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Abstract: Physics-based models are intensively studied
in mechanical and civil engineering but their constant
increase in complexity makes them harder to use in a
maintenance context, especially when degradation model
can/should be updated from new inspection data. On the
other hand, Markovian cumulative damage approaches
such as Gamma processes seem promising; however, they
suffer from lack of acceptability by the civil engineer-
ing community due to poor physics considerations. In
this article, we want to promote an approach for model-
ing the degradation of structures and infrastructures for
maintenance purposes which can be seen as an interme-
diate approach between physical models and probabilis-
tic models. A new statistical, data-driven state-dependent
model is proposed. The construction of the degrada-
tion model will be discussed within an application to the
cracking of concrete due to chloride-induced corrosion.
Numerical experiments will later be conducted to iden-
tify preliminary properties of the model in terms of sta-
tistical inferences. An estimation algorithm is proposed

∗To whom correspondence should be addressed. E-mail: franck.
schoefs@univ-nantes.fr.

to estimate the parameters of the model in cases where
databases suffer from irregularities.

1 INTRODUCTION

Throughout history, the success and progress of soci-
ety and mankind were always secured by the ability to
communicate, produce, and exchange goods and knowl-
edge. Nowadays, we call it infrastructure: roads, power
lines, ports, dams, bridges, wind farms, etc.

All infrastructures suffer from degradation and
need to be maintained. Taking into consideration the
consequences of failure, maintenance has become a
major challenge with economic and safety issues. In
Europe, a large number of infrastructures were built
after the Second World War; thus, it is very common
to find structures requiring repairs and rehabilitation.
Some repaired structures exhibit poor repair perfor-
mance and need to be assessed and given a reliable
safety level. A third of the steel structures in the
Atlantic area were built more than 100 years ago
(Duratinet; Boéro et al., 2009).
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Furthermore, the search for a substitute source of
energy, motivated research to develop new means of
production as well as new locations for this production
(e.g., exploitation wharves and offshore wind farms).
One of the most targeted sites in maritime countries,
like France, is coastal areas where exist very aggressive
environmental conditions for materials and for inspec-
tions to be carried out easily. In addition, the investment
cost of these means of production makes the costs of ex-
ploitation of this energy not profitable compared to the
cost of nuclear energy, for example.

Even though currently we dispose of developed in-
spection and repairing techniques to control structures
on one hand, and of highly complex mathematical mod-
els that aims at decision making and prognostics on
the other hand, the ability to use all of these advance-
ments consistently for one maintenance problem re-
mains extremely hard for both mathematicians and
engineers.

This is mainly because maintenance decisions are
complex problems affected by many uncertain factors
such as material properties, influenced-environment
factors (behavior and impacts on the structure;
Bastidas-Arteaga et al., 2012), quality of inspection
(e.g., imperfect inspections; Sheils et al., 2010), and risk
expressed with the degradation level (O’Connor et al.,
2013; O’Connor and Kenshel, 2013). In this study, we
deal with the latter one.

A literature review of degradation models of struc-
tures and infrastructure in reliability and maintenance
contexts shows two major trends (Frangopol et al.,
2004): on one hand, we have models based on the sim-
ulation of the physical laws of degradations; and on the
other hand, we have probabilistic models based on sta-
tistical quantities (e.g., time-life models where the rela-
tion between time and failure is described).

In maintenance contexts, the quality of a model is no
longer limited to its ability of modeling the pathology,
but also for its quality to predict future performances
of the structure, its ability to integrate new observations
(especially from non-destructive testing [NDT]), and its
ability to be implemented in complex dynamic decision
platforms. Moreover, some authors have strongly stated
the importance of incorporating physical meanings into
statistical models, especially for data-driven models that
are frequently used in condition-based maintenance
(Si et al., 2011).

Since the end of the 1990s, physics-based degradation
models have increasingly become complex, incorpo-
rating physical–chemical and mechanical couplings,
leading to an explosion in the number of parameters:
for example, it is common nowadays to find a 10-
parameters deterministic model of chloride ions prop-
agation whereas in the 1990s models included only two

parameters (Rakotovao Ravahatra et al., 2014). The use
of these approaches in a reliability context raises several
problems: how “to randomize” models whose parame-
ters are usually correlated with random variables having
no prior information on them and how to perform sensi-
tivity studies in the absence of these trends? Rakotovao
Ravahatra et al. (2014) have shown that the scatter
between models is in the same order of magnitude as
the one induced by uncertainty propagation. Another
common approach relies on the numerical solving of
coupled physical equations (Bastidas-Arteaga et al.,
2011): the computation time is then incompatible with
maintenance optimization algorithms and the authors
suggested the building of mono-variate meta-models
using Markov Chains (Bastidas-Arteaga et al., 2012).
An alternative for the model’s calibration is to associate
the integration of expertise in the model and the mul-
tiplication of the associated experiments, which grows
in number as a function of the parameters number.
Furthermore, health-monitoring data usually issued
from NDT is not directly linked to these physics-based
models and their associated parameters.

One approach that seems promising for maintenance
optimization in civil engineering is the construction
of data-driven degradation models based on stochastic
processes such as the gamma process (Van Noortwijk,
2009) or Brownian motion (Si et al., 2011). It allows
modeling the evolution of the degradation using ob-
servations (here via NDT) while maintaining the most
critical aspects of the degradation mechanism in the
model for decision making and an ease of integration
in increasingly complex maintenance decision schemes.
We may further highlight modeling difficulties when
the selected pathologies have nonstationary behaviors
over time (acceleration or deceleration effects of degra-
dation). To model the nonstationarity, an interesting
approach is to use state-based or condition-based exten-
sions. This choice is motivated by the idea that a vari-
ation of the speed of degradation is dependent on the
current condition or state of degradation rather than
on the time of initiation of degradation (Nicolai et al.,
2007). In the case of the gamma processes, conditional
or state-dependent extensions have been proposed in
the case of mono-variate models (Vatn, 2012), and mul-
tivariate models (Zouch et al., 2012). Multivariate mod-
els offer more advantages in maintenance and decision-
making contexts such as the ability to model and take
into account unobservable degradations and model the
effects of imperfect maintenance actions on the degra-
dation model. Furthermore, multivariate models allow
distinguishing between similar structures; for example,
let us consider two structures that suffer from corrosion-
cracking and share the same maximum crack width,
but one has a higher corrosion current, hence, the two
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structures will give different prognostics and as a conse-
quence might produce different decisions.

