On the sub-Gaussianity of the Beta and Dirichlet distributions

Olivier Marchal 1 Julyan Arbel 2
1 PSPM - Probabilités, statistique, physique mathématique
ICJ - Institut Camille Jordan [Villeurbanne]
2 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We obtain the optimal proxy variance for the sub-Gaussianity of Beta distributions, thus proving, and improving, a recent conjecture made by Elder (2016). We provide different proof techniques for the symmetrical (around its mean) case and the non-symmetrical case. The technique in the latter case relies on studying the ordinary differential equation satisfied by the Beta moment-generating function known as the confluent hypergeometric function. As a consequence, we also derive the optimal proxy variance for Dirichlet distributions.
Liste complète des métadonnées

Contributor : Olivier Marchal <>
Submitted on : Friday, January 26, 2018 - 11:54:56 AM
Last modification on : Friday, March 1, 2019 - 1:09:58 AM



  • HAL Id : hal-01521300, version 1
  • ARXIV : 1705.00048


Olivier Marchal, Julyan Arbel. On the sub-Gaussianity of the Beta and Dirichlet distributions. Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2017, 22 (paper no. 54), pp.1-14. ⟨https://projecteuclid.org/euclid.ecp/1507860211⟩. ⟨hal-01521300⟩



Record views


Files downloads