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Abstract

Data mining techniques play an increasing role in the intrusion detection by analyzing network data and classifying
it as ’normal’ or ’intrusion’. In recent years, several data mining techniques such as supervised, semi-supervised
and unsupervised learning are widely used to enhance the intrusion detection. This work proposes a hybrid intrusion
detection (kM-RF) which outperforms in overall the alternative methods through the accuracy, detection rate and false
alarm rate. A benchmark intrusion detection dataset (ISCX) is used to evaluate the e�ciency of the kM-RF, and a
deep analysis is conducted to study the impact of the importance of each feature de�ned in the pre-processing step.
The results show the bene�ts of the proposed approach.
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1. Introduction

Due to the proliferation of high-speed Internet access
and rapid expansion of the computer networks during
the past few years, more and more organizations are be-
coming vulnerable to potential cyber attacks, such as
network intrusions. In particular, any set of actions that
threatens the integrity, con�dentiality or availability of
a network resource, or any attempt to break into, bypass
the security mechanisms or misuse a system is an intru-
sion, such as Denial of Service (DoS), worms, viruses,
etc.

Intrusion detection has recently attracted great atten-
tion in the data mining community [1, 2, 3, 4, 5, 6]. It is
the process of monitoring the events occurring in a com-
puter system or network and analyzing them for cues
of intrusions. Data mining techniques used for intru-
sion detection traditionally are classi�ed into two cate-
gories: misuse detection and anomaly detection. Misuse
always refers to the known attacks and misuse detection
compares network activities with the pre-de�ned signa-
tures or patterns which represent a speci�c attack. A
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key advantage of misuse detection techniques is their
high accuracy in detecting known attacks and their vari-
ations. But clearly they can only detect known attacks.
Anomaly detection, on the other hand, works by tak-
ing the baseline of normal tra�c and activities, from
which a model of normal behaviors is built. It detects
known and previously unknown attacks. However, in
many cases, it may fail to detect malicious behaviours or
even raise alarms for normal data assuming erroneously
that it is an attack. In this way, applying data mining
techniques on network tra�c data is a promising solu-
tion which helps to develop better intrusion detection
systems.

In this paper, we discuss data mining and machine
learning methods for network intrusion detection and
propose a dedicated pre-processing procedure as well
as a combination of approaches to detect intrusions in
networks more e�ectively. The remainder of this pa-
per is organized as follows. In Section 2, we present
the state-of-the-art of machine learning and data mining
based intrusion detection approaches. In Section 3, we
describe the proposed pre-processing strategy being di-
rectly applicable to any other data mining algorithms.
We then characterize the suggested hybrid approach in
detail. Finally, the conducted experiments and results
obtained are discussed in Section 4. The main contribu-
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tions of this research paper are as follows:

- Proposition of a pre-processing procedure to build
more separated classes (normal vs. attack) from
the raw network tra�c data as well as converting
the categorical features to numerical ones.

- Proposal for some new features to consider pay-
loads and to help detecting IP scans and distributed
attacks, then we show the importance of these
added features in detection of intrusions and at-
tacks.

- Proposal for a way of using k-means algorithm to
reduce the size of data (i.e. instance set reduction).

- Proposal for a hybrid (semi-supervised and super-
vised) intrusion detection method

- Show through a detailed analysis that the proposed
hybrid intrusion detection (kM-RF) outperforms
alternative methods through (a) the accuracy, (b)
the detection rate and (c) the false alarm rate.

2. State of the art in machine learning and data min-
ing based intrusion detection systems

Traditional intrusion detection systems are limited
and do not provide a proper solution. They search for
potential malicious activities on network data and com-
puter usage. However, in many cases, they fail to detect
new malicious behaviours or they may frequently raise
false alarms when nothing is wrong in the network. Ad-
ditionally, they require manual processing as well as hu-
man expert interaction to tune them.

Many data mining methods can be used in intrusion
detection to learn from tra�c data, each one with its
own speci�c advantage and drawback. The recent and
rapid development in data mining has made a variety of
algorithms available, resulting from the �elds of statis-
tics, machine learning and parallel computing. The dif-
ferent types of data mining techniques and applications
particularly relevant to anomaly detection are super-
vised learning (classi�cation), semi-supervised learn-
ing and unsupervised learning (clustering). They gen-
erally refer to the process of extracting patterns, rules
and models from the data to solve a decision problem.

2.1. Supervised learning
Classi�cation is a common data mining task, with the

foundations of machine learning. Classi�cation-based
intrusion detection techniques analyze and classify the
network tra�c data into two known classes (i.e. normal

or attack). They are used when a set of labeled training
data is available to learn a model (or a pattern). This
model is utilized to categorize the data. In the literature,
a variety of classi�cation techniques such as support
vector machine (SVM), nearest neighbor, naive Bayes,
decision tree, neural network and random forest have
been widely used as data mining techniques for intru-
sion detection applications.

The SVM is one of the most successful classi�cation
algorithms in the �eld of data mining, but the training
task is time-consuming (computationally expensive) for
intrusion detection systems which limits its use. Fur-
thermore, the SVM in general treats every feature of
data equally, while in real network tra�c datasets, many
features are redundant or less important. Kernel based
approaches to feature selection [7, 8] require also com-
plex training process and the so-called weighted kernel
that results from the optimization process needs to be
regularized prior to its use in an SVM. Moreover the
processing of raw features for classi�cation decreases
the accuracy of detecting intrusion. Because of the
above mentioned shortcomings, the standard SVM can
not be used for intrusion detection. However, to address
the noticed limitations recently variant of SVM are sug-
gested [9, 10, 11].

