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Abstract We propose a camera tracking method by on-line learning of keypoint arrange-
ments for augmented reality applications. As target objects, we deal with intersection maps
from GIS and text documents, which are cannot be handled by the popular SIFT and SURF
descriptors. For keypoint matching by keypoint arrangement, we use locally likely arrange-
ment hashing (LLAH), in which the descriptors of the arrangement are not invariant to wide
viewpoints because local arrangement is changeable with respect to viewpoints. In order to
solve this problem, we propose online learning of descriptors using new configurations of
keypoints at new viewpoints. The proposed method allows keypoint matching to proceed
under new viewpoints. We evaluate the performance and robustness of our tracking method
using view changes.

Keywords LLAH · Feature Descriptor· Camera Tracking· Augmented Reality

1 Introduction

Camera tracking remains an open and active fundamental problem in the computer vision
domain. In particular, augmented reality (AR) applications need real-time processing and
robust camera tracking in order to place virtual objects in an actual scene. To meet those
requirements, several approaches have been proposed.

Fiducial markers have been widely developed for a long time,and they have been used
in many AR frameworks (Kato and Billinghurst, 1999; Fiala, 2005; Wagner et al, 2008a).
In fact, these marker systems are already used in practical applications in companies and
industries (Pentenrieder et al, 2007).

Recently, the focus of research has been shifting towards the use of natural features from
actual environments such as edges and feature points, because fiducial markers may not be
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available (for instance, because of installation permission in outdoor environments, size-
based issues, and application constraints). For example, edge-based approaches can be found
in model-based tracking (Drummond and Cipolla, 1999), initialization of tracking (Kotake
et al, 2007) and visual SLAM (Klein and Murray, 2008) using boundaries of a room and
the rims of a non textured object. The keypoint (feature point) matching based approach is
also becoming common, owing to the development of local descriptors such as SIFT (Lowe,
2004). In addition, the computational complexity of this approach is drastically decreasing
and allows for the implementation of the method on a mobile device with a low speed CPU
and less memory, as in Phony SIFT (Wagner et al, 2008b).

Even though this remarkable development has already been achieved, this approach can-
not be applied to our target objects such as maps that includeonly intersections as simple
circular dots (Uchiyama et al, 2008, 2009) and text documents having locally repetitive
patterns (Uchiyama and Saito, 2009), because rich texturedobjects are necessary for the
descriptors. Instead of the local patch based descriptors,the local arrangement of keypoints
is shown as a distinctive descriptor in such cases.

In this study, we describe a camera tracking method for our target objects, which cannot
be tracked by traditional methods. We use LLAH (Nakai et al, 2005) to describe the local
arrangement of keypoints. Because the local arrangement might be modified when the view-
point changes, we propose a method for learning the new configuration of keypoints at new
viewpoints, in order to handle a large range of viewpoint changes.

The rest of this paper is arranged as follows. The next section describes related studies
regarding keypoint matching. In particular, the details ofLLAH are highlighted in Section 3,
because LLAH is an important component in our method. Section 4 explains our main con-
tribution to the learning process with LLAH. Section 5 demonstrates the performance and
robustness of our method. Section 6 discusses our conclusions and future work.

2 Related works

The entire process of keypoint matching can be divided into three parts: extraction, descrip-
tion and matching.

For keypoint extraction, Harris corner (Harris and Stephens, 1988) and FAST corner (Ros-
ten and Drummond, 2006) have been proposed for extracting keypoints that have a different
appearance from their neighboring pixels. These methods can be applied to multiscale im-
ages to take into account scale changes. There have been several approaches for extracting
scale-invariant feature points, such as the difference of Gaussians (Lowe, 2004), gradient
locations and orientation histograms (Mikolajczyk and Schmid, 2005), and basic Hessian-
matrix approximation (Bay et al, 2008).