However, for both multivariate and mono-variate
models, the authors have failed to find a robust proce-
dure for the identification of input parameters, as well
as a lack of application procedure, as a consequence,
making their use difficult in an operation context
(Riahi et al., 2010; Schoefs et al., 2011). In reply to
these last limitations lies the main contribution of this
article.

In this article, we detail the construction process of
a state-dependent statistical degradation meta-model,
which is defined as models based on:

1. A small number of parameters.
2. Probabilistic relevance and physical expertise.
3. Indicators of degradation and durability directly

accessible from NDT.

The construction process starts with the degrada-
tion mechanism analysis, then with the identification of
degradation indicators that are accessible through NDT
and important for decision making (representative of
the pathology), and finally with the proposal of the ade-
quate mathematical expressions of the model.

Furthermore, a general estimation algorithm that
aims to estimate the parameters of the model, especially
for cases where we have irregular databases, is pro-
posed. By irregular databases we mean databases
suffering from missing, censored, or truncated
data.

The construction of the state-dependent degradation
model will be discussed within an application of the
cracking of a submerged concrete structure subject to
corrosion. Preliminary works have been done in El Hajj
et al. (2014).

We find an advantage in using state-based degrada-
tion meta-models when addressing two main stakes:

1. First, the ageing model description with a physi-
cal meaning of the main probabilistic trends and
couplings of the inputs (NDT assessment) and out-
puts (decision parameter). With this approach, we
tackle a key issue: the scourge between more and
more complex physical models and the increasing
complexity of NDT results modeling and assess-
ment (decoupling, fusion, . . . ) with heterogeneous
developments between these two scientific fields.

2. Second, the simple description, flexibility, calibra-
tion, and statistical calculation make this model
easy to implement and beneficial to utilize in a risk
management framework. The evaluation of these
meta-models is done through state-dependent
stochastic processes using information given by

NDT. The idea is to facilitate the transfer between
available information and the model.

The remainder of this article is as follows. In
Section 2, we will introduce and analyze the cracking
process of the corroded reinforced concrete structure.
In Section 3, we will detail the construction of the degra-
dation meta-model. In Section 4, the model parameter
estimation algorithm is presented and discussed in case
of missing data. Section 5 is devoted to illustrating an
application of the model in a risk management context.
And finally, conclusions and perspectives are drawn in
Section 6.

2 DEGRADATION ANALYSIS

One of the main reasons of failure of reinforced con-
crete structures is due to cracking. Several techniques
are devoted to measure and monitor the evolution of
cracks in concrete. In the case of a reinforced concrete
structure, the steel reinforcement has indeed strength-
ened the material property, but can also be a cause of
new cracks because of its own corrosion.

The cracking process of a reinforced concrete struc-
ture can be divided into three phases: the diffusion of
the aggressive agent (chlorides in this case), the corro-
sion of the reinforcement steel, and the crack propaga-
tion from the reinforcement steel toward the surface.
The first phase is characterized by the diffusion of chlo-
rides in the concrete.

When the chloride concentration on the surface of the
reinforcement steel exceeds a threshold concentration,
we reach steel depassivation followed by the initiation
of the corrosion. The second phase is dominated by the
expansion of corrosion products in which they slowly fill
the pores surrounding the reinforcement steel. Finally,
the propagation phase lies in the accumulation of cor-
rosion. This generates tensile stress and results in an
excessive crack propagation of concrete cover till rup-
ture. Note that crack opening may appear after a fatigue
loading too. In this study propagation is assumed to re-
sult from the corrosion solely.

The construction of the degradation meta-model
is based on state-dependent processes that represent
“physical” indicators of the pathology. Therefore, in
the construction of the model, as it will be detailed in
the paragraph 3, the degradation is based on carefully
chosen physical indicators that are suitable to be used
in a maintenance-aimed degradation model. A great ef-
fort is made for the selection of these indicators in a way
to represent the best the degradation process. Here, we
discuss the choice of the criteria.

Degradation is a complex process that includes
numerous factors, some of them varying with time
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(e.g., crack width), and some of them are quasi un-
varying with time (e.g., concrete cover). All factors
have an impact on the degradation; however, only the
changing ones can be associated with methods that
aim to track the evolution of degradation. And even-
tually, the unchanging factors’ effects are indirectly rep-
resented through the rest of the indicators.

For every phase, there are m potential indicators to
represent it. However, we want to consider only the im-
portant parameters in terms of decision and degrada-
tion tracking; thus, we need to restrain the choice to
the best ones. Here, we propose to choose two indica-
tors per phase. We want the two indicators to be the
most adequate to represent a degradation phase; be-
tween them, the two indicators must keep information
about the deterioration level, and the potential of evo-
lution. Hence, we ask the question, what makes an indi-
cator a good choice?

An indicator’s value in a maintenance-aimed degra-
dation model is in its observable character and in the
value of the information that this indicator can give us,
especially in terms of state and growth of degradation.

Therefore, the choice of an indicator is based on two
things:

1. Observable character and accessibility through
NDT methods.

2. Significance or weight of indicator in representing
the degradation process.

It is important to point out a limit of this approach.
In the proposed selection of indicators, we took into
consideration only two parameters out of a potential m
parameters to model the degradation process (m > 2).
As a consequence, some indicators are left out of
the model (environmental parameters, e.g., humidity).
From a classic mechanist point of view, this approach
may be criticized as it leaves out information issued
from the indicators. However, the proposed model is
not a physics-based model (no physical laws are mod-
eled). The proposed model can be seen as a data-driven
state-dependent Markovian process (has the Markovian
property); consequently, we are propagating both the
degradation process and its history. Therefore, the left-
out parameters are in fact indirectly included in the pro-
cess (O’Connor et al., 2013; O’Connor and Kenshel,
2013).