The nearest neighbor classi�cation is a type of
instance-based learning, or lazy learning and it is one
of the oldest methods known. These classi�ers are fre-
quently used in classi�cation tasks due to their simplic-
ity and performance. While nearest neighbor algorithm
usually performs well in terms of accuracy, comparable
to even SVMs, it is slow in the recognition phase and
it gets slower as the number of data in the training set
increases. This is because the distances (or similarities)
between the new data and all the training data need to
be computed. There have been attempts to make nearest
neighbor method faster, for example by obtaining ap-
proximate solutions using centroid-based methods. In
this line of research, further work is in progress to inves-
tigate the reliability and scaling properties of the nearest
neighbor classi�er method [12, 13].

Bayesian classi�ers are statistical approaches that
predict class membership probabilities. Naive Bayesian
classi�ers works based on the Bayes’ rules, where
features are assumed to be conditionally independent.
Even if practically the dependency between features
may exist, in spite of this assumption, they give satisfy-
ing results, are easy to implement, fast to evaluate and
need a small number of training data to estimate their
parameters. Naive Bayes Classi�ers have been used
extensively in text mining, where the dimensionality is
very high as well as the volume of processed data. But,
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the main disadvantage is that the Naive Bayes classi-
�ers make a very strong assumption on the shape of data
distribution. Indeed, they cannot learn interactions be-
tween the features. Additionally, they su�er from zero
conditional probability problem (division by zero) [14],
where one solution would be to add some virtual exam-
ples. Nevertheless, some studies have found that naive
Bayesian classi�ers, with appropriate pre-processing,
can be comparable in performance with other classi�-
cation algorithms [15, 16, 17, 18].

One of the main data mining techniques used in intru-
sion detection systems is associated with decision trees.
They can be used to detect intrusions and anomalies in
large datasets. A decision tree algorithm generates a tree
structure where each internal node stands for a decision
on a feature and each leaf node take a class label. There-
fore, there is a path from the root node to the labeled
leaf node which makes it easy to classify new unlabeled
data. Note that choice of a certain branch depends on the
result of the test on each internal node. Decision trees
have several advantages compared to the other data min-
ing based classi�cation approaches, which make them
more convenient for intrusion detection. In particular,
they have a simply interpretable framework and they are
less sensitive to the curse of dimensionality [19].

Neural Networks (NN) are modeled based on same
analogy to the human brain working. Neural networks
are a kind of arti�cial intelligence based methods for
intrusion detection [20, 21, 22]. They consist of a con-
nected set of processing units distributed several layers,
namely input, hidden and output layers. Each connec-
tion is characterized by a ’synaptic’ weight. The weights
determine how the signal will propagate from one unit
to the others. Neural networks bene�t from their learn-
ing algorithms to learn the relationship between inputs
and outputs by adjusting the weights. Consequently,
they are able to predict correct class label of input data.
The main advantage of using neural networks classi�ers
over statistic ones lies in having a simple manner to sig-
nify nonlinear relationships between features. However,
they are computationally intensive methods to train and
require in general a large set of positive and negative
training instances. They are not widely used in intru-
sion detection systems.

Random Forests (RF) [23] are a combination of deci-
sion tree predictors. In the standard decision trees, each
node is split using the best split among all the features,
where in a RF, each node is split among a small subset
of randomly selected input features. This strategy yields
to perform very well in comparison with many other
classi�ers such as SVM and NN. Furthermore, it makes
them robust against over�tting and an e�ective tool for

classi�cation and prediction [24]. Random forests run
e�ciently on large datasets with many features and in
addition, they can handle unbalanced data sets [25, 26].

2.2. Unsupervised learning
Clustering (or unsupervised learning) is a process of

grouping unlabeled data into set of clusters such that
the similar samples are members of the same cluster
and the dissimilar samples belong to the di�erent clus-
ters. In clustering, the number of classes and distribu-
tion of instances among classes are not known a priori
and the aim is to �nd meaningful and statistical struc-
tures. Clustering is important since it is complementary
to classi�cation in real life situations. For instance, in
[27] clustering is used in the area of dimensionality re-
duction as a complementary step for text classi�cation.

The clustering approaches can be classi�ed accord-
ing to: i) the type of input data to the algorithm, ii)
the clustering criteria de�ning the similarity or distance
between data points, and iii) the theory and fundamen-
tal concepts. Consequently many clustering algorithms
have been proposed in the literature, each one using
a di�erent scienti�c discipline. Authors in [28] sug-
gested to divide the clustering algorithms into two main
groups: hierarchical and partitioning. Han and Kam-
ber in [29] proposed categorizing them into additional
three main categories: density-based, model-based and
grid-based methods. Hierarchical approaches make the
clusters by recursively partitioning the data points in ei-
ther a top-down or bottom-up manner. For example, in
agglomerative hierarchical clustering, each data point
initially represents a cluster of its own. Then clusters
are merged, according to some similarity measure, until
the desired cluster structure is obtained. The result of
this clustering method is a dendrogram. Density-based
methods assume the data points that belong to each clus-
ter are drawn from a speci�c probability distribution
[30]. The idea is to continue growing the given cluster
as long as the density (or the number of data points) in
the neighborhood exceeds some pre-de�ned threshold.
The density-based methods are designed for discover-
ing clusters of arbitrary shape which are not necessar-
ily convex. Model-based clustering methods attempt to
optimize the �t between the given data and some math-
ematical models. These methods �nd characteristic de-
scriptions for each group. Grid-based methods partition
the space into a �nite number of cells that form a grid
structure. All of the operations for clustering are per-
formed on the grid structure. They have the fastest pro-
cessing time that typically depends on the number of the
grids instead of the data points [29]. CLIQUE [31] and
STING (STatistical INformation Grid approach) [32]
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are examples of grid-based clustering algorithms used
to cluster spatial databases.

