Hybrid Isolation Forest - Application to Intrusion Detection

Pierre-François Marteau 1 Saeid Soheily-Khah 1 Nicolas Béchet 1
1 EXPRESSION - Expressiveness in Human Centered Data/Media
UBS - Université de Bretagne Sud, IRISA-D6 - MEDIA ET INTERACTIONS
Abstract : From the identification of a drawback in the Isolation Forest (IF) algorithm that limits its use in the scope of anomaly detection, we propose two extensions that allow to firstly overcome the previously mention limitation and secondly to provide it with some supervised learning capability. The resulting Hybrid Isolation Forest (HIF) that we propose is first evaluated on a synthetic dataset to analyze the effect of the new meta-parameters that are introduced and verify that the addressed limitation of the IF algorithm is effectively overcame. We hen compare the two algorithms on the ISCX benchmark dataset, in the context of a network intrusion detection application. Our experiments show that HIF outperforms IF, but also challenges the 1-class and 2-classes SVM baselines with computational efficiency.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01520720
Contributeur : Pierre-François Marteau <>
Soumis le : mercredi 10 mai 2017 - 18:01:28
Dernière modification le : mercredi 16 mai 2018 - 11:24:07
Document(s) archivé(s) le : vendredi 11 août 2017 - 13:40:13

Fichier

hif (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Pierre-François Marteau, Saeid Soheily-Khah, Nicolas Béchet. Hybrid Isolation Forest - Application to Intrusion Detection. 2017. 〈hal-01520720〉

Partager

Métriques

Consultations de la notice

510

Téléchargements de fichiers

2703