A keypoint descriptor is a high dimensional vector computedfrom the local neighbor
region of the keypoint in order to construct a discriminative power. Descriptors such as
SIFT (Lowe, 2004) and SURF (Bay et al, 2008) have been designed to be invariant to illu-
mination, scale, rotation, and translation changes. Because they require high computational
power, several attempts have been made to accelerate the computation of such descriptors. In
particular, it is important to run at interactive frame rates in order to provide real-time appli-
cations and interaction with the user in AR systems. Among them, Sinha (Sinha et al, 2006)
has implemented SIFT on a GPU in order to use parallel processing. Wagner (Wagner et al,
2008b) has proposed Phony SIFT, which is a mobile phone version of SIFT that removes
some computational costs related to keypoint extraction and descriptor computation.
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The matching of descriptors can be addressed as a nearest neighbor searching problem
between high dimensional vectors. Approximate nearest neighbor is a searching method
based on kd-trees and box-decomposition trees (Arya et al, 1998). Because a distance com-
putation is performed for the comparison between two vectors, the retrieval cost depends
on the dimension of the vector. Locality sensitive hashing (LSH) is another approximate
searching method based on probabilistic dimension reduction with a hash scheme (Datar
et al, 2004). The computational cost of LSH is alwaysO(1), but the nearest neighbor points
might not be found. The design of the hash function remains animportant issue in order to
efficiently store data, which requires having as few collisions as possible in the hash table.
Nister and Stewenius have proposed a recursive k-means treeas a vocabulary tree for quick
retrieval (Nister and Stewenius, 2006). Lepetit et al. havetreated the matching of descriptors
as a classification problem (Lepetit et al, 2004).

Local descriptors are well suited to match keypoints with rich texture patterns. In con-
trast, these descriptors cannot be applied to our targets, such as intersection maps and text
documents. For example, the local textures in the intersection maps are the same because
the texture is only composed of identical circular dots. In this case, descriptors such as SIFT
and SURF do not work well because local areas do not have enough discriminative power to
be distinct from other areas. In addition, in text documents, local textures are almost identi-
cal and cannot be described by SIFT and SURF. Instead of localpatch based descriptors, we
promote the use of descriptors that consider the geometrical relationship between keypoints,
which has already been proposed in studies of document imageretrieval (Hull et al, 2007;
Nakai et al, 2005).

Hull et al. have proposed to use the horizontal connectivityof word lengths as a de-
scriptor (Hull et al, 2007). Word length refers to the numberof characters and is linked with
the previous and next word lengths. Because word lengths arevery sensitive to viewpoint
changes, this descriptor is valid only when a user captures an image where the camera is
orthogonal to the document and close enough to the paper. Text lines must also be parallel
to the lower side of the image.

Nakai et al. have proposed keypoint matching using the localarrangement of keypoints
for document image retrieval, called LLAH (Nakai et al, 2005). The objective is to quickly
find a document relevant to a query image from a database containing numerous documents.
LLAH is an improved method of geometric hashing (GH) (Lamdanand Wolfson, 1988) in
terms of memory use and computational cost. Because the computational cost of GH con-
sidering perspective distortion isO(N5), whereN is the number of keypoints in a query, it is
difficult to apply it to real-time applications, such as AR systems. To solve the computational
cost problem, LLAH focuses only on local geometry with neighbor keypoints. However, the
descriptors of local arrangement in LLAH are invariant within a narrow view because the
arrangement is changeable with respect to viewpoints. In order to handle a large range of
viewpoints, we merge the online learning of the new configuration of keypoints into LLAH.

3 Descriptors in LLAH

In this section, we explain the descriptors in LLAH because our method is mainly based on
these descriptors (Nakai et al, 2006).

In Figure 1,x is an example target keypoint. First, then nearest neighbor points around
x are selected asabcdefg(n = 7). The order to select then points should be defined before-
hand. For example, we select froma in a counterclockwise fashion based on the reference
axes, as illustrated in Figure 1.



4

Next,m points out ofn points are selected asabcde(m = 5). From thesem points, one
descriptor is computed. Because a descriptor is computed oneach combination, a keypoint
hasnCm = n!

m!(n−m)! descriptors.
From m points,l points are selected for computing a geometrical invariant.As the in-

variant, Nakai et al. selected a cross ratio as a perspectiveinvariant (Nakai et al, 2005) and a
ratio of two triangles as an affine invariant (Nakai et al, 2006). Because they concluded that
the affine invariant was better (because the perspective invariant was not stably computed),
we select the affine invariant(l = 4).