The k-means clustering is among the most popular
clustering algorithms, as it provides a good trade-o�
between quality of the solution obtained and its com-
putational complexity [33]. Even though k-means was
�rst proposed over 50 years ago [34, 35], it is still
one of the most widely used algorithms for clustering
[36, 37, 38, 39]. In practice, k-means is a clustering
method that aims to �nd k centroids, one for each clus-
ter, that minimize the sum of distances of each data in-
stance from its respective cluster centroid. It �nds a sub-
optimal solution to the problem, for xi 2 X:

argmin
fC1;:::;Ckg

kX

j=1

X

xi2C j

d(xi; c j) (1)

where (C1; :::; Ck) are k clusters, c j is the representative
of cluster C j, and d is a distance function (e.g. Ed).

The algorithm starts with an initial set of cluster cen-
troids, chosen randomly or according to some heuristic
procedure, and then uses an iterative re�nement tech-
nique. The re�nement steps are repeated until the cen-
troids no longer move. The complexity of each itera-
tion of the k-means clustering algorithm performed on
N data point is O(k � N). This linear complexity is one
of the reasons for the popularity of the k-means clus-
tering algorithms. Even if the number of data instance
is substantially large, this algorithm is computationally
attractive. Other reasons for the k-means algorithm’s
popularity are simplicity of implementation and speed
of convergence. Furthermore, a proof of the �nite con-
vergence (toward a local minimum) of the k-means al-
gorithms is given in [40]. However, it requires to con-
vert the categorical data into the numerical ones.

2.3. Semi-supervised learning
Semi-supervised learning is halfway between classi-

�cation and clustering. They can be applied in a com-
bined way to overcome the limitations of each indi-
vidual method and build a better classi�er. In semi-
supervised learning unlabeled data is used with the addi-
tional information from the labeled ones. However, the
labeled data are costly and time-consuming to achieve
and require the e�orts of experts. Apart from this con-
cern, unlabeled data can easily be obtained in many real
world applications. Recently, there is an increasing in-
terest in the use of semi-supervised learning methods
and these methods have attracted the attention of re-
searchers working on machine learning and data mining
based intrusion detection systems [41, 42, 43, 44, 45,
46].

So far, various data mining based methods in intru-
sion detection has been employed. But the major obsta-
cles are high false-alarm rates and lack of accuracy in
their detection procedure [47, 48, 49].

3. The approach

In the literature, many studies have examined intru-
sion detection in network tra�c data. Some methods
considered only packet header information and some
others focused on packet payloads. In this work, we are
interested in the packet payloads as well as the header
information. Packet headers generally constitute only a
small part of whole network tra�c data, while payloads
are more complicated. Accordingly, packet payloads
analysis seems to be more costly rather than the analy-
sis of packet header data, as it needs more computations
and pre-processing processes. In this way, considering
a proper pre-processing process of network tra�c data
and an e�cient detection method is vital to deal with
the network intrusions which are constantly evolving.

3.1. The big data context
Nowadays, the amount of data in networks is con-

tinuously increasing. These data include system call or
user command sequences, click streams, tra�c �ows,
network packet information and so on, often character-
ized in a high-dimensional space, leading to the curse
of dimensionality, which challenge many data mining
algorithms. Furthermore, in the era of big data, it is
very di�cult or even impossible for traditional mining
approaches to handle such huge datasets. Hence, data
cleaning, dimensionality and instance set reduction are
crucial when data mining techniques are applied for in-
trusion detection.

In general, to analyze the data in order to extract
an acceptable knowledge in the scope of a given ap-
plication, a process called Knowledge Discovery in
Databases (KDD) can be used [50]. The KDD process
steps can be summarized as follows:

- Selection: selection of data and a subset of features
or samples to be analyzed

- Pre-processing and transformation: data cleaning
(e.g. removal of noise and handling of missing
data), data reduction, and projection of data

- Data mining: choosing the algorithm(s) and per-
forming data mining

- Interpretation: interpreting the results that are ob-
tained
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Once an understanding of the application scheme and
the goal for the process has been reached, a dataset must
be created by acquiring the data as well as possibly ex-
tracting a subset of suitable features in the data. This
step is not a minor task, since acquiring real network
tra�c data can be di�cult due to security concerns for
legal reasons [51]. Conversely we can use a public syn-
thetic data, however, it will also contain some limita-
tions (e.g. the tra�c data may not accurately repre-
sent a real-world network). In this work, we consider a
dynamic, scalable, reproducible and labeled benchmark
dataset called ISCX [52], which can be considered as a
relatively representative of real network tra�c and will
be detailed in Section 4.

