportionally big cart
that is able to carry a load heavier than the robot itself.

III. ROBOT-CART MODEL AND ALGORITHMS
A. Path finding

To be able to navigate trough a cluttered environment, a
path provided by a motion planning algorithm is essential.
Among the different possibilities, we chose a lattice-based
graph planning with an ARA* search [8]. This choice is
mainly motivated by the use of motion primitives that assures
feasible robot-cart configurations and transitions. The envi-
ronment is modeled by a 2D grid costmap that discriminates
obstacles from free space at a fixed threshold and allow
obstacles inflations to increase the security margin.

Each node of the search graph needs a complete state rep-
resentation of the robot-cart to properly operate. To achieve
this, it is possible to model the state in R? x S! x R2 x S':

s = (l'rayryemxcavyca,eca) (1)

Where .,y and 6, are the positions and orientation of
the robot, Z.q,¥ycq and 6., are those of the cart. As the
working space of our robot’s arms is too small to fully take
advantage of both rotation and translation, the problem can
be simplified by setting a pivot point positioned in the middle
of both hands to reduce the dimensionality of the search
space, the chosen position of the pivot point also maximizes
the rotation range within the robot’s workspace (see pivot
point 1 in Fig. 5), resulting in a 4 dimensions state space
R? x S! x S':

s = (xrvymgryeca) (2)

Even-though the above simplification removes the ability of
the cart to translate on the plane, the robot retains enough
manipulability to minimize the cart footprint on tight turns.

In a lattice-based graph planner, the transition between
the nodes is a discrete action chosen within a fixed-set
of possible actions called motion primitives. An important
feature of the lattice representation is that each of those
connections is a feasible path, in contrast to other forms of
graph search, including “4-connected” or “8-connected” grid.
This makes it really suitable for highly constrained systems,
such as a robot moving a cart.

Because the cart can carry different loads, multiple sets
of primitives are needed depending on the load’s weight.
Without load, the robot is holonomic and can move in any
direction. A subset of movements composed of forward,
backward, diagonal, rotate in place and turn while moving
forward is used to reduce planning time while focusing on
forward movements. With a heavy load though, moving side-
ways and rotating in place becomes really difficult because
of the increased friction. For this reason, when the weight
becomes too important, rotation occurs around a pivot point
situated between the two table’s legs touching the ground
(see pivot point 2 in Fig. 5). Thus, changing the feasible
primitives is necessary for the lattice representation to remain
coherent. An example of right turn for the omnidirectional
and the heavy load sets of primitives are presented in Fig. 2.

The cost function of a transition from state s to s’ is based
on the time to execute that transition and is computed as
follows:

vV (Az.)2+(Ay,)?
Cost = 7+ X DF
A0 o DF

0+

if Azp #£ 0or Ay, # 0

otherwise
3)
where Ax,, Ay, and A0, are the differences between
the x,.,y, and 6,, which are the coordinates of the robot’s
pelvis joint, between states s and s’, DF is a difficulty
factor associated with each primitives, 7" is the maximal
robot linear velocity and 0% is the maximal angular velocity
for turning in place. The Euclidean distance between both
states is computed and then divided by the maximum velocity
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(a) omnidirectional primitives set (b) heavy load primitives set

Fig. 2. A right turn executed by the robot (blue) pushing the cart (green)
to the goal (red arrow) with both sets of primitives.

of the robot in the direction of the movement to give the
approximate time to execute the primitive.

For both instances, the difficulty-factor associated with
each primitive is then multiplied by the time cost. This DF
is used to prioritize or penalize certain motions or directions,
which result in a smoother and a more natural looking
trajectory. For example, turning in place then moving forward
takes a longer time than moving in diagonal. However, on a
long distance, the former reduces the trajectory footprint and
is therefore more natural looking while reducing the chances
of drifts caused by the table movements. For those reasons,
moving sideway has a higher DF than turning and moving
forward.

