Intrusion detection in network systems through hybrid supervised and unsupervised mining process - a detailed case study on the ISCX benchmark dataset -

Saeid Soheily-Khah 1 Pierre-François Marteau 1 Nicolas Béchet 1
1 EXPRESSION - Expressiveness in Human Centered Data/Media
UBS - Université de Bretagne Sud, IRISA-D6 - MEDIA ET INTERACTIONS
Abstract : Data mining techniques play an increasing role in the intrusion detection by analyzing network data and classifying it as ’normal’ or ’intrusion’. In recent years, several data mining techniques such as supervised, semi-supervised and unsupervised learning are widely used to enhance the intrusion detection. This work proposes a hybrid intrusion detection (kM-RF) which outperforms in overall the alternative methods through the accuracy, detection rate, and false alarm rate. A benchmark intrusion detection dataset (ISCX) is used to evaluate the efficiency of the kM-RF, and a deep analysis is conducted to study the impact of the importance of each feature defined in the pre-processing step. The results show the benefits of the proposed approach.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01521007
Contributeur : Saeid Soheily-Khah <>
Soumis le : jeudi 11 mai 2017 - 12:33:45
Dernière modification le : mercredi 16 mai 2018 - 11:24:07
Document(s) archivé(s) le : samedi 12 août 2017 - 13:14:10

Fichiers

Soheily-Khah_IntrusionDetectio...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Saeid Soheily-Khah, Pierre-François Marteau, Nicolas Béchet. Intrusion detection in network systems through hybrid supervised and unsupervised mining process - a detailed case study on the ISCX benchmark dataset -. 2017. 〈hal-01521007〉

Partager

Métriques

Consultations de la notice

625

Téléchargements de fichiers

581