3.2. The design choices
Here we explain in detail the proposed hybrid in-

trusion detection (kM-RF). Figure 1 presents brie�y
the di�erent steps of the suggested KDD process in a
schematic view.

Figure 1: KDD process for the proposed kM-RF

3.2.1. Pre-processing: conversion of categorical fea-
tures into numerical ones

Data pre-processing, a crucial task in the knowledge
discovery process, can be even considered as a funda-

mental building block of data mining. Pre-processing
involves cleaning the data and removing redundant and
unnecessary entries. It also involves converting the fea-
tures of the dataset into numerical data and saving in a
machine-readable format. This can be essential because
many data mining algorithms such as Support Vector
Machines (SVMs), and K-Nearest Neighbors (KNNs)
in pattern classi�cation or k-means clustering require
data to consist of purely numerical features. However
many real world data consist of both numerical and cat-
egorical features. Hence, here we suggest an e�ective
method of converting categorical features into entirely
numerical ones. When the categorical feature takes its
values in some �nite set of categories, one typical con-
version method is to use a single number to represent
a categorical value. For instance, the discrete values
fHTTP, SMTP, SSH, IMAP, POP3, FTPg are converted
into f1, 2, 3, 4, 5, 6g in order. But this approach de-
pends on an arbitrary ordering of values in the categor-
ical feature, so it can result in unreliable performances.
Alternatively, we can adopt binary number representa-
tion where we use m binary numbers to represent a m-
category feature. For instance, fHTTP, SMTP, SSH,
IMAP, POP3, FTPg is encoded into f000001, 000010,
000100, 001000, 010000, 100000g. However, if the
number of categories for each categorical feature is too
large, the dimension of input will be greatly increased,
but this representation is more stable than the single
number representation.

On the other hand, when a categorical feature takes its
values in an in�nite set of categories, we need to con-
sider another conversion approach. To do so, we pro-
pose to use histogram of distributions. First, we con-
vert the categorical values into integers. Each ASCII1

character is encoded to its integer representation. For
instance, the categorical value ’www.irisa.fr’ is con-
verted to f87, 87, 87, 46, 73, 82, 73, 83, 65, 46, 70, 82g,
or ’http://’ is encoded to f72, 84, 84, 80, 58, 47, 47g.
Then, given the number of bins, we evaluate the his-
togram of the distribution of numerical values. Figure
2 shows histogram of a sample HTTP payload2. Notice
that the number of bins is a meta parameter which can
be optimized using the training data and set up empiri-
cally according to the application.

1American Standard Code for Information Interchange
2payloadAsBase64: SFRUUC8xLjEgMjAwIE9LDQpDb25uZWN0aW9uO

iBjbG9zZQ0KRGF0ZTogU3 VuLCAxMyBKdW4gMjAxMCAwMjo1OQ==
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Figure 2: Histogram of HTTP payload sample

3.2.2. Pre-processing: adding context to the �ow oc-
currence

In most of the cases, attacks are generated by a single
host or small number of hosts. But some times attacks
would be generated by a very large number of hosts at
the same time (see Figure 3). For instance, in DDoS
(Distributed Denial of Service), it is quite common to
see attacks set up by hundreds of hosts, generating hun-
dreds of megabits per second �oods. Hence, to iden-
tify an attack one can take advantage from the number
of source-destination pairs in the network tra�c data
called ’fan-in/fan-out’. In this way, we add the num-
ber of source-destination pairs in a pre-de�ned window
size of �ows as a dedicated feature. To do so, for each
IP-destination in the �ow, we evaluate the number of
distinct IP-sources associated to this IP-destination, in
the selected window. This added feature helps to detect
network and IP scans as well as distributed attacks.

Figure 3: Denial of Service attack

3.2.3. Pre-processing: data normalization
Last, but not least, step prior to any data mining task

concerns the normalization of the data. Data normal-
ization plays a crucial role in the pre-processing of the
data. Without normalization, features with signi�cantly

larger values dominate the features with smaller values.
There are di�erent types of normalization such as min-
max normalization, decimal scaling and standard devi-
ation method. Choosing a good normalization method
depends on the application and the algorithm in which
the normalized data will be used. Here we use min-max
normalization approach, which is a simple normaliza-
tion technique in which we �t the data, in a pre-de�ned
range, as it is very common and usually more e�cient
[53]. To normalize the data in the boundary of [A; B],
the min-max normalization is de�ned as:

xinormalized =
(xi �min(x))

(max(x) �min(x))
� (B � A) + A (2)

3.2.4. K-means for instance set reduction
In this subsection, we present a useful semi-

supervised way to reduce the size of the data (i.e. in-
stance set) by using the k-means clustering algorithm.
Practically, the network tra�c data is categorized in two
kind of activities: normal and attack. Since real net-
work data contains very few attack �ows compared to
’normal’ �ows, in instance set reduction, we are mainly
interested in decreasing the size of normal data.

To do so, k-means clustering is applied on normal
data to �nd k number of clusters, pre-speci�ed by the
user (e.g. elbow method, see Figure 4), which are rep-
resented by their centroids, by minimizing the distance
function in Eq. 1 (Figure 5-(b)). Then, instead of re-
moving all the normal data instances and keep just their
k centroids, we remove only the normal data instances
in p clusters (p < k and pre-set by the user3), which
are farthest from the training attack data (Figure 5-(c)).
Lastly, the k centroids are labeled as the normal data
(Figure 5-(d)).