A* is one of the most popular search method at finding
a solution path using a cost function. In addition to the
cost function, a heuristic bias the search towards the most
promising states. In our case, our heuristic is a 2D grid
containing all the Dijkstra distance costs from the start to
the goal states. Even though A* is optimal when it finds
a solution, that solution may not always exists or cannot be
found within a certain time limit. The Anytime Repairing A*
(ARA¥*) planner focuses on delivering a suboptimal solution
as fast as possible, this solution is then optimized iteratively
to obtain the optimal solution.

B. Humanoid footprints and whole body control scheme

Once a collision-free trajectory is found by the ARA*
algorithm, a set of footprints are defined along the trajectory
as it is shown in Fig. 3. Even-though, at first glance, the
support polygon appears to be increased by adding the cart,
the robot’s support polygon is always defined by the contact
between the feet and the ground. This is because the robot’s
arms are not fully bended, therefore the robot could fall
forward or backward .

The second step is to define a Zero Moment Point (ZMP)
trajectory. A trajectory of the Center of Mass (CoM) of the
robot is then obtained using the preview control algorithm
proposed in [9]. This algorithm has been widely used by
researchers in humanoid robotics, it is simple to implement,
yet efficient and yields a smooth CoM trajectory by min-
imizing the CoM jerk trajectory. The feet trajectories are
obtained by spline interpolation between the footprints and

the hands trajectories and orientations are defined in order
to minimize the walking swing effect as well as follow the
cart orientation.

Final position and
orientation

obstacle

obstacle

[ hands trajectories

obstacle

Initial position and
orientation

Fig. 3. Overview of the motion planning procedure

To obtain the humanoid robot’s joint trajectories, a whole
body control scheme with prioritized tasks is formulated as
follows:

min ¢" Qq
q
subject to
Jc q = ”;'c
First priority Jifq =1y (4)
Jrrq="7.¢
. Jing =7
Second priorit ..
P Y { Jrn q="Trh
Joint velocity limits g <q<qt

where ¢ € R is the joint velocity vector, @ is a positive
semi-definite matrix, J. € R3*" J;; € R J.; €
RS> Jy, € R6*™ J,.,, € R6X™ are the jacobian matrices
of CoM, left foot, right foot, left hand and right hand
respectively. ¢, Tf, Trf, T, 7rp, are the linear and angular
velocity of CoM, left foot, right foot, left hand and right hand
respectively.



g~ and ¢* are generalized joint velocity limits defined as
follows:

(af —a5)—as .
fﬁ:{C]q/qs if ¢ — 45 < ai
i +

q otherwise
' ( i) )
—q; )—4s . _
g = gt ifgj —q; <q
! qj— otherwise

where (}}" is the j element of the vector g*, g; is the value
of joint j, q;r and ¢; are the upper and lower limits for the
joint 7, ¢, ¢; and g, are user-defined positive constants, g;
is usually called the interference distance. It can be easily
proven that the equalities constraints in (5), not only yield
a motion within the humanoid’s velocity limits, but also the
joints limits are respected as well with a safety margin equals
to gs:
4 +9s < a5 < qf — g

Eq. (5) provides a compact and efficient way for dealing
with both of velocity and joint limits, it has been originally
proposed in [10].

The optimization problem (4) can be efficiently approx-
imated by the following standard Quadratic Programming
(QP) problem:

min XTHX
X
subject to
J X =1 (6)
Jo X =7y
X <X<X*
Where: _
q
e X = |61],8; € R'® and 8, € R'? are slack variables.
02
Q 0 o
e« H = 0 Q1 0|, Q1 S R™*15 and Q2 €
0 0 Q.
R'2X12 are user-defined positive definite matrices. In

order to respect the task priority, the following condition
should be satisfied: [|Q1] > ||Q=]|-

Jo I3xz Ozxe 03xs O3x12
o Ji = |Jiy Osx3 Isxe Osxe Osxi2|, Inxn is
Jrr Osx3 Ocxs ITsxec Osxi2
the identity matrix.
.« Jy— Jin Osx1s5 Isxe Ogxe
Jrn Osx1s Osxs  Isxe
. "l“(‘ . Tih
e 71 = |7y | and 7o = -
,"'rf rh
i i
« Xt =16 and X~ = |§;

o5 6y

The QP problem (6) can be solved in real-time using an
appropriate QP solver such as uQuadProg solver [11] or
gpOASES solver [12].