A degradation model must cover the three phases of
the degradation process. However, we restrict the study
and the construction to the third phase, that is, crack
propagation. The same approach can be carried out to
the other phases of this pathology. This construction can
serve as a pedagogical illustration of the construction
and tools of the meta-model (El Hajj et al., 2015).

Fig. 1. Tendency of the corrosion rate (Yuan et al., 2009).

2.1 Third phase

Parameters of importance during this phase are the cor-
rosion current density and the width of the crack (Li
et al., 2006).

The corrosion rate, Vcorr, represents the volumet-
ric loss of metal per unit of area and unit of time
(mm2/year); it can be obtained nondestructively from
the corrosion current density, icorr (μA/cm2) through
Faraday’s law and the density of the metal. icorr is an
instantaneous rate of corrosion measured using NDT,
highly sensitive to external conditions (temperature, hu-
midity, etc.; Breysse et al., 2009). Thus, it is important
to note that for modeling and decision, support calibra-
tion curves depending on the environmental conditions
must be available or that inspections must always be car-
ried out under similar environmental conditions and for
a given preceding period. We assume the second condi-
tion is verified, the first one has not been established for
all situations and it is only available in few study cases
(Breysse et al., 2009). Figure 1 represents the tendency
of the corrosion rate on all three phases of the crack-
ing. According to the corrosion electrochemical princi-
ple, the corrosion rate is proportional to the corrosion
current density (Yuan et al., 2009).

The crack is considered reachable and its width is eas-
ily measured (Gauge block or image analysis: O’Byrne
et al., 2013; O’Byrne et al., 2014).

In Figure 2, Vu et al. (2006) draw the shapes of the
variation of the width of a crack versus time for two
cases of corrosion rate (invariant or time-varying) and
two cover thicknesses. The importance of modeling the
corrosion rate by a cumulative process is clear. The hy-
pothesis of an invariant corrosion rate is not conserva-
tive: in 20 years, it leads to an overestimation of 50% of
the crack width, for example, triggering an early repair-
ing decision.

As far as we know, no published work has aimed to
study the mutual dependencies between the two pro-
cesses (corrosion current intensity and cracking) de-
scribed previously. One main reason can be attributed
to the lack of experiments for this particular phase;
another good reason is that it is virtually impossible

4



Fig. 2. Tendency of the width of crack—phase 3 (Vu et al.,
2006).

to integrate the mutual dependencies in the available
physics-based models.

The extension of the degradation model to two pro-
cesses can be very rewarding in terms of maintenance
and inspection optimization, especially in terms of reli-
ability of the data because of the diversification of the
NDT techniques (Ploix et al., 2011; El Hajj et al., 2014)
and flexibility in the inspection policy when costs or
information quality are quite different (Schoefs et al.,
2012).

The two indicators will be modeled using nonstation-
ary state-dependent stochastic processes: the evolution
laws depend on the current level of degradation. Finally,
these two processes form a bivariate cumulative process
where the two subprocesses are mutually dependent.

In this document, we argue that the use of two indi-
cators gives a better understanding of the degradation
process, provides an additional level to risk quantifi-
cation of structures, and finally presents the decision
maker with more potential maintenance decisions, at
every time of the lifetime, based on information coming
from two distinct yet dependent physical indicators
assessed through NDT.

3 CONSTRUCTION OF THE DEGRADATION
META-MODEL

We propose here to define the degradation for each
phase as a bivariate process, where each process is a
state-dependent stochastic process similar to the ap-
proach presented in (Zouch et al., 2012).

On the one hand, the Eurocode associates failure to
a crack width exceeding a limit crack width wlim (3-mm
crack width for this reliability case); therefore, the crack
width is a direct condition indicator and its value de-
fines the range of serviceability. On the other hand, icorr

reveals the speed of filling of rust, that is the motive be-

hind the propagation of cracking, hence is seen as a po-
tential of evolution.

Let the bivariate process be written, (ρt , θt )∀t≥0,
where (ρt )∀t≥0 describes the condition state and (θt )∀t≥0

is the potential of its evolution.
The two processes (ρt )∀t≥0 and (θt )∀t≥0, hereafter

written ρ and θ , are both dependent and observable.
The evolution of degradation over a period of time

is given by positive increments for the degradation
processes respectively (�ρ, �θ), which are continuous
random variables. We assume that the degradation
increments in a given time interval τ are random vari-
ables which are a function of the present degradation
state (ρ, θ).

The degradation process is therefore assumed to be a
Markov process. A suitable candidate for the distribu-
tion laws of each increment (�ρ, �θ) is the gamma dis-
tribution (Van Noortwijk, 2009) defined by two param-
eters (α and β, where α is the shape parameter and β is
the scale parameter). In the described bivariate state-
dependent model, we will consider that only the shape
parameter α is a function of the current state (ρ, θ) and
τ , but independent of time, however, β is considered as
constant.

To simplify the identification step, we will consider
that the state dependency is exclusively governed
through the shape functions, the scale functions βθ and
βρ are considered constant throughout the life cycle.
Therefore, we have to model and identify the shape
functions αθi and αρi which are respectively, in the
case of the gamma distribution, proportional to the ex-
pected value of the increments for θ and ρ on the time
interval τ .

The cracking phase of the corroded concrete struc-
ture is then characterized by

1. (ρt )∀t≥0 modeling the width of the crack “a” (mm);
2. (θt )∀t≥0 modeling the corrosion current density

“ icorr” (μA/cm2).

To be able to simulate the model we need to choose
a sequence of simulation. First, we seek to characterize
the evolution in terms of one process, then for the other.

The choice of the sequence is motivated by mechani-
cal expert judgments; there is a cause-effect relationship
between the two indicators. The corrosion current den-
sity is the cause, and the width of the crack is the effect.
The deterioration starts as an electrochemical process
expressed by the corrosion current density than is trans-
lated as a cracking on surface expressed by the crack
width.

