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Freezing Markov Chains

Florian BOUGUET Bertrand CLOEZ
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MISTEA, INRA, Montpellier SupAgro, Univ. Montpellier

Abstract:  In this work, we consider a finite-state inhomogeneous-time Markov
chain whose probabilities of transition from one state to another tend to decrease over
time. This can be seen as a cooling of the dynamics of an underlying Markov chain.
We are interested in the long time behavior of the empirical measure of this freezing
Markov chain. Some recent papers provide almost sure convergence and convergence
in distribution in the case of the freezing speed 1/n?, with different limits depending
on § < 1,0 =1 or > 1. Using stochastic approximation techniques, we generalize
these results for any freezing speed, and we obtain a better characterization of the
limit distribution as well as rates of convergence as well as functional convergence.
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1 Introduction

Let (in)n>1 be an inhomogeneous-time Markov chain with state space {1,...,D} with the following
transitions when i # j:

P(inJrl = Jlln = Z) = Qn<i?j)> Qn(i’j) :pn<Q(i>j) +Tn(i7j))a

where (pn)n>1 is a decreasing sequence converging toward some p € [0, 1], the remainders r, (4, j) tend
to 0 (fast enough) and ¢ is the discrete generator of some {1, ..., D}-valued ergodic Markov chain. This
model is related to the simulated annealing algorithm, and the sequence (p,,)n>1 can be interpreted as the
cooling scheme of an underlying Markov chain generated by ¢. If p < 1, since lim,,—, 4o g1 (2, 7) = pq(i, j),
the probability of (i, )n>1 to move decreases over time, from which the appellation freezing Markov chain.

The behavior of (i,),>1 is simple enough to understand, and depends on the summability of the
sequence (pn)n>1. The chain (i,),>1 shall converge in distribution to the unique invariant probability
v associated to ¢ if Y oo, p, = +00 (see Theorem 2.4 below). On the other hand, if Y7 | p, < 400, the
Markov chain shall freeze along the way, as a consequence of the Borel-Cantelli Lemma. Then, we shall
assume that Y 2 p, = 400, so that we can investigate the convergence of the empirical distribution

T _ 1w ’
Ty = ngzl Oiy, -

The problem of the convergence of this empirical measure can be traced back to the thesis of Dobrusin
[Dob53], and several questions are still open, as pointed out in the recent article [EV16]. Some results
can be obtained from the general theory developed in [SV05, Pel12], and [DS07, EV16] study the present
model. In particular, convergence results are only obtained for a freezing rate of the form p, = a/n?
(and r,(7,7) = 0). More precisely,

e if § < 1 then (z,),>1 converges to v in probability; see [DS07, Theorem 1.2].

o if § < 1/2, then (z,)n>1 converges to v a.s. This can be extended to 1/2 < 6 < 1 when the state
space contains only two points; see [DS07, Theorem 1.2] and [EV16, Corollary 2].

e if § < 1and D = 2, then, up to an appropriate scaling, the empirical measure (z,),>1 converges
in distribution to a Gaussian distribution; see [EV16, Theorem 2|.

e if § = 1 then (x,),>1 converges in distribution, and the moments of the limit probability are
explicit. If ¢ corresponds to the complete graph (see Section 4) then this limit probability is the
Dirichlet distribution. When D = 2, this covers classical distribution such as Beta, uniform, Arcsine
or Wigner distributions; see [DS07, Theorems 1.3 and 1.4] and [EV16, Theorem 1].

e when D = 2, some convergence results are established for (x,),>1 for general sequences (py,)n>1,
under technical conditions that we find hard to check in practice; see [EV16, Theorem 3].

We shall refer to the case 0 < 1 as standard, since it is related to classic laws of large numbers and
central limit theorems. This case was called subcritical in [EV16], in comparison with the critical case
0 = 1. Since we can slightly generalize this critical case here, the term non-standard will be preferred from
now on. In the present article, we generalize the aforementioned results by proving that, in the standard
case, if Yo" (pon?)~! < +oo then (x,),>1 converges to v a.s., and we also give weaker conditions for
convergence in probability; this is the purpose of Theorem 2.11. Under slightly stronger assumptions and
up to a rescaling, we obtain convergence of (z,),>1 to a Gaussian distribution with explicit variance in
Theorem 2.12. Finally, if p, ~ a/n, then (z,),>1 converges in distribution exponentially fast to a limit
probability (see Theorem 2.9). This distribution is characterized as the stationary measure of a piecewise-
deterministic Markov process (PDMP), possesses a density with respect to the Lebesgue measure and
satisfies a system of transport equations; see Propositions 3.1 and 3.4. Furthermore, Corollary 3.9 links
the standard and non-standard setting by providing a convergence of the rescaled stationary measure
of the PDMP to a Gaussian distribution as the switching accelerates. We also investigate the complete
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graph dynamics in Section 4 and are able to derive explicit results in Propositions 4.1 and 4.2. Most of
our convergence results are also provided with quantitative speeds and functional convergences.

