Y. Pommier, A. A. Johnson, C. Marchand, X. Li, L. Krishnan et al., Integrase inhibitors to treat HIV Human immunodeficiency virus type 1 assembly, release, and maturation, AIDS Nat. Rev. Drug Discov. Adv. Pharmacol. Virology, vol.4554, pp.236-248, 2005.

J. A. Grobler, K. Stillmock, B. Hu, M. Witmer, P. Felock et al., Diketo acid inhibitor mechanism and HIV-1 integrase: Implications for metal binding in the active site of phosphotransferase enzymes, Proceedings of the National Academy of Sciences, vol.99, issue.1, pp.99-6661, 2002.
DOI : 10.1073/pnas.012610699

B. Grinsztejn, B. Nguyen, C. Katlama, J. M. Gatell, A. Lazzarin et al., Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial Integrase inhibitors in salvage therapy regimens for HIV-1 infection, Retroviral intasome assembly and inhibition of DNA strand transfer, pp.1261-1269, 2007.

M. Sato, T. Motomura, H. Aramaki, T. Matsuda, M. Yamashita et al., Novel HIV-1 integrase inhibitors derived from quinolone antibiotics HIV-1 resistance patterns to integrase inhibitors in antiretroviralexperienced patients with virological failure on raltegravir-containing regimens, J. Med. Chem. J. Antimicrob. Chemother, vol.4910, pp.1506-1508, 2006.

M. Métifiot, C. Marchand, K. Maddali, Y. Pommier, ]. J. Marinello et al., Resistance to integrase inhibitors Comparison of Raltegravir and Elvitegravir on HIV-1 Integrase Catalytic Reactions and on a Series of Drug- Resistant Integrase Mutants, Pommier, Biochemical and pharmacological analyses of HIV-1 integrase flexible loop mutants resistant to raltegravir, pp.1347-1366, 2008.

M. Métifiot, N. Vandegraaff, K. Maddali, A. Naumova, X. Zhang et al., Elvitegravir overcomes resistance to raltegravir induced by integrase mutation Y143, AIDS, vol.25, issue.9, pp.1175-1178, 2011.
DOI : 10.1097/QAD.0b013e3283473599

W. Gabryelski, C. Schleif, and . Blau, Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells, Science, vol.287, pp.646-650, 2000.

. Andreola, The HIV-1 integrase mutations Y143C/R are an alternative pathway for resistance to Raltegravir and impact the enzyme functions, PLoS ONE, vol.5, pp.10311-10327, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00522695

F. Saux and . Dabis, Virological and immunological response in HIV-1-infected patients with multiple treatment failures receiving raltegravir and optimized background therapy, ANRS CO3 Aquitaine Cohort, J. Antimicrob. Chemother, vol.6317, pp.1251-1255, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00372614

L. Vandekerckhove, G. Hare, A. M. Vos, R. F. Clayton, J. W. Thuring et al., Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir Unprocessed viral DNA could be the primary target of the HIV-1 integrase inhibitor raltegravir, Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome, pp.1349572-203, 2010.

J. Contreras-garcía, E. R. Johnson, S. Keinan, R. Chaudret, J. Piquemal et al., NCIPLOT: A Program for Plotting Noncovalent Interaction Regions, Journal of Chemical Theory and Computation, vol.7, issue.3, pp.625-632, 2011.
DOI : 10.1021/ct100641a

T. Heyduk and J. C. Lee, Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction., Proceedings of the National Academy of Sciences, vol.87, issue.5, pp.1744-1748, 1990.
DOI : 10.1073/pnas.87.5.1744

J. J. Hill and C. A. Royer, [19] Fluorescence approaches to study of protein-nucleic acid complexation, Methods Enzymol, vol.27827, pp.390-416, 1997.
DOI : 10.1016/S0076-6879(97)78021-2

L. Zargarian, M. S. Benleumi, J. Renisio, H. Merad, R. G. Maroun et al., Strategy to Discriminate between High and Low Affinity Bindings of Human Immunodeficiency Virus, Type 1 Integrase to Viral DNA, Journal of Biological Chemistry, vol.278, issue.22, pp.278-19966, 2003.
DOI : 10.1074/jbc.M211711200

URL : https://hal.archives-ouvertes.fr/hal-00284918

K. Hage, J. Piquemal, Z. Hobaika, R. G. Maroun, and N. Gresh, Substituent-modulated affinities of halobenzene derivatives to the HIV-1 integrase recognition site Analyses of the interaction energies by parallel quantum chemical and polarizable molecular mechanics Could the " Janus?like " properties of the halobenzene CX bond (X, Cl, Br) be leveraged to enhance molecular recognition?, J. Phys. Chem. A. J. Comput. Chem, vol.11830, pp.9772-9782, 2014.

Z. Hobaika, L. Zargarian, Y. Boulard, R. G. Maroun, O. Mauffret et al., Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase ??4 helix, Nucleic Acids Research, vol.37, issue.22, pp.7691-770031, 2009.
DOI : 10.1093/nar/gkp824

Z. Hobaika, L. Zargarian, R. Maroun, O. Mauffret, T. Burke-jr et al., HIV-1 Integrase and Virus and Cell DNAs: Complex Formation and Perturbation by Inhibitors of Integration, Neurochemical Research, vol.11, issue.6, pp.888-893, 2010.
DOI : 10.1007/s11064-009-0098-2

M. Métifiot, B. C. Johnson, E. Kiselev, L. Marler, X. Z. Zhao et al., Selectivity for strand-transfer over 3?-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme?DNA interactions in the active site Cherepanov, 3??Processing and strand transfer catalysed by retroviral integrase in crystallo, Nucleic Acids Res. EMBO J. FEBS Open Bio, vol.31, pp.3020-3028, 2012.

S. Bayandin, L. Litvak, G. A. Tarrago-litvak, R. L. Nevinsky, P. Lafemina et al., High affinity interaction of HIV?1 integrase with specific and non?specific single?stranded short oligonucleotides Substrate specificity of recombinant human immunodeficiency virus integrase protein Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions, FEBS lett. J. Virol. J. Virol. Cell. Proc. Natl. Acad. Sci. U.S.A. J. Virol, vol.455, issue.88, pp.154-158, 1990.