Figure 4: The elbow method suggests k=3 cluster solutions

3The best value of p can be obtained by the grid search.
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Figure 5: K-means clustering: (a) normal (’o’) and attack
(’+’) training data (b) centroids of normal data (c) normal
data instance set reduction (d)label estimated centroids as

normal training data

The main idea of the proposed strategy is to remove
a huge number of data points that are not important (or
at least that are less important) because of their location
far away from the decision frontier.

3.2.5. Random Forest classifying the �ows
Due to considering both header and payload pack-

ets in our intrusion detection experiments, increasing
the number of network tra�c features is an undesirable
condition. Furthermore, as mentioned previously, the
real-world network communication data usually con-
tains very few attack �ows comparatively to normal
�ows, which build an imbalanced classi�cation prob-
lem. To address the above mentioned issues, Random
Forest method can be used with great e�ciency.

Random Forest [23] is an ensemble of unpruned clas-
si�cation or regression trees, which generates many
classi�cation trees such that each tree is constructed
from a di�erent bootstrap sample randomly drawn from
the original data. After the forest is formed, a new data
that needs to be classi�ed is presented to each of the tree
in the forest for classi�cation. Each tree gives a vote
that signi�es the tree’s decision about the class of the
object. After a large number of trees is generated, the
forest vote for the most popular class label. In addition
to its excellence in accuracy comparatively to current
data mining algorithms, the main characteristics of the
Random Forests are the following:

- They are robust against over-�tting compared to
many other classi�ers.

- They run e�ciently on huge datasets with many
features.

- They can handle unbalanced datasets.

and lastly,

- They can rank the features according to their rela-
tive contributions to the classi�cation decisions.

In summary, results of intrusion detection approaches
showed that a higher e�ciency rate is achieved when
a Random Forest is applied [54, 55, 56]. Hence, we
build our hybrid intrusion detection method on the basis
of a Random Forest classi�er. The proposed k-means
clustering pre-processing results can be used as input
data for a Random Forest classi�er trained for detecting
the intrusions. We called this hybrid intrusion detection
method as kM-RF. It is able to detect network intrusions
with high detection rate, lower false alarm and consid-
erably lower time consumption. In the next section, to
have a closer look at the ability of the proposed hybrid
classi�er (kM-RF) to detect intrusions, we detailed ex-
tensive quantitative and qualitative experiments.

4. Experimentation

In this section, we �rst describe the dataset used to
conduct our experiments, then specify the validation
process, prior to present and discuss the results that we
obtained.

4.1. The ISCX dataset
The ISCX dataset 2012 [52], which has been pre-

pared at the Information Security Centre of Excellence
at the University of New Brunswick, is used to perform
experiments and evaluate the performance of our pro-
posed approach. The entire ISCX labeled dataset com-
prises over two million tra�c packets which are de-
scribed using 20 features. It covers seven days of net-
work activities and contains normal and attack tra�c
data (attack data representing 2% of the whole tra�c).
Four di�erent attack types, referred to as Brute Force
SSH, In�ltrating, HTTP DoS, and DDoS are conducted
and logged along with normal tra�c on 7 successive
days. Despite some minor disadvantages4, ISCX re-
mains the most up to date dataset compared to the other
commonly explored datasets [57, 58, 52].

As input to the data mining process, we make use of
the pre-processed �ows. First of all, �ows are classi-
�ed according to their application layers such as HTTP
Web, SSH, FTP, ICMP and so on. Because the nor-
mal tra�c patterns look very di�erent depending on the

4The dataset is simulated, based on real network data.
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Figure 6: MultiDimensional Scaling (MDS): structures underlying ISCX data subsets before the pre-processing (left)
and after the proposed pre-processing procedure (right), ’+’ attacks (red) and ’o’ normal data (blue)

application or service and it is more e�cient to build
an intrusion detector for each of these application lay-
ers. In this context, for each application layers class,
a �ow is de�ned by 50 features5. Note that, we have

5destination Payload0, destination Payload1, ..., destination Payload9, des-
tinationPort, destination TCP�ags0, destination TCP�ags1, ..., destination
TCP�ags5, direction0, direction1, ..., direction3, protocolName0, protocol-
Name1, ..., protocolName5, source Payload0, source Payload1, ..., source Pay-
load9, sourcePort, source TCPFlags0, source TCPFlags1, ..., source TCPFlags5,
duration, total destination Bytes, total destination Packets, total source Bytes,
total source Packets, # of source-destination IP pairs (’fan-in’/’fan-out’)

removed the IP addresses for the experiments, because
the IP addressess can not generalize the behaviour of at-
tacks. Nevertheless the IP addresses are accounted into
the calculation of the ’fan-in/fan-out’ feature, which has
been de�ned in the pre-porcessing section.

To visualize the underlying structure of ISCX dataset
classes, we have performed a multidimensional scaling
[59] on Euclidean pairwise distance matrix. Figure 6
shows the structures of various applications of ISCX
data in 3-dimensional space before and after the pro-
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posed pre-processing procedure. To plot the underlying
structure of raw data, the categorical features are �rst
digitized. The representations obtained can be consid-
ered as representative images of the underlying struc-
tures.