In contrast with the Polya Urns model (see for instance [Gou97]), all these results of convergences in
distribution are not almost sure. However, note that, by letting p, = 1 for all n > 1, we can recover
classical limit theorems for homogeneous-time Markov chains (see [Jon04]). Furthermore, the remainder
term 7,(i,7) enables us to deal with different freezing schemes (see Remark 2.3). In particular, the
proofs in [DS07] and [EV16] are mainly based on the method of moments, which is why more stringent
assumptions are considered there. Our approach is completely different, and is based on the theory of
asymptotic pseudotrajectories detailed in [Ben99] and revisited in [BBC16].

Briefly, a sequence is an asymptotic pseudotrajectory of a flow if, for any given time window, the
sequence and the flow starting from the same point evolve close to each other (see for instance [BH96,
Ben99]). This definition can be formalized for dynamical systems and be extended to discrete sequences
of probabilities and continuous Markov semi-groups. This theory allows us to derive the behavior of
the sequence of empirical measures (z,),>1 from the one of auxiliary continuous-time Markov processes.
The interested reader may find illustrations of this phenomenon in [BBC16, Figures 3.1, 3.2 and 3.3],
see also Figure 5.1. In the present paper, depending on whether we work in a standard or non-standard
setting, these processes are either a diffusive process or a switching PDMP. The careful study of these
limit processes is of interest per se, and is done in Section 3. More precisely, Gaussian distributions
appear naturally since we deal with an Ornstein-Uhlenbeck process generated by

Lof(y)=—y- V) + Vi SPIVLy), (1.1)

where (1) is a D x D real-valued matrix such that
1 D D
T .
=00 = 7 D ovi | > a6, 5) (g = i) (hrg = hri) = p (v = Timi) (0 = Lizt) | (1.2)
i=1 j=1

with p and h respectively defined in Assumption 2.1, and in (2.6). On the contrary, we shall see that, in a
non-standard framework, the empirical measure is linked to a PDMP, called exponential zig-zag process,
generated by

Lyf(x,i) = (e; —x) Vaof(x,i) + > aq(i, j)[f(x,5) — f(x,i)]. (1.3)

J#i

These Markov processes shall be defined and studied more rigorously in Section 3. In particular, besides
some classic long-time properties (regularity, invariant measure, rate of convergence...), we prove in
Theorem 3.3 the convergence of the exponential zig-zag process to the Ornstein-Uhlenbeck process when
the frequency of jumps accelerates, i.e. when a — +o0.

The rest of this paper is organized as follows. In Section 2, we specifiy the notation and assumptions
mentioned earlier, that will be used in the whole paper. We also state convergence results for (x,)n>1,
which are Theorems 2.9, 2.11 and 2.12. We study the long-time behavior of the two auxiliary Markov
processes in Section 3 and investigate the case of the complete graph in Section 4, for which it is possible
to get explicit formulas. The paper is then concluded with the proofs of the main theorems in Section 5.
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2 Freezing Markov chains

2.1 Notation

We shall use the following notation throughout the paper:

e If d is a positive integer, a multi-index is a d-tuple N = (Ny,..., Ng) € ({0,1,...} U {+00})?; the
set of multl indices is endowed with the order N < N if, for all 1 < ¢ < d,N; < N;. We define
IN| = ZZ 1 N; and and we identify an integer N with the multi-index (N,..., N). Likewise, for

any x € RY, let |z| = Zle |;].
e For some multi-index N and an open set U C R? &N (U) is the set of functions f : U — R which

are N; times continuously differentiable in the direction i. For any f € € (U), we define

F =M o, 1N s = sup [N ().

reRd

When there is no ambiguity, we write €V instead of ¢V(U), and denote by € and €N the
respective sets of bounded ¢V functions and of compactly supported €~ functions.

e Let A be the simplex of R” defined by

D
A = {(xl,...,zp) eRP .z € [071}7Z;pi_1}7
i=1

and £ =A x{1,...,D}.

e We denote by .Z(X) the probability distribution of a random vector X, and we identify the measures
over {1,..., D} with the 1 x D real-valued matrices. Let L be the Lebesgue measure over RP.

e If y, v are probability measures and f is a function, we write p(f f f(@)p(dz). For a class of
functions .7, we define

dz(p,v) = sup lu(f) —v(f)l.