In Figure 1, four points are selected asabcd to compute a ratio of two triangles. For
a hashing scheme, the value of the ratio is quantized into an index using a distribution
histogram created in prior experiments (Nakai et al, 2005).The histogram is segmented
into the number of quantization level to assign an integer number at each segment. Because
the number of the combination to select four points is equivalent to the dimension of the
descriptor, the dimension ismC4.

For quick retrieval, a hash scheme is adopted. The descriptor is converted into an index
using following equation:

Index =

(

mCl−1

∑
i=0

r(i)k
i

)

modHsize (1)

wherer(i)(i = 0,1, ...,mCl −1) are quantized values of geometrical invariants,k is the quan-
tization level andHsize is the pre-defined hash size. As a result, each keypoint is stored in
a hash table as (Index, Document ID + Keypoint ID). The table has been pre-defined to a
large size to access the element of each index byO(1). In addition, a keypoint database is
prepared to store a 2D coordinate of each keypoint as (Document ID + Keypoint ID, 2D
coordinate). In our implementation, a document ID and a keypoint ID are represented by a
32 bit ID by assigning 16 bits to both IDs.

When a keypoint is stored in the hash table, a collision occurs at the index. Because the
discriminative power of such an index is considered to be toolow, a keypoint is not stored
at the index.

Fig. 1 Descriptors in LLAH. The descriptors of a keypoint are computed from the combination of the ratio
of two triangles.
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4 Proposed method

4.1 Target objects and their keypoints

Our target objects for augmented reality applications are intersection maps (Uchiyama et al,
2008, 2009) and text documents (Uchiyama and Saito, 2009). Figure 2(a) is an example of
intersection maps generated from a Geographical Information System (GIS), and Figure 2(b)
is the visualization of 3D data on GIS. This application was developed to achieve a novel
geo-visualization by relating GIS and paper maps. Also, Figure 2(c) illustrates a virtual
annotation system implemented as augmented reality on a document.

In these applications, local patch based tracking methods do not work because local
texture patterns are not sufficiently distinctive. For thisreason, we sought another approach
using the local arrangement of keypoints as a descriptor.

For keypoint extraction, the intersections are extracted by color extraction because the
intersections have a specific color, such as red. From text documents, word regions are ex-
tracted using adaptive thresholding in the same way as (Nakai et al, 2006). A keypoint is the
center of each region. Compared to normal textures, local texture patterns are similar, but
keypoints are stably extracted.

(a)

(b) (c)

Fig. 2 Target objects. (a) An example of intersection maps. (b) 3D building visualization on the intersection
map. (c) Virtual annotation on a document.
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4.2 Initialization

In our applications, a camera pose with respect to a 2D printed paper (map or document) is
tracked. Before pose tracking, an initial pose is estimatedas an initialization. Because the
initialization needs an initial hash table (descriptor database) and keypoint database, these
databases are prepared as follows.

To create an intersection map, the 2D distribution of intersections is computed and ex-
ported from a GIS. The distribution is equivalent to the top view of a map. By dealing with
intersections as keypoints, the initial databases are created. For a text document, a document
image is prepared from a digital document, such as a PDF. The image is also regarded as the
top view of the document. By extracting keypoints from the image, the initial databases are
created.

Because the initial databases are equivalent to the databases from a top view, a camera
needs to be set at the top view for the initialization.

The process is the same as that of document image retrieval by(Nakai et al, 2006).
In the initialization, keypoints are extracted from a captured image (keypoint extraction),
and their indices (descriptors) are computed (descriptor computation). For each keypoint, a
histogram of keypoint IDs is generated by retrieving keypoint IDs from the indices in the
initial hash table. By selecting a peak of the histogram, each keypoint in the captured image
has a corresponding keypoint in the keypoint database. In order to estimate a camera pose,
a homography is computed from the correspondences, becausethe paper is set on a plane.
Because there are outliers in the correspondences, we use RANSAC (Fischler and Bolles,
1981) to remove outliers and compute a refined homography.

4.3 Online learning process

A tilted camera pose cannot be computed from the initial hashtable because keypoint match-
ing by LLAH fails. In order to achieve wide base-line keypoint tracking, we propose online
learning of descriptors.

