Skip to Main content Skip to Navigation
Journal articles

Evaluation Framework of Superpixel Methods with a Global Regularity Measure

Abstract : In the superpixel literature, the comparison of state-of-the-art methods can be biased by the non-robustness of some metrics to decomposition aspects, such as the superpixel scale. Moreover, most recent decomposition methods allow to set a shape regularity parameter, which can have a substantial impact on the measured performances. In this paper, we introduce an evaluation framework, that aims to unify the comparison process of superpixel methods. We investigate the limitations of existing metrics, and propose to evaluate each of the three core decomposition aspects: color homogeneity, respect of image objects and shape regularity. To measure the regularity aspect, we propose a new global regularity measure (GR), which addresses the non-robustness of state-of-the-art metrics. We evaluate recent superpixel methods with these criteria, at several superpixel scales and regularity levels. The proposed framework reduces the bias in the comparison process of state-of-the-art superpixel methods. Finally, we demonstrate that the proposed GR measure is correlated with the performances of various applications.
Complete list of metadata

Cited literature [56 references]  Display  Hide  Download
Contributor : Rémi Giraud <>
Submitted on : Friday, June 9, 2017 - 12:37:07 AM
Last modification on : Tuesday, December 8, 2020 - 9:55:24 AM
Long-term archiving on: : Sunday, September 10, 2017 - 12:22:19 PM


Files produced by the author(s)


  • HAL Id : hal-01519635, version 1



Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis. Evaluation Framework of Superpixel Methods with a Global Regularity Measure. Journal of Electronic Imaging, SPIE and IS&T, 2017, Special Section on Superpixels for Image Processing and Computer Vision. ⟨hal-01519635⟩



Record views


Files downloads