C. Mapping, localization and replanning

To move in a cluttered environment, a robust and precise
sensing input is primordial to determine the position of
obstacles, detect collisions and to plan valid long term and
short term paths. Also, odometry drift must be constantly
verified and corrected by a localization mechanism to en-
sure a close monitoring of the planned path. The human-
size humanoid robots, such as HRP-2 or the humanoids
robots which participated in DARPA Challenge, are able to
build a 3D map on the fly using their very sophisticated
proprioceptive and exteroceptive sensors. However, the Nao
robot has only two cameras in the head for sensing and
localization. A first approach would be using those cameras,
however this has proven to be a very difficult task [13] [14].
Indeed, as explained previously, a humanoid robot swings
laterally while walking, which leads to pictures of poor
quality. Furthermore, the field of view of the Nao is greatly
obstructed by the large table and load. As a result, it is hard
to precisely determine the position of the environment and
obstacles with respect to the robot.

A second approach would be adding a Kinect camera on
the top of Nao’s head for mapping [15], in our case a second
Kinect camera placed on the front of the cart would probably
improve the quality of the 3D mapping. This approach will
be studied in a future work.

Our main purpose in this paper is to validate the motion
planning approach and whole body control scheme, we there-
fore, as many related research [16], [17], [18], only to cite
few, opted for a complete external sensing and localization.
Our system is a Vicon motion capture system constituted
of 8 MX20 and 4 T40 cameras. It runs at 100 Hz with a
precision of 1 mm.

Markers are placed on the obstacles to construct the 2D
costmap of the environment. A global costmap keep tracks of
the initial obstacles positions for long term planning, while
the local costmap is updated every time a marker moves
to ensure safe short term planning and real-time obstacle
tracking.

Four markers are placed on a trapezoid shape on the top of
Nao’s head, they are used to keep track of the robot position
and orientation. Another four markers are placed on each
corners of the cart and they are also used to track the cart
position and orientation.

A collision might occur if an obstacle has been moved or a
drift from the planned trajectory happened. When a collision
is foreseen, a replanning is necessary as shown in Fig. 4.
The new collision-free trajectory is found by the algorithm
ARA* starting from the point at which the collision has
been predicted. If the potential collision is due to drift, the
Dijkstra grid does not need to be recalculated, accelerating
therefore the replanning. As the walking pattern trajectory
for a humanoid robot cannot be changed instantly, a time
interval t. is required to change the planned footprints. In



the implementation of ZMP preview control, a finite time
horizon of 2 steps is used to compute the CoM trajectory.
Therefore, if a collision is foreseen at instant t., the new
collision-free trajectory provided by the algorithm ARA*
is deformed to keep the next two footprints unchanged as
shown in Fig. 4, the robot will however stop if the deformed
trajectory is in collision.

Final position and
orientation

obstacle

obstacle

Initial position and
orientation

Fig. 4. Replanning in case of collision detection: ¢. is the instant at which
a collision is foreseen, the new collision-free trajectory is in dashed-blue
line, the deformed trajectory is in red line.

IV. RESULTS

Experiments were conducted on a Nao humanoid robot
(Fig. 1), manufactured by Aldebaran Robotics [19]. On top
of its head, we added 4 motion capture markers in order to
track the robot position and orientation.

The cart-like object, shown in Fig. 1, is a mini table
600mm long by 300mm wide. On one side, the two legs
are 300mm high and are set on omnidirectional wheels. On
the other side, the two legs are half the length so that the
Nao can fully support this side of the table. Furthermore,
these legs are round and small to fit more tightly in Nao’s
hands.

The primary objective of our approach is to increase
the maximum load weight carried by a Nao humanoid
robot, without destabilizing it, while maintaining sufficient
flexibility and agility. For that purpose, an experiment aimed

at measuring the maximum carrying capacity of the Nao
without any modifications has been carried out. Nao is placed
in the same pose as in Fig. 1, then a small board (333g)
is attached to both hands and is used to support various
amount of calibration weights. Even with low weight, the
robot is rapidly out of balance and has difficulty following
planned trajectories, this is because stabilization algorithms
are constantly prioritized to avoid falling. At 300g additional
weight, however, Nao fell within the first steps nearly every
run, which we determined to be its maximum carrying limit.