The flowchart of pose tracking is illustrated in Figure 3. From keypoint extraction to
pose estimation, the process is the same as the initialization. After pose estimation, the pro-
cess moves to the descriptor update step. Because the camerapose is computed, keypoints in
the keypoint database can be projected onto the image. By computing the distance between
a projected keypoint and keypoints in the image, some of the keypoints in the image can get
corresponding points in the keypoint database as matching by projection. For each keypoint
for which correspondence is established, a descriptor update is performed.

4.4 Neighbor keypoints’ selection

As described in Section 3, the neighbors of each keypoint arenecessary in order to compute
the descriptors. If we compute the distances for all keypoints from a keypoint, the computa-
tional cost isO(N2), whereN is the number of keypoints. The computation of all possible
distances would imply large computational costs. To limit computational costs in the neigh-
bor keypoints’ selection, we limit the searching of candidates for distance computation to
limited neighbor areas, in order to search neighbor keypoints efficiently.

As a pre-processing phase, the captured image is divided into square regions by seg-
menting them on a regular basis, as illustrated in Figure 4. When the keypoints are extracted
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Fig. 3 Online learning process. As well as the initialization, a camera pose is estimated by matching by
LLAH. After pose estimation, the keypoints in the keypoint database are projected onto the captured image
to find correspondences in the image. If a correspondence is established, a descriptor update is performed.

Fig. 4 Neighbor points selection. The image region is divided intosquare regions beforehand. If a keypoint is
extracted ina, candidates of neighbor points are collected from regiona to regioni. If they are not sufficient,
the candidates are collected from regionj to regiony.

in the captured image, we compute the region to which each keypoint belongs. In addition,
each region maintains the list of keypoints included in thatregion.

When we search the neighbor keypoints of a target keypoint, we collect potential can-
didates from the surrounding regions. For example, if a target keypoint belongs toa in Fig-
ure 4, the candidates are extracted from regiona to regioni. If the number of candidates is
less thann in Section 3, we collect more candidates from more surrounding regions. When
the number is more thann, neighbor points are selected among the candidates by computing
each distance.



8

4.5 Matching by projection

In the pose estimation, we compute homographyH as:




X
Y
1



∼ H





x
y
1



 (2)

where(X ,Y ) is a keypoint in the keypoint database and(x,y) is a keypoint in the image.
After the homography computation with RANSAC, we can obtaintwo types of outliers,

as follows:

– Volatile keypoints by the instability of the keypoint extraction or motion blur.
– Keypoints stored in the keypoint database, but their descriptors are changed because of

the narrow range invariance of the descriptors.

We ignore the first outliers because they are not useful for keypoint matching. For the latter
outliers, a descriptor update is performed in order to keep these outliers as inliers.

When the homography is successfully computed, keypoints inthe database can be pro-
jected onto the captured image by using inverse homography as





x′

y′

1



∼ H−1





X
Y
1



 (3)

where(x′,y′) is a projected keypoint from the database. For each outlier in the imagex =
(x,y), we compute the distances between each projected keypointx′ = (x′,y′) to find the
nearest one. If the distance|x−x′| is less than a threshold (usually two pixels), the outlier
is matched with the nearest projected keypoint to assign thekeypoint ID of the projected
keypoint.

4.6 Descriptor update

For all keypoints extracted from the image,nCm indices have already been computed in the
descriptor computation. If a keypoint is an outlier, NULL isstored at some of the indices,
because the indices (descriptors) were never computed. Because NULL means an empty
index, we can update this index.

In Figure 5, some of the computed indices have NULL. For theseindices, we fill NULL
with a keypoint ID computed from matching by projection. Theupdated indices can be
utilized after the next frame or later, so that outliers in the current frame become inliers in
matching by LLAH. If there is a keypoint ID in the indices, theupdate is not performed.

The update is performed using a threshold for the number of the inliers after RANSAC
based homography computation. If there are sufficient inliers in a frame, the update is not
necessary for next frame. In Section 5.2, the influence of a threshold for the hash table is
discussed.

Even though we insert keypoint IDs in the hash table, the sizeof the hash table does not
change, because it has been pre-defined to a large size to access each index byO(1). The pre-
processing phase usually leads to many empty indices. In order to use those empty indices
effectively, we insert keypoint IDs into the empty indices.In addition, the computational
cost is not affected by the number of inserted indices because of the property of a hash
scheme.
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This update helps the re-initialization of a camera pose when camera tracking fails. If
there is no descriptor update, a camera should be set at the top view for the initialization,
as described in Section 4.2. With the update, a camera pose can be re-initialized by setting
back the camera on the camera trajectory.