As one can see, the data represented by the proposed
numerical feature vector has diverse structures and
shapes and the attack (’+’, red) and normal (’o’, blue)
classes are poorly separable before the pre-processing
procedure, while using the proposed pre-processing
method they are relatively much more separated from
each other. To validate our claim, we rely on the cluster
Silhouette measure, which is based on the comparison
between tightness and separation. The Silhouette is cal-
culated using the mean intra-cluster distance (a) and the
mean of nearest-cluster distance (b) for each data point,
and for an instance is equal to (b - a) / max(a, b). To
clarify, b is the distance between a data point and the
nearest cluster that the point is not a part of. The crite-
rion returns the mean of Silhouette coe�cient over all
data points and is de�ned as:

1
N

X

x

(b(x) � a(x))
max(b(x); a(x))

; 2 [�1; +1]

where x is a data point and N is the total number of
instances.

The higher the Silhouette coe�cient, the more iso-
lated the clusters are. Table 1 presents some di�erent
types of network application layer samples contained
in the ISCX dataset with their respective Silhouette co-
e�cient for raw and pre-processed data. As demon-
strated, for all tested applications, once the proposed
pre-processing procedure has been applied the Silhou-
ette coe�cient is increased.

Silhouette coe�cient
Application Name raw data pre-processed data
HTTPWeb -0.28 0.35
SSH 0.42 0.60
ICMP 0.53 0.69
FTP -0.70 0.61
DNS -0.04 0.52

Table 1: Silhouette coe�cient for some tested applications

From Table 1, we can verify that the application
layer subsets are more separated after the proposed pre-
processing rather than the raw data, since the Silhou-
ette coe�cient increases for all the tested subsets. The
more separable classes are the less computationally ex-
pensive and complex to train a classi�er. The results
reveal that the ICMP application subset has the highest
Silhouette coe�cient, which means there are more sep-
arable classes in the pre-processed ICMP subset than

the rest. On the other hand, as can be seen in Table 1,
a big increase rate for the Silhouette coe�cient crite-
rion is obtained for FTP, HTTPWeb and DNS applica-
tion layer subsets, which illustrates the vital role of the
pre-processing procedure.

4.2. Validation process

Here we compare the proposed intrusion detection al-
gorithm (denoted as kM-RF) with the state of the art
intrusion detection methods (i.e. SVM, 1-NN, Naive
Bayes, Decision Tree, Neural Network and RF).

For our comparisons, we rely on the ’Accuracy’, ’De-
tection Rate’ and ’False Alarm Rate’, measures which
are commonly used in the literature, to evaluate each
method. Table 2 presents the classical confusion matrix
in terms of TP (True Positive), FP (False Positive), TN
(True Negative) and FN (False Negative) values which
are used in the performance metrics6.

Predicted class
Positive class Negative class

A
ct

ua
l

Positive class TP (True Positive) FN (False Negative)
Negative class FP (False Positive) TN (True Negative)

Table 2: Confusion matrix

Lastly, the comparison measures ’Accuracy’, ’Detec-
tion Rate’ and ’False Alarm Rate’ are de�ned as:

Accuracy =
T P + T N

T P + FN + FP + T N

Detection Rate =
T P

T P + FN

False Alarm Rate =
FP

FP + T N

The ’Accuracy’ and ’Detection Rate’ lies in [0, 100]
in percentage. The higher index, the better the agree-
ment is. In the other side, the lower ’False Alarm Rate’
illustrates the better result. Training and testing sets are
formed by k-fold cross validation in the ratio of 80%
and 20% of the network tra�c, respectively. For all
the protocol subsets, the parameter k in k-means clus-
tering is estimated using the elbow method process (and
Silhouette coe�cient [60]). A higher Silhouette coe�-
cient indicates that the data instances are well matched
into their own cluster and poorly matched to the neigh-
boring clusters. For instance, using the elbow curve,
Figure 7 shows that the best number of clusters when

6P: attack, N: normal
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pre-processing (normalization) applied, for SSH proto-
col, is k=5. Furthermore, as one can see in Figure 8, k=5
has the highest Silhouette coe�cient score for SSH sub-
set, which proves that 5 is the optimal value for number
of clusters in k-means clustering.

Figure 7: Diagram of Elbow for k-means clustering:
SSH application layer

Figure 8: Silhouette coe�cient for k-means clustering:
SSH application layer

For all the state of the art methods, the parameters are
estimated through a standard line/grid search process.
For instance, for the Random Forest classi�er, 3 param-
eters are tuned: maximum number of features, number
of trees and minimum sample leaf size. Finally, the re-
sults reported hereinafter are averaged after 10 repeti-
tions of the corresponding algorithm.