With the introduction of the cart, two sets of motion
primitives are available, an omnidirectional and a heavy load
sets. An example of a right turn for both set is shown in Fig.
2. The carry load at which the friction becomes too high
to consider the heavy load set is 700g. In reality, the robot
can push higher load, however the wood structure of the
cart-like objet cannot support a load higher than 7,000g. To
summarize, the maximum carrying capacity of the Nao robot
alone is 633g and by using the cart, it is 7,000g, which is
11 times its normal capacity.

In the case of omnidirectional set, the hands and arms are
strong enough to articulate the cart while turning to obtain
smooth trajectories. The maximum angle at which our robot
can turn the cart is 30 degrees, as illustrated in Fig. 5. Over
that limit, one hand is colliding with the torso while the other
lies outside of the robot workspace.

Fig. 5.
degrees)

The arms posture while turning the cart at maximum angle (30

While walking in a straight line of 1 m, our Nao is
affected by a drifting of an average of 10.5 cm. Without
any corrections, this error would lead the robot to constantly
diverge from the planned trajectories. The correct localiza-
tion information provided by the external sensing allow us
to modify the trajectory to cancel the drift .

While pushing heavy load, however, the robot cannot
rotate in place or move laterally to cancel any drift errors,
a quick replanning is therefore executed when the robot
diverges too much from the planned trajectory.

As showed in Fig. 6, without any hand position correction,
the lateral swing causes large oscillations that are transmitted
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Fig. 6. The hands lateral movement while walking with and without
corrections

to the table and the load. The average peak-to-peak position
movement is 56.25 mm. However, with the proposed cor-
rections, the hand distance from desired position has been
reduced to 28.20 mm, reducing the hand error by 49.87%.
As a result, significantly less oscillations are transmitted to
the table, leading to a safer and enhanced carrying ability
and load stability. However, note that the error cannot be
completely cancelled because: I) the hand trajectories are
second priority task, that means the robot will respect those
trajectories as far as the trajectories of first priority are fully
followed, II) the Nao robot has only 5 degrees of freedom
in each arm, III) the joint backlash of the Nao robot.

To test the system as a whole and to validate the proposed
algorithms, we conducted three series of 5 experiments. The
omnidirectionnal set of primitive has 12 different primitives
with 6, sampling of 11.25° while the heavy set have only 5
possible primitives, but with a precision of 5.625°. In each
experiment, the robot starting and goal positions were chosen
in a way that the robot had to navigate through a field of
motion capture markers on the ground. Every marker serves
as an obstacle that must be avoided by the robot and the
cart. They were placed to form various feasible paths and
force tight turns in order to take advantage of the additional
degree of freedom (the rotation of the cart 6.,). The three
series were composed of the same experiments containing the
same initial configuration of the obstacles in the environment
and using the same initial and goal positions and orientations,
but with different transported objects.

Fig. 7 shows the start and end positions for each type of
experiment. In this figure, the obstacles are in black, while
the grey areas around them are an inflation zone where the
cost is higher than free space to prevent the robot from
passing too close to obstacles. The vertical and horizontal
black lines are virtual walls to prevent the planner from
detecting optimal trajectory passing around the experimental
setup.

The first series consists of the Nao robot alone, without
a cart or load. It uses the omnidirectional primitives set
to navigate through the obstacles. The second one was

=— Goal position

# & orientation
Start1
End 5
-
+"‘+ #=— Obstacle
—==— Inflation zone
Ht
== Trajectory
Start 3
Start4 End 2
End 3
Fer 4 Virtual wall ===
i Ed
<= Cart footprint
} I ot * End1

‘\
T = Robot footprint

Start 2.5
End 4

Fig. 7. Map of the obstacles (black), the inflation zone around them (grey)
and experiments with the Nao (red square), the cart (orange rectangle) and
goal position/orientation (red arrow). Note that the initial posture collides
with the inflation zone, but it is not in collision with the obstacles.

conducted with the Nao holding the cart, which increased
the navigation footprints significantly. These tests also used
the omnidirectional set to construct the plan. For the third and
final series, the robot is pushing the cart with an additional
load of 2,300g, in this case the heavy load set of primitives
have been used to allow the Nao to plan a trajectory in the
cluttered environment.