Fig. 5 Update of LLAH. A keypoint has the indices 14, 164, and 345. Ifthe keypoint gets 311 as a keypoint
ID from matching by projection, the keypoint ID is inserted into 164 and 345. For 14, the update is not
performed.

4.7 Parallel processing

In order to develop AR applications, we have to reduce computational costs as much as pos-
sible for real-time processing. We thus have to use computerresources effectively. Because
we have two processing units in Intel Core 2 Duo architecture, it is important to assign the
same load to each processing unit. To determiner the proper assignment, we first measure
all processing times.

Average processing times were measured from an experiment by using 100 input im-
ages, as described in Table 1. In this case, the parameters for LLAH were as follows:n = 6,
m = 5, andl = 4.

The costs for keypoint extraction, descriptor computationand matching by descriptor
are influenced by the number of keypoints captured in the image. Because the number of ex-
tracted keypoints usually varied between 500 and 600, the times in Table 1 are averages, but
also include a variation range. When there are many outliers, the homography computation
takes time, especially to get a refined homography. We have limited the number of iterations
in RANSAC to 500, thus the maximum time was 22 ms. When there are mostly inliers, this
computation takes approximately 2ms.

Given those results, we have divided our process into two parts. The first thread takes
care of “Capture an image” and “Keypoint extraction” while the other does the remaining
tasks.
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For this parallel processing, we need two memory spaces to store keypoints. First, one
memory space contains keypoints at thet frame extracted by the first thread. The other
memory space contains keypoints at thet −1 frame for the processes of the second thread.
After all processes are finished in each thread, both threadsare synchronized to copy the
memory of the first thread to that of the second thread. If boththreads work in the same
way, the total cost per frame will be about 30 ms.

Table 1 Processing time. We measured each processing time from 100 images. Processes are assigned to
each thread depending on the result.

Process ms Process ms

Image capture 10 Homography computation 2 (+20)
Keypoints extraction 20±3 Matching by projection 2

Descriptor computation and matching by descriptor 23±4 Descriptor update 2

5 Experimental results

5.1 Influence of LLAH parameters for keypoint matching

Because Nakai et al. only evaluated the accuracy of documentimage retrieval (Nakai et al,
2005, 2006), we evaluate the influence of LLAH parameters forkeypoint matching. In this
experiment, we prepared a white paper with 100 black circular dots randomly distributed to
eliminate the influence of the instability in the keypoint extraction. The initial hash table and
keypoint database are prepared from a top view image.

In the parameters of LLAH, we evaluate the influence of two parameters:n and m,
which mainly affect the computational costs and the accuracy. The other parameters were
optimized to achieve the best result asl = 4, k = 32 andHsize = 215−1. In this experiment,
we tested the following combinations:(n,m) = (5,5), (6,5), (7,5), (8,5) and(7,6).

For each combination, we apply matching by LLAH to the same video capturing the
paper from a top view to an inclined view around the center of the paper. We compute
the angle between the vector from the center of a document to acamera position and the
document plane using the tracking with the descriptor update at every frame as described
in Section 5.2. The number of inliers after the RANSAC based homography computation is
counted as illustrated in Figure 6.

First, we investigated the influence ofn as (n,m) = (5,5), (6,5), (7,5) and (8,5). In
these cases, the descriptor dimension is5C4 = 5. As illustrated in Figure 6,n = 5 got the
least number of inliers. Asn increased from 6 to 8, the number of inliers increased because
the number of descriptors for a keypoint increased. However, the computational cost is in-
creased as5C5 = 1, 6C5 = 6, 7C5 = 21 and8C5 = 56 in matching by LLAH. Because this
is a trade-off, we have to select parameters depending on computer resources and accuracy
requirements.

Afterwards, we have examined the influence of the descriptordimension. We compared
these two combinations:(n,m) = (7,5) and(7,6) for which we have the following descriptor
dimensions:5C4 = 5 and6C4 = 15. As illustrated in Figure 6, the result of(n,m) = (7,6)
was worse than that of(n,m) = (7,5) because the discriminative power was too important.
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Fig. 6 The number of inliers after the RANSAC based homography computation. The combinations of
(n,m) = (5,5), (6,5), (7,5), (8,5) and(7,6) are tested to check the relationship between inliers and angles.