4.3. Experimental results

In the context of intrusion detection, the ’Accuracy’,
the ’Detection Rate’ and the ’False Alarm Rate’ for each
method, and for the various tested protocols, are re-
ported in Tables 3, 4 and 5, respectively. Note that,

for all the detection methods, we have used the pre-
processed data. Results in bold correspond to the best
assessment values.

appName SVM 1-NN Naive Decision Neural RF kM-RF
Bayes Tree Network

HTTPWeb 98.99 99.70 98.04 99.89 99.02 99.88 99.91
SSH 99.47 99.90 99.22 99.87 99.89 99.89 99.98
ICMP 99.83 99.95 99.90 99.99 99.93 99.99 100.0
FTP 99.62 99.95 99.54 99.97 99.94 99.97 99.97
DNS 99.98 99.99 96.18 99.98 99.98 99.99 99.99

Table 3: Comparison of ’Accuracy’ (in %)

appName SVM 1-NN Naive Decision Neural RF kM-RF
Bayes Tree Network

HTTPWeb 98.20 97.47 92.74 99.12 98.75 99.38 99.51
SSH 99.78 99.95 99.34 99.92 99.95 99.97 100.0
ICMP 97.44 99.74 100.0 100.0 98.68 100.0 100.0
FTP 87.20 99.36 99.79 99.36 98.52 99.79 99.83
DNS 52.31 86.15 52.31 89.61 18.46 89.23 95.38

Table 4: Comparison of ’Detection Rate’ (in %)

appName SVM 1-NN Naive Decision Neural RF kM-RF
Bayes Tree Network

HTTPWeb 0.96 0.16 1.64 0.05 0.96 0.08 0.05
SSH 1.39 0.23 1.11 0.26 0.26 0.33 0.12
ICMP 0.08 0.04 0.10 0.01 0.03 0.01 0.00
FTP 0.18 0.04 0.46 0.02 0.03 0.02 0.02
DNS 0.01 3.81 0.01 0.01 0.01 0.00 0.00

Table 5: Comparison of ’False Alarm Rate’ (in %)

According to the Table 3, one can note that kM-RF
method leads to the best accuracy results overall (5 ap-
plication out of 5), followed by Random Forest (RF),
decision tree and nearest neighbors. Table 4 shows that
kM-RF obtains the highest ’Detection Rate’ for all the
application layer types. Finally, according to the ’False
Alarm Rate’ measure presented in Table 5, kM-RF leads
to the best results in overall (5 application out of 5),
with the lowest ’False Alarm Rate’, followed by Ran-
dom Forest (RF) and decision tree algorithms.

To consolidate the comparative results, we use a
Wilcoxon signed rank test , which is a nonparamet-
ric statistical hypothesis test to e�ectively determine
whether the proposed kM-RF is signi�cantly better than
the other methods. Tables 6 till 8 present the two-sided
p-value for the hypothesis test, while the results in bold
indicate the signi�cantly di�erent classi�ers. The p-
value is the probability of observing a test statistic more
extreme than the observed value under the null hypoth-
esis. The null hypothesis (H0) is strongly rejected while
the p-values are lower than 0.05, meaning that the di�er-
ences between the two tested classi�ers are signi�cant
and the uniform hypothesis is accepted as p-values are
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greater than 0.05. Based on the p-values displayed in
Table 6, 7 and 8, we can justify that the proposed kM-RF
leads to signi�cantly better results than the others. Note
that the di�erence between the pairs of classi�ers results
follows a symmetric distribution around zero and to be
more precise, the reported p-values are computed from
all the individual results of di�erent k-folds of each pro-
tocol for the corresponding algorithm.

1-NN Naive Decision Neural RF kM-RF
Bayes Tree Network

SVM 0.001 0.06 <0.001 <0.001 <0.001 <0.001
1-NN <0.001 0.02 <0.001 0.01 <0.001
Naive Bayes <0.001 <0.001 <0.001 <0.001
Decision Tree <0.001 0.77 <0.001
Neural Network <0.001 <0.001
RF <0.001

Table 6: P-value: Wilcoxon test (’Accuracy’)

1-NN Naive Decision Neural RF kM-RF
Bayes Tree Network

SVM 0.01 0.08 <0.001 0.09 <0.001 <0.001
1-NN 0.003 0.02 0.02 0.002 <0.001
Naive Bayes <0.001 0.21 <0.001 <0.001
Decision Tree 0.03 0.12 0.009
Neural Network 0.002 <0.001
RF 0.002

Table 7: P-value: Wilcoxon test (’Detection Rate’)

1-NN Naive Decision Neural RF kM-RF
Bayes Tree Network

SVM 0.002 0.20 <0.001 0.004 <0.001 <0.001
1-NN <0.001 0.002 <0.001 0.05 <0.001
Naive Bayes <0.001 0.06 <0.001 <0.001
Decision Tree <0.001 0.10 0.002
Neural Network <0.001 <0.001
RF 0.002

Table 8: P-value: Wilcoxon test (’False Alarm Rate’)

With regard to the p-values of Wilcoxon test , for
all the application layer subsets, the proposed kM-RF
brings a signi�cant improvement compared to the other
methods. The decision tree and the Random Forest (RF)
algorithms perform very comparatively since their pair-
wise di�erences are not signi�cant. Similarly, the Naive
Bayes classi�er performs comparatively to the SVM.

We experimentally show that for the intrusion detec-
tion task, the proposed kM-RF method is performing
signi�cantly better than the state of the art approaches.
However, generating the trees of the RF is very time
consuming especially for large datasets. As mentioned
before, to overcome this problem, we used a semi-
supervised way to reduce the size of the data by using
k-means clustering in kM-RF to support an instance se-
lection method. Table 9 shows the impact of the in-

stance set reduction. For instance, the HTTPWeb ap-
plication layer subset of ISCX includes 681,151 normal
�ows, while after the pre-processing it has been reduced
to 367,440 �ows, with 46% of reduction rate, or the
DNS application layer which consists 309,286 normal
�ows has been reduced to 55,260 �ows, with 82% of
reduction rate.