Furthermore, the corrosion current density has an
effect on the propagation of cracks, and vice versa
(mutual-dependencies). This correlation is modeled
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in terms of mutual acceleration effects directly in each
of the shape functions of the gamma distributions.

The probability density function of the bi-process
(�ρ,�θ) is given by

f�ρ,�θ (x, y; τ, ρ, θ) = f�θ (y; τ, ρ, θ)

× f�ρ (x ; τ, ρ, θ, y) (1)

Therefore, next we introduce the conditional prob-
ability density functions of each individual increment
f�θ (y; τ, ρ, θ) and f�ρ(x ; τ, ρ, θ, y), used to simulate the
process. For every current condition state (ρ, θ), we
have the one-step transition density function of the pro-
cess over the next inspection interval τ .

Finally, to simulate, we first seek to characterize the
evolution in terms of the causal process (corrosion cur-
rent density, Equation (2)), then doing so for the respec-
tive effect process (crack width, Equation (3)).

We can then write, ∀(ρ, θ) > 0:

�θ (τ ; ρ, θ) ∼ gamma (αθ ( ρ, θ) × τ, βθ ) (2)

�ρ (τ ; ρ, θ,�θ) ∼ gamma (αρ (ρ, θ,�θ) × τ, βρ) (3)

The choice of each shape function is motivated by the
evolution of its respective process in time (Figures 1 and
2). In other terms, the S-shaped condition state evolu-
tion of the corrosion current density (Figure 1) requires
a bell-shaped shape function, similarly, the L-shaped
condition state evolution of the crack width (Figure 2)
requires an akin shape function. As a result, we propose
as shape functions, ∀(ρ, θ) > 0:

αθ (ρ, θ) = (a3 × ρ + a4) × e

−(θ − a1)2

a2 (4)

αρ (ρ, θ,�θ) =
(

a6 ×
(

θ + �θ

2

)
+ a7

)
× e−a5.ρ (5)

The exponential parts of the shape functions en-
sure the required shape of the shape-function (e.g., bell
shaped). The linear functions before the exponential
plays an acceleration role, allowing by that to model the
dependencies of the two processes.

One of the main motives in using degradation meta-
models is to minimize the number of parameters, ex-
plaining the simple linear form of the acceleration func-
tion. However, if further knowledge on the correlation
of the two physical indicators is available, it is possible
to complexify these functions to account for the suitable
acceleration and deceleration effects between the two
indicators.

We notice in Equation (5) the expression (θ + �θ
2 ). In

fact, this is a direct consequence of the sequential simu-
lation where we simulate �θ and use it to estimate �ρ.

Table 1
Definition of parameters

βθ , βρ

Proportionality factors common to different
structures (materials, etc.)

a1 Abscissa of the inflection point of the corrosion
current density

a2 Reflects the dispersion around the inflection point
a3, a6 Acceleration coefficients
a4 Speed at the origin of the corrosion current density
a5 Reflects the kinetics of the process ρ

a7 Crack growth rate at the origin

Fig. 3. αθ (ρ, θ) : shape function of the θ process.

This expression accounts for the mean value of the cor-
rosion current density over the interval τ .

Now that the model has been defined, a physical
meaning can be given for each parameter. In fact, the
mathematical formulation of the model allows us to
identify physical tendencies (or responsibilities) associ-
ated with each parameter. In Table 1, physical meanings
of each parameter are summarized.

To further illustrate the model, we propose in
Figures 3 and 4 to plot the state-based shape functions
of both processes. The following parameters (called
hereafter original parameters) are used in this study:

a1 = 1, a2 = 1, a3 = 1, a4 = 1.2, a5 = 0.8, a6 = 1.8,

a7 = 2, βρ = 0.3, βθ = 0.3

Nonetheless, a sensitivity test is carried out next to
illustrate the meanings of the parameters, as well as the
validity of the model for different sets of parameters.
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Fig. 4. αρ(ρ, θ, �θ) : shape function of the ρ process for a
constant �θ .

3.1 Numerical experiments for the parameters
identification

In Table 1, we defined the parameters of the model. In
this section, we propose to numerically illustrate their
influence on the overall degradation behavior all along
the propagation phase.

To that purpose, we will vary the original parame-
ters (chosen in the last section). Finally, in Figure 5,
the means of the simulated degradation evolution of 100
structures for 5 selected cases are illustrated.

The 5 cases are summarized by

1. Original parameters
2. Add 0.5 to the a1

3. Double a6 and a7

4. Subtract 0.2 from a5

5. Double a3 and a4

The first thing to point out is that all simulations re-
spect the tendencies found in Figures 1 and 2 (conserva-
tion of the S-shape and L-shape).

For the first step, we add 0.5 to a1. From Table 1,
a1 is defined as the abscissa of the inflection point of
the corrosion current density. Using lines L1 and L2 in
Figure 5, we see the move of 0.5 on the inflection point.

The second step, we double the values of a6 and a7.
These parameters account for the acceleration effect of
θ and �θ on ρ. Therefore, we can see the effects on the
corrosion current density where it becomes faster.

Note: We note that for every step all the variations
from before are kept. For example, in the second step,
we keep the 0.5 added to a1.

Third, we subtract 0.2 from a5—the parameter
responsible for reflecting the kinetics of the process
ρ (Table 1). The subtracted 0.2 will raise the shape
function (Equation (5)), hence, generating higher incre-
ments. This effect is seen clearly in the increasing of
the speed of cracking and the corrosion current density
(mutual dependency).

Finally, we double a3 and a4—parameters responsible
for the acceleration effect of ρ on θ . We can see the big
effect that this variation has on the increase of speed of
θ , not as much for ρ.

To conclude, one aim of using these approaches is
to introduce physical meanings to main probabilistic
trends. Here, this property is made apparent. Further-
more, the fact that the parameters have physical mean-
ings will allow us to identify effects on the model, such
as a maintenance action’s effect. For example, a ca-
thodic protection slows the corrosion current density.
To take into account this decrease of speed, we can mul-
tiply αθ (Equation (4)) by a parameter that is lower than
1 to generate smaller increments (El Hajj et al., 2015).