5.2 Behavior of descriptor update

In this section, we investigate the behavior of the descriptor update for camera tracking.
Because the descriptor update is performed depending on a threshold as described in Sec-
tion 4.6, the influence of a threshold is investigated.

We tested those cases: no update, update when the number of inliers is less than 20, less
than 40, and update at every frame. They are applied to the video utilized in Section 5.1.
The LLAH parameters are as follows:n = 6, m = 5, l = 4, k = 32 andHsize = 215−1.

Results are illustrated in Figure 7. The graph of ”less than 20” is overlapped with the one
with ”no update” from 0 degrees to 27 degrees. Camera tracking does not fail with update at
every frame and update when the number of inliers is less than40. If the case of less than 20
inliers, the camera pose could not be estimated at some viewpoints. With update, the camera
pose could be tracked up to 34 degrees. Compared to no update,the descriptor update allows
camera tracking for a larger range of viewpoint changes.

Next, we investigated the behavior of the number of indices in the hash table as il-
lustrated in Figure 8. The results naturally depend on the number of the descriptor update
times, However, collisions in the hash table often happen asthe number of updated indices
increases. In an application, update of every frame may be acceptable when we use only one
document. If we use many documents, it is important to effectively update descriptors in or-
der to add descriptors in each document. As discussed in (Nakai et al, 2005), the appropriate
parameters can be selected from several experiments and system environment.
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Fig. 7 Descriptor update with respect to a threshold. Whithout update, the camera could be tracked up to 34
degrees. In other cases, a camera pose is tracked.

Fig. 8 Updated indices. The number of updated indices depends on the number of descriptor update times.
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5.3 Comparison with SURF

For intersection maps, local descriptors obviously do not work because local textures are the
same and cannot be described to be distinct. In addition, these descriptors do not work well
for text documents because of their repetitive patterns. Toprove that the proposed tracking
method is superior than these descriptors for documents, both tracking results on a document
are compared. Because SIFT cannot run in real-time for AR systems, SURF OpenCV (?)
implementation has been selected for the comparison.

For SURF tracking, a document image is prepared and printed on a A4 paper. The image
resolution is selected as 672×950 because this made the best result compared to other res-
olutions. For each captured image, correspondences in the document image are established
by the SURF descriptors, which can be regarded as matching between the top view and the
captured image. In our tracking method, a document image is tracked by descriptor update
at every frame. We applied both methods to a video capture from the top view to the inclined
view around the center of a document. In each case, the numberof inliers after RANSAC
based homography computation is counted as illustrated in Figure 9.

For SURF, the matching failed after 32 degrees because SURF descriptors are not in-
variant to perspective distortion. In contrast, our tracking method succeeded at every frame
and could estimate the angle of each captured image as shown in Figure 9. But, because
our method is a framework for tracking by descriptor update,the descriptors in our tracking
could be replaced by SURF descriptors.

Fig. 9 Comparison with SURF. The number of inliers is compared in each method. Matching by SURF failed
at 32 degrees.
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6 Conclusions and future work

We proposed a camera tracking method based on learning of thelocal arrangements of
keypoints for intersection maps and text documents. To describe the arrangements, we use
the LLAH that has already been used in studies of document image retrieval. Because the
descriptors in LLAH are not invariant to a wide range of viewpoints, we proposed a dynamic
learning process of the descriptors, called tracking by descriptor update.

In the updating process, the keypoints in the keypoint database are projected onto a cap-
tured image to establish the correspondences between the keypoints in the image and the
projected keypoints as matching by projection. For each established correspondence, we in-
sert the keypoint ID into the indices. From the experiment, the descriptor update contributes
to a wide range of camera tracking.

In the future work, we have to efficiently handle a collision problem in a hash table.
Because the purpose of the proposed method is to track a paperan intersection map or a
document, the collision did not occur much yet.But if we handle multiple papers, collisions
may happen many times, and the structure of the hash table will be a list at each index.
In addition, we will develop natural keypoint matching by local arrangement of keypoints.
The local arrangement may help the matching by local descriptors. The keypoint matching
method will be utilized in various applications, such as SLAM.
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