The ARA¥* planner initial ¢ = 3 means that the suboptimal
solution cannot be worse than 3 times the cost of the
optimal solution. A time limit of 10 seconds was chosen
and within that time e successfully decreased to 1 on every
run, which corresponds to the optimal solution. For each
generated path, we measured the total time to execute the
trajectory, the trajectory length, the initial solution time, the
optimal solution time, the initial expanded nodes and the final
expanded nodes. The PC that has been used to generate these
results has: a i7-3770 Processor with 8 cores at 3.4GHz and
8GB of RAM. These results are summarized in Table II.

No Cart | Cart Omni | Cart Heavy Load
Total time (s) 69.75 104.90 134.71
Total time Std (s) 14.69 15.76 27.62
Trajectory length (m) 241 3.03 3.20
Trajectory length Std (m) 0.53 0.26 0.48
Average velocity (m/s) 0.035 0.029 0.024
Initial solution time (e = 3) (s) 0.020 0.026 0.012
Initial solution time Std (s) 0.020 0.024 0.008
Optimal solution time (¢ = 1) (s) 0.20 0.41 0.44
Optimal solution time Std (s) 0.11 0.46 0.38
Initial node expansions 541.6 769.8 892.4
Initial node expansions Std 492.5 497.0 508.7
Total node expansions 4775 10694 25165
Total node expansions Std 2760 11436 24105
TABLE I

EXPERIMENTAL STATISTICS

It can be observed that the average velocity is lower while
using the cart. This is explained by the friction of the wheels
of the cart causing slippage as the robot tries to move,



slowing its movements down. Every step in a direction results
in a slippage in the opposite direction, thus progressing less
distance with each step. This leads to a reduced speed of
17.14% for when pushing the empty cart and 31.43% speed
reduction with the additional 2.3 kg load.

Even-though the primitives with the robot alone and with
the cart are the same, it is hard to find a path as optimal
with it. Since the length is only about 25% longer though,
moving with the table does not impair too much the robot
ability to travel the cluttered environment swiftly.

The weight primitives trajectory length however is higher
in comparison, about 33% higher than the Nao alone. This is
primarily due to the change of primitives. The movement is
not as smooth, in particular, moving sideways or in diagonal
become impossible. Also, turning in place versus turning
around a pivot placed »r = 0.60m away increased the
trajectory by at least L = % every time the robot makes a
turn.

The biggest problem we encountered is the very limited
space where the Vicon is precise. Indeed, the precision
is under 1 mm while correctly positioned, but during our
experimentations, often when Nao got too close to the
edges of the “sweet spot”, it starts to lose the markers and
fails to follow correctly and consistently the localization.
As a result the working space was limited, however our
algorithm is more generic and already ready for large scale
autonomous navigation. We plan changing this system for a
more autonomous one as it will be explained in Section V.

Also, the friction of the wheels to the ground is not
high enough to completely prevent them from sliding and
thus to act as a perfect pivot while using heavy load. This
causes additional errors when turning and walking that can
accumulate and force a replanning. For this reason, with the
heavy load, 1.8 replanning were needed on average, while
only 0.4 for the cart alone and 0 without the cart when no
obstacles are moved.

When an obstacle is moved in the initial trajectory of the
robot or cart, a replanning is essential to avoid collision. On
all our experiments, there was no collision between neither
the Nao or the cart with any obstacles or the virtual walls'.

V. CONCLUSION AND FUTURE WORK

In future work, our priority will be to remove any de-
pendency on the external localization system, that is the
Vicon system, and instead use other techniques to make
the system completely autonomous. As suggested in Section
II-B, adding Kinects to the Nao and the table will be
explored. Also, since we are using multiple sets of primitives
depending on the load weight, an automatic estimation of the
load weight, to decide which set to be used, would improve
the system and make it more general and autonomous.
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