4 ESTIMATION PROCESS

4.1 Description of the database

The database is considered to be constructed from pe-
riodic inspections at a fixed time step τ on statistically
independent but identical structures. Two values define
the size of the database N , these are: n, the number of
structures, and T , the number of inspections carried out
on each structure. We note that in this study, for sim-
plicity, no spatial correlation is accounted for: that im-
plies, for example, that n represents a set of structures
(piles or beams of a given bridge, quay, . . . ) in the same
environment built with the same materials or a set of
independent components (beams) on a given structure
(O’Connor et al., 2013; O’Connor and Kenshel, 2013;
Schoefs et al., 2009, 2016).

The database is assumed to contain measurements
of the crack width and the corrosion current density of
each j structure denoted {(ρ( j)

t , θ
( j)
t ), t ≥ 0, j ∈ 1, n}.

Increments are directly computed using simple
subtraction, and the resulting database group
used in the estimation of the parameters of the
two state-dependent stochastic processes are:
(ρ( j)

t , θ
( j)
t ,�ρ

( j)
t ,�θ

( j)
t , t ≥ 0, j ∈ 1, n − 1).

When a database contains N values over N , the
database is complete. In this case, the estimation pro-
cess is founded on a heuristic based on the classical max-
imum likelihood estimates (MLE) method, and can be
found in El Hajj et al. (2014).

For the other cases where the available database’s
size is smaller than N , we talk about incomplete
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Fig. 5. Different patterns of the average degradation on the overall crack propagation phase.

databases. An estimation algorithm based on the
stochastic estimation maximization algorithm (SEM) is
proposed here for such cases. The algorithm aims to
simulate lost information based on known ones to im-
prove the estimation efficiency.

Incompleteness of databases is common in civil en-
gineering. Causes of incompleteness may vary from
inspections techniques, measurement error (Schoefs el
al., 2012; Torres-Luque et al., 2014), accuracy of the
machines, and cancelled inspections (due to security
concerns, weather, costs, no available technicians, etc).
Data that are lost can be classed into three categories;
those are truncated, censored, and missing:

1. Censored values are those reported as less than
some value—left censored (e.g., <5 cm), greater
than some value—right censored (e.g., >0.1 μA/
cm2), or as an interval—interval censored (e.g., a
value between 67 and 75 days).

2. Truncated values are those that are not reported
if the value exceeds some limit—right truncated
(e.g., if the crack width is above 3 cm we stop
recording) or if values exceed the physical under-

standing (e.g., corrosion depth of steel more than
original thickness).

3. Missing data are when values are lost due to
recording interruptions related to field data mea-
surement or missed inspections.

All three categories occur frequently in civil engi-
neering. As missing data can have a significant effect on
the drawn conclusions, it is important to take such lim-
itations into consideration. In a condition-based main-
tenance context, every decision is based on the degra-
dation level and, therefore, it is really important to give
the best available prediction.

Essentially, the way we deal with the three types of
incompleteness in databases is the same. Next, we will
present the imputing and estimation algorithm used in
the estimation process in the presence of missing data
or incomplete database.

4.2 Modified stochastic expectation maximization
algorithm

A high level of censoring or missing data increases the
numerical instability of the optimization problem in the
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estimation process, especially in the maximization of
the likelihood. The Expectation–Maximization (EM)
algorithm, introduced by Dempster et al. (2007), is
an iterative procedure designed to find MLE in the
context of parametric models where the observed data
can be viewed as incomplete. The EM algorithm is a
simple approach; unfortunately it has its limitations.
As noted in Dempster et al. (2007), the convergence
rate of EM is linear and governed by the fraction of
missing information meaning that the EM algorithm
can be extremely slow when the proportion of missing
data is high. Moreover, the EM is proved to converge
to a stationary point of the log-likelihood function,
but when several stationary points are present, the
algorithm does not necessarily converge to a significant
local maximum of the log-likelihood function.

To answer to the limitations of the EM algorithm,
the SEM algorithm has been proposed by Celeux et al.
(1985). The S in SEM stands for stochastic. The SEM
algorithm incorporates a stochastic step between the E-
step and the M-step of the EM algorithm. The stochas-
tic step is based on the Random Imputation Principal
(RIP), meaning to replace each missing quantity with
a value drawn at random from the conditional density
q(y|x,�(n)), where �(n) are the parameters estimates at
the nth iteration, y denotes the missing data, x denotes
the observed data, and z denotes the complete database:
z = x � y. �(n), not to be confused with θ , that is, the
physical indicator in the model.

The SEM nth iterations are as follows:

1. E-step: compute the conditional density f�ρ,�θ

(x, y; τ, ρ, θ) using �(n).
2. S-step: using RIP, we Simulate the unobserved

data to draw a complete sample z(n).
3. M-step: find the ML estimates of �(n+1) using the

complete sample z(n).

The program starts by scanning the provided
database for potentially missing data, and indexes them.
Then, using the observed data, initial parameters are es-
timated and used to start the iterative modified SEM al-
gorithm.

In the S-step, we include a test that verifies if the
generated data respect the monotonicity of the gamma
process. For the M-step, and because of the high
number of parameters in �(n+1), an iterative two-step
heuristic algorithm is used for the maximization of the
log-likelihood. In fact the selected shape functions lead
to numerical instability problems with conventional
optimization procedures. To circumvent this problem,
we constructed a heuristic based on the fixed point
theorem. This heuristic is applied iteratively to provide

Fig. 6. Stochastic Estimation–Maximization algorithm.

estimates of the parameters of the model (Equations
(2) and (3)).

In Figure 6, the SEM algorithm is presented.
The SEM iterative algorithm stops for a desired ac-

curacy of the estimated parameters: this accuracy is ex-
pressed in terms of target mean square error between
the last m + 1 sets of parameters, given by

MSE

( m︷︸︸︷
�(n) −�(n+1)

)
=

trace

{
E

{( m︷︸︸︷
�(n) −�(n+1)

)( m︷︸︸︷
�(n) −�(n+1)

)T}}

where

m︷︸︸︷
�(n) is the mean of the last m estimations to limit

variations related to one simulation.
We define here a threshold MSEth = 0.1, that is, for

when the estimated parameters are not changing any-
more.