Size ([ #Normal , #Attack ] , #Features)
appName Raw data Pre-processed data
HTTPWeb ([ 681151 , 40351 ] , 20) ([ 367440 , 40351 ] , 50)
SSH ([ 2585 , 7305 ] , 20) ([ 1645 , 7305 ] , 50)
ICMP ([ 7919 , 295 ] , 20) ([ 1270 , 295 ] , 50)
FTP ([ 13181 , 226 ] , 20) ([ 5300 , 226 ] , 50)
DNS ([ 309286 , 73 ] , 20) ([ 55260 , 73 ] , 50)

Table 9: Comparison of ’Data Size’ (�ows)

Due to this instance set reduction, an important im-
provement of the detection run time is achieved. To
sustain our claim, Table 10 illustrates the comparison
of time consumption between the standard RF and the
proposed kM-RF7. As one can see, when the data size
is large (the case for HTTPWeb with more than 700,000
�ows and for DNS with more than 300,000 �ows), the
reduction ratio of time consumption is very large.

Time Consumption
appName RF kM-RF
HTTPWeb 4488.1 1925.8
SSH 12.2 9.7
ICMP 9.2 4.9
FTP 18.9 9.6
DNS 938.1 127.8

Table 10: Comparison of ’Time Consumption’ (in seconds)

4.3.1. Visualizing the importance of the features /
weights

To have a closer look and compare globally the di�er-
ent patterns between the ’normal’ and the ’attack’ �ows,
here we visualize the mean with the standard deviation
of the �ow features for both categories. Figure 9 shows
mean of feature �ow for HTTPWeb application layer.

According to the Figure 9, for some features such
as payloads, TCPFlags, direction and # of source-
destination IP pairs, there is an evident di�erence be-
tween their means values in ’normal’ and ’attack’ �ows,
which helps to distinguish an intrusion from the nor-
mal behaviour. Hence, one can identify the role of dif-
ferent features in normal and attack tra�c behaviour.

7k = 5 and p = 2.
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Figure 9: Feature means (with standard deviation): HTTPWeb application layer
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Figure 10: Feature weights: HTTPWeb application layer

For instance, looking closer to the ’fan-in/fan-out’ (i.e.
# pairIPs) feature, we can see that the mean value for
the attacks is extremely higher than the mean value
for the normal data. This is a signature for HTTP at-
tacks, while the number of destination IPs equals one
(nDst=1), source IPs (nSrc) should be greater than a
threshold value.

To visualize the importance of each feature, we rely
on the RF algorithm. RF has a unique mechanism to cal-
culate the importance of the features and select the most
relevant and in�uential features. In �rst step, permuta-
tion importance index is used to rank the features and
then in next step, RF is used to select the best subset of
features for classi�cation. Figure 10 presents the �ows’
feature weights for the HTTPWeb application layer. As
one can see, the highest weight belongs to the last fea-
ture (# of source-destination IP pairs), the added feature
in pre-processing step, which emphasizes the role of the
representation of the ’fan-in’ and ’fan-out’ features in
intrusion detection. Lastly, to see the importance of the
weights more clearly, Figure 11 shows a ’Radar’ chart

for log of the feature weights for the HTTPWeb applica-
tion layer. Radar Charts are a way of comparing multi-
ple quantitative features. They are useful for highlight-
ing which features have similar values, which features
do not matter much, or which features are scoring high
(or low) within a dataset. This makes them ideal for
displaying feature importance. Each feature is provided
with an axis that starts from the center with a speci�c
range that depends on the normalization procedure. The
Figure 11 justi�es our claim about the importance of the
added features such as # of source-destination IP pairs
(’fan-in/fan-out’). It also illustrates that some features
such as protocolName does not matter very much.

5. Conclusion

This research work introduces a hybrid data mining
based intrusion detection. For this, we proposed i) a
dedicated pre-processing procedure to convert the cate-
gorical features to numerical ones and to build more iso-
lated classes from the raw data, ii) some new features to
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Figure 11: Feature weights (log): HTTPWeb application layer

consider payloads, IP scans and distributed attacks and
iii) a combination of k-means and random forest classi-
�er to detect intrusion more e�ectively.

The e�ciency of the suggested hybrid approach (kM-
RF) is analyzed on a dynamic, scalable and labeled
benchmark dataset called as ISCX, which is the most
up to date dataset compared to the other commonly ex-
plored ones for data intrusion benchmarking. The re-
sults show the bene�ts of the kM-RF, which outper-
forms the other state of the art methods through the
high accuracy, high detection rate and low false alarm
rate, overall. A Wilcoxon signed rank test is used to de-
termine that the proposed kM-RF detection approach is
signi�cantly better than the other methods. In addition,

the experimentation carried out on some tested proto-
cols shows that we can achieve considerable improve-
ments in the time consumption thanks to the instance set
reduction using k-means clustering, while meantime it
may even improve the detection e�ciency. Finally, de-
tailed analyses of the importance of each feature and the
impact of the added features in the pre-processing step
are provided. As a perspective, the importance of the
features obtained by the RF algorithm can be used for
dimensionality reduction. Even, by considering this im-
portance as weights in k-means clustering, one can im-
prove the results using more accurate clusters and cen-
troids during the pre-processing procedure.
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