Note: We will not demonstrate the convergence of
this fixed-point type algorithm. However, the large
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number of numerical experiments that we describe be-
low portray the good properties of this algorithm.

4.3 Numerical experiments for illustrating the
convergence of the process

For the third phase of degradation, no real field
databases were available for us to use. Therefore, we
propose to simulate a set of virtual databases. In each
case, we will detail the method used to simulate a
database.

First, we start by illustrating the use of the SEM algo-
rithm on a general case where values are censored and
missing from the generated database. Then we study the
effect of missing data and censored data on the estima-
tion process.

The mean squared error (MSE) is used as the per-
formance criteria for the estimation process. To illus-
trate the performance of the estimation process and its
convergence, we propose to evaluate the MSE of the
estimated parameter vector �̂ based on the simulated
database given the true parameter values θ∗:

MSE = trace
{

E
{(

�̂ − θ∗) (�̂ − θ∗)T
}}

(6)

where the original parameters are grouped in �∗ =
{a1

∗, a2
∗, a3

∗, a4
∗, a5

∗, a6
∗, a7

∗, βθ
∗, βρ

∗}, and the es-
timated parameters in �̂ = {â1, â2, â3, â4, â5, â6, â7,

β̂θ , β̂ρ}.
All calculations are carried out under Matlab C©.

4.3.1 General case: random missing and censored data.
We distinguish between two types of missing data:

1. Simultaneously or “total” missing data: If a data
point is missing from one process (ρ( j)

t or θ
( j)
t ),

certainly a data point will be missing, at the same
inspection, in the other process (respectively θ

( j)
t

or ρ
( j)
t ).

2. Nonsimultaneously or “partial” missing data: A
more realistic case where the missing data can be
unavailable from one process, but not necessarily
from the second one.

Furthermore, a right censoring (Type 1) is also con-
sidered, meaning that inspections will cease to be
recorded after a certain time.

In this first example, we will illustrate the general
case where we consider randomly censored and partially
missing data.

We consider the case of n = 15 structures, we start
by simulating full n simulations with no missing nor
censored data using the two state-dependent stochastic
processes. For each simulation, 10 inspections are

Fig. 7. Mean simulations estimated from randomly missing
and censored database.

considered. Therefore, the full database is formed of a
total of 150 data points.

Now, we randomly delete 25% of the data from each
simulation. To do so, we use a uniform distribution over
the recorded time (10 inspections in this case).

Then, to model the censorship, we consider a nor-
mal distribution, centered on the 10th inspection with
a variance = 5 and truncated to the right. Then, we
randomly choose 15 numbers and these numbers will be
the censorship times after which all data points are re-
moved from the databases.

Figure 7 compares the average estimated behavior
of the structures from the incomplete database. In this
case, the estimated parameters are estimated after 5 it-
erations of the SEM (under 20 seconds using an office
PC), stopping the algorithm for a MSE = 0.0905 <

0.1.
In Figure 7, we can see the estimation from incom-

plete and complete databases re-joins the experimental
trends in Figures 1 and 2. Furthermore, we can see that
the curves representing the means and the variances on
the long term are close to each other.

The aim of Figure 7 being to exemplify the estima-
tion and prediction process, we propose now to further
investigate the quality of the estimation. To this aim,
we will use a more quantitative criterion to compare the
two estimations that is the relative error committed on
each parameter.

In Table 2, the estimated parameters and the relative
errors are summarized.
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Table 2
Numerical example parameters estimate

Database Complete database Incomplete database
parameters estimates estimates

�∗ �̂c ēc �̂inc ēinc

a1 1 1.04 −0.04 0.88 0.12
a2 1 1.17 −0.17 1.65 −0.65
a3 1 0.58 0.42 0.87 0.13
a4 1.2 1.49 −0.24 1.41 −0.18
βρ 0.3 0.29 0.03 0.26 0.13
a5 0.8 1.03 −0.29 0.96 −0.20
a6 1.8 4.25 −1.36 3.46 −0.92
a7 2 1.13 0.44 0.78 0.61
βθ 0.3 0.31 −0.03 0.39 −0.30

The relative error here is given by the equation:

ē = ai
∗ − âi

ai
∗ (7)

In Table 2 �̂c are the estimates of the complete
databases, ēc is the relative error associated with these
estimates; and �̂inc are the estimates of the incomplete
databases, ēinc is the relative error associated with these
estimates.

In compliance to Figure 7, Table 2 shows that the es-
timated parameters from the incomplete and complete
databases are close to the original parameters. Except
for a6 where the errors are higher, this is mainly due
to the fact that this parameter represents a mutual de-
pendency between processes (Table 1), hence requires
more data points to be captured better.

To further quantify the quality of the estimation, we
propose to illustrate the effect in terms of relative errors
on the shape functions.

In Figures 8 and 9, we illustrate the relative errors
committed on the shape functions for both processes
(ρ and θ) and for both cases (i.e., complete and incom-
plete databases) using the estimated parameters �̂c and
�̂inc.

To plot these surfaces, the relative errors between the
shape functions are calculated using the following ex-
pressions, ∀ 0 ≤ ρ ≤ 6 and 0 ≤ θ ≤ 4 :

eα(ρ) =
(

αρ
∗ − α̂ρ

αρ
∗

)
and eα(θ) =

(
αθ

∗ − α̂θ

αθ
∗

)
(8)

where αρ
∗ and αθ

∗ are the shape functions associated
with the original parameters �∗, α̂ρ and α̂θ are the shape
functions associated with the estimated parameters �̂.

In Figure 8, we plotted the relative errors committed
on the shape functions of the ρ process. “A” is the point
with the highest crack width (3.9) and corrosion cur-

Fig. 8. Relative error committed on the αρ for complete and
incomplete databases.

Fig. 9. Relative error committed on αθ for complete and
incomplete databases.

rent density (3.1) from Figure 7 to better position our
example.

The surface of the relative errors is a plane tilted to
the right towards the θ axis.

When we compare the errors at the five points shown
on the plots, we can see that they are close.
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Table 3
Mean relative errors on the estimated shape parameters

eα(ρ) eα(θ)

Complete 0.2773 0.2560
Incomplete 0.2133 0.6046

The region inside of the dotted circle formed between
“A” and the origin is where the majority of the data
points (ρ, θ) are. This might explain the good estima-
tion in these regions and how the error increases away
from it.

In Figure 9, we plotted the relative errors committed
on the shape functions of the θ process. “B” is the point
with the highest crack width (3.9) and corrosion current
density (3.1) from Figure 7 to better position our exam-
ple.

The surface of the relative errors illustrates an in-
crease of the error with θ .

When we compare the errors at the five points shown
on the plots, we can see that for the incomplete case
the errors are a lot higher for high values of corrosion
current density.

For the region inside of the dotted circle formed be-
tween “B” and the origin, where the majority of the data
points (ρ, θ) are, we see that the errors for the incom-
plete data points are slightly higher than those of the
complete.

To further compare the two cases, we propose to cal-
culate the mean relative errors committed on the shape
parameters. The mean relative error is calculated for the
range between the “A” or “B” and the origin and given
by

eα(ρ) =
(∣∣αρ

∗ − α̂ρ

∣∣
αρ

∗

)
and eα(θ) =

( |αθ
∗ − α̂θ |
αθ

∗

)
(9)

where ρ ∈ [0, 3.9] and θ ∈ [0, 3.1].
The mean relative error are summarized in Table 3.
In Table 3, we see that the mean relative error for ρ

are close for both cases, but for θ the complete case is
lower by half almost.

To conclude, this example illustrates the ability of the
SEM model to estimate the parameters from a database
that suffers from missing and censored data points.

4.3.1.1 Effect of the level of missing data. In this
section, we investigate the effects of the percentage of
missing data on the estimates by means of MSE by inde-
pendently considering the two cases: (i) the total missing
data and (ii) the partial missing data.

Table 4
MSE for missing data

Missing rate n 5 10 20

75% Total 2.2 0.878 0.423
Partial 1.78 0.850 0.389

50% Total 1.756 0.737 0.422
Partial 1.702 0.668 0.376

25% Total 1.527 0.628 0.305
Partial 1.469 0.591 0.301

0% Full database 0.96 0.46 0.24

We want to study the accuracy of our estimation
algorithm as a function of the level and type of missing
data over the lifetime.

We use a series of 10 inspections on n structures using
the same model as in the previous section, then we ran-
domly remove data from the database using a uniform
distribution between the first and the tenth inspection.
We propose to vary this missing rate from 75% to 0%,
where 0% corresponds to the use of the complete data
set for the estimation.

The results are shown in Table 4. Each cell is the
mean MSE for the estimated parameters (for both pro-
cesses) based on 400 scenarios generated for the two
types. The number of structures and the percentage of
the missing data are the variables of this study. No cen-
sored data are considered in this study.

We notice that the MSE and n are inversely propor-
tional, and that the estimation process is convergent.
We can also notice that the MSE in the partial case is
slightly smaller than the MSE in the total case. The most
significant difference is in the worst case scenario of five
structures and 75% missing data rate where the MSE
drops 0.4.

An aim of this section is to study the effect of the
missing data on the accuracy of the estimation process;
therefore, it is important to explain for instance the sig-
nificance of an MSE equal to 2.2, and if it is a good or
a bad estimate. To this aim, we propose to plot six ran-
dom results of estimations on the same graph with their
MSE. We consider the following cases:

1. Three results, n = 10 with 50% missing data rate;
2. Two results, n = 10 with 75% missing data rate;
3. One result, n = 5 and 75% (worst case scenario).

The results are illustrated in the Figure 10.
From Figure 10, all plots came close on the plot ex-

cept for the last result MSE = 2.3227 that overesti-
mates the degradation on the long term (dashed and
starred lines). It is important to remind that this result
is for five structures with a large 75% missing data rate,
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Fig. 10. Six random estimations with their MSE.

meaning that approximately 12 points are used to esti-
mate nine parameters.

On another hand, this is a multiparametric problem
(nine parameters), and clearly a complex one; it is possi-
ble to have different sets of parameters giving the same
simulations. For example, from Table 2 we compute the
MSE for the two estimated sets and we get:

MSEc = 0.79 > MSEinc = 0.53

However, the simulation using the full database es-
timates will be better because it maximizes the likeli-
hood function. Consequently, one might question the
efficiency of MSE as criterion to assess the quality of
estimation, but by carrying out 400 simulations the re-
sults will balance out allowing us to compare between
the cases.

4.3.1.2 Effect of censored data. Here, we aim to study
the effect of censored data on the estimation process.
For this purpose, we consider 10 inspections carried out
on n structures, then we apply a censorship to the right
to these data sets like it was introduced at the start of
Section 4.3.1.

We propose a 0% to 80% censorship on the data,
where 80% means that it is possible that only two in-
spections are left, etc. Then we vary the variances re-
spectively with the desired censorship and we randomly
choose the censorship times.

We propose to calculate the MSE of the estimated pa-
rameters based on the simulation of 400 scenarios. The
number of structures (n) and the censorship rate are
the variables in this study. Results are summarized in
Table 5.

Table 5
Effect of censored data and number of structures on MSE

Censorship rate 80% 40% 0% Full database

n
5 3.07 2.52 1.47 0.96
10 1.37 0.81 0.59 0.46
20 0.32 0.32 0.30 0.24

By increasing the number of inspected structures, we
offer a valuable assistance to the estimation process
even in cases of high levels of censored data. We may
point out also the impact of the first inspections (80%
case) where for a fair number of structures they can give
good estimates.

5 RISK MANAGEMENT EXAMPLE

As defined in the Eurocode—EN 1990 (CEN, 2002),
structural reliability is the ability of a structure or a
structural member to fulfill the specified requirements
for which it has been designed; it includes structural
safety, serviceability, and durability. Given the random
nature of the quantities involved in structural design
(environment, material properties, etc.), the assessment
of structural reliability cannot be done by deterministic
means, but requires a probabilistic analysis.

In this context, the objective of a safety verification
is to keep the probability of failure Pf lower than a
given threshold. This threshold is basically a function
of the consequences that the failure of the structure can
have. In this example, we will consider that the corroded
structure is a deck, that is, an important element with
medium consequences. The Eurocode refers to this as a
reliability case 2 or RC2 (not to be confused with Rein-
forced Concrete, which is also referred to as RC in this
document). The code demands that the reliability index
β be equal to 4.7 (equivalent to Pf = 10−7 ) in the case
of a 1-year reference period. In this example, we will
consider an inter-inspection time of 1 year.

As a consequence, we propose here to define the de-
cision criterion as the probability of having a failure be-
fore the next inspection.

The probability of a failure before the next inspec-
tion symbolized by Pf (ρ, θ) is a function of the current
state (ρ, θ), and given by the following equation:

Pf (ρ, θ) = P (�ρ + ρ > L)

For the durability of RC structures, Eurocode 2 ex-
presses the failure by comparing the crack width of the
concrete cover with a cracking threshold Lmax. The
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Fig. 11. Probability of failure based on degradation level
(ρi , θi ).

Fig. 12. Bivariate decision plan and a comparison with a
mono-variate plan.

latter depends on both the characteristic of the struc-
ture and its environmental conditions. According to
Table 7.101N from Eurocode 2 (Eurocode 2, 2005), for
an exposure class XS3 (corrosion of the reinforcement
induced by chlorides from sea water), the performance
of the reinforced concrete structure are assumed modi-
fied when the width of a crack is greater than or equal
to 3 mm.

For a selected range of ρ (0 < ρ < Lmax = 3 mm)
and θ , we estimated the probability of failure for every
combination (ρ, θ). Results are plotted in Figure 11.

The use of this curve in reliability-based risk manage-
ment could be in a classical way where a Pf threshold
defines an acceptance and a critical areas. Therefore,
we define an iso-curve as the line joining all observa-
tions (ρ, θ) having the same Pf = 10−7. This iso-curve
is then drawn in Figure 12.

The iso-curve divides the plot in to two areas: an
acceptance reliability area where Pf < 10−7 (regions I
and IV), and a critical reliability area where Pf > 10−7

(regions II and III).
The system is said to be safe for an inspection (ρ, θ)

in the acceptance reliability area and unsafe for an in-
spection in the critical reliability area.

In this manner, decisions are based on information
coming from two sources, or two physical indicators.
Next, we propose to illustrate the benefit of using a bi-
variate approach instead of a classical mono-variate ap-
proach.

To this aim, we propose to calculate the value of the
crack width associated with a Pf = 10−7 . Then, the cal-
culated value, L ′ = 0.62, is represented as a line on
Figure 12. For simplification purposes, let us call this
line the L-line.

The contour plot and the L-line divide the plane into
four regions (Figure 12). For regions I and III, the
mono-variate approach and the bivariate approach gen-
erate the same decision, whereas for regions II and IV
decision are opposite.

According to a mono-variate approach, if the crack
width is below the L-line, that is, crack width < L ′, the
structure is considered to be safe. And if the crack width
is higher than, then the structure is in a critical zone.

Such formulation might cause the same decision for
two structures with the same crack width, but with two
very different corrosion current density (θ), that can be
seen as an acceleration factor of the cracking.

From an L-line’s point of view (or a mono-variate
approach), an observed small crack width with an ex-
tremely high corrosion current density can lead to an
assessment as “safe structure,” which in reality might be
misleading, if not dangerous. For example, a state (ρ, θ)
in region II is safe according to the L-line. However, it
is logical to consider that for high values of corrosion
current density we might be in a critical zone because
corrosion is intensively active and a maintenance action
can prevent an earlier failure. In such cases, a decision
made according to the L-line only can be faulty com-
pared to a bivariate approach where information issued
from additional physical indicators are considered in the
decisional process.

Also for region IV, a bad decision is made. However,
in this case the decision is not as dangerous as for re-
gion II because a mono-variate approach assesses the
structure as critical and demands a maintenance. But in
reality, and according to the bivariate approach, we are
in a safe zone; the mono-variate maintenance decision
will generate unnecessary maintenance costs.

To conclude, in this application we illustrated a po-
tential benefit of using a bivariate degradation meta-
model for risk-management applications, where the two
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physical indicators of the model are at the same time the
inputs (NDT assessments) and the outputs (decision pa-
rameters).

6 CONCLUSIONS AND PERSPECTIVE

The gap between the sophistication of physical degrada-
tion models and complexity of NDT results is currently
a huge challenge: one of the consequences is that model
inputs and NDT outputs are less and less related. This
article suggests a solution based on simplified models
whose inputs are directly the NDT outputs.

A degradation meta-modeling approach based on
data-driven bivariate nonstationary stochastic processes
with a gamma trend is discussed within and application
of chloride induced cracking. The degradation model is
based on two correlated state-dependent stochastic pro-
cesses. The construction and calibration of the processes
are done via NDT data, including visual inspection or
image processing (see O’Byrne et al., 2013, and Yeum
et al., 2015, for crack for instance).

Expert knowledge is introduced to reflect the main
useful degradation properties that the model should
tackle for decision making. This allows both to simplify
the construction and the fitness of the model to the data
and to overcome some limits in the current practices
in civil engineering (here the correlation between the
crack width and the corrosion current density). This ap-
proach is shown to be robust in case of data missing and
allows reformulating risk based decision aid tools.

This model shows a lot of potential, especially in de-
cision making: we provide a set of values for corrosion
current density and crack width that leads to a target
probability of failure before the next inspection. Start-
ing from this potential, other applications can be sug-
gested. An important point to address is the modeling
of the correlation of these two processes, most impor-
tantly the statistical correlation.
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