Note that, for every class of functions .# counsidered in this paper, convergence in dg implies (and
is often equivalent to) convergence in distribution (see [BBC16, Lemma 5.1]). In particular, let

Wi(p,v) = sup lw(f) —v(f)l, drv(p,v)= sup [u(f)—v(f)l
| (2)— F(y)|<|z—y] I flle<1

be respectively the Wasserstein distance and the total variation distance.

e For 0 € (0,+00)7, let 2(0) be Dirichlet distribution over R”, i.e. the probability distribution with
probability density function

o r(ze) ) Tttt
Hk 1 T0k) 123
For 61,605 > 0, let 5(61,602) be the Beta distribution over R, i.e. the probability distribution with
probability density function
L6y +62)

g LT 72) 00y gy .
1—\(91)1—\(02) ( ) 0<z<1

e Let 2 Ay :=min(x,y) and 2 V y := max(z,y) for any x,y € R.

o We write, for n > 1, u,, = O(v,,) if there exists some bounded sequence (hy,),>1 such that u,, = h,v,,.
Moreover, if lim,,— + o, by, = 0, then we write u,, = o(vy,).
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2.2 Assumptions and main results

Let D be a positive integer and (i, ),>1 be a {1,..., D}-valued inhomogeneous-time Markov chain such
that, Vi # j,

P(in—&-l = jlin = Z) = Qn(za.])
The following assumption, which will be in force in the rest of the paper, describes the behavior of the
transitions ¢, as time goes by.

Assumption 2.1 (Freezing speed). Assume that that the matriz Id 4+q is irreducible and, for n > 1 and
i F s

an (4, 7) = pn (q(i, §) + ali, 5)) (2.1)
where (p,) is a sequence decreasing to p € [0,1] such that Y > | p, = +00, and lim, 1 7,(4,7) = 0.
For i # j, assume q(i,7) > 0,q5,(4,5) > 0 and

(i) ==Y q(i.5), u(ii) == auli,j).

J#i J#i

Note that we do not require (py)n>1 to converge to 0. Of course, if p > 0, then the series > py
trivially diverges; as pointed out in the introduction, if this series converge then the problem is trivial. In
fact, if p, =1 and 7,(4,j) = 0 for any integers i, j, n, then the freezing Markov chain (i,),>1 is a classic
Markov chain. When p = 0, the dynamics of Assumption 2.1 corresponds to the lazier and lazier random
walk introduced in [BBC16].

Remark 2.2 (Irreducibility or indecomposability).  The irreducibility of the transition matrix Id +¢
associated to ¢ is a classic hypothesis when it comes to Markov chains, since otherwise we can split their
state space into different recurrent classes. However, the result of the present article can be extended to
indecomposable’ Markov chains, which is a weaker concept. For instance, the transition matrix

0 1 0
1 0 0
1/3 1/3 1/3

is indecomposable but not irreducible. Namely, Id +q is irreducible if it cannot be written as
A0 }

T _
P(M+@P_{B o

where A, A’ are square matrices and P is a permutation matrix. We could allow such a decomposition,
as long as B has a nonzero entry.

In any case, Id +¢q possesses a unique absorbing class of states on which it is irreducible. Using Perron-
Frobenius Theorem (see [Gan59, Theorem 2p.53]), the matrix Id +¢ possesses a unique invariant measure
vT, and the associated chain converges toward it under aperiodicity assumptions (see also Remark 3.3).
Note that aperiodicity hypotheses are not relevant for the freezing Markov chain whenever p < 1, since
the freezing scheme automatically provides aperiodicity to the Markov chain. &

Under Assumption 2.1, Id +¢ possesses a unique invariant distribution T, which writes T ¢q = 0; let
v € A be its associated vector.

Remark 2.3 (Interpretation of the term r,(4,5)). The remainder r,(i,7) in (2.1) can either model
small perturbations of the main freezing speed p,q(i,j), or a multiscale freezing scheme with p,, being
the slowest freezing speed. For instance, the case

—0 -0

—-n n ~
dn = n_(0+§) —n_(9+§) , 0,0>0

1The algebric term indecomposable also exists for matrices, and is sometimes mistaken for irreducibility. Throughout
this paper, a Markov chain (or its associated transistion matrix) is said indecomposable if it admits a unique recurrent class.
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is covered by Assumption 2.1, with

¢

The following result characterizes the long-time behavior of the inhomogeneous Markov chain (i )5,>1-

Theorem 2.4 (Convergence of the freezing Markov chain). Under Assumption 2.1, if either p < 1, or
p =1 and Id +q is aperiodic,
lim 4, =v' in distribution.

n—-+00
Now, let us define (ey,...,ep) the natural basis of RP and introduce two different scaling rates
1 /p
Tn = — Qp = 7”7 (22)
n Tn
and the associated rescaled vectors
n
Tn = Yn Z €ips Yn = an(wn - V)- (23)
k=1
It is clear that (2.3) writes
Tn+1
Tn4+1 = Lax Ty + Yn+1€ipys (2~4)

n

that the vector x,, belongs to the simplex A and that (z,,i,) € E = A x {1,...,D}. We highlight the
fact that, in general, the sequence (x,,),>1 is not a Markov chain by itself, but (2, in)n>1 is.

Remark 2.5 (Interpretation of A). The transpose z — x| is a natural bijection between A and the set
of probability measures over {1,..., D}. Then, the sequence (z,) ),>1 can be viewed as the sequence of
empirical measures of the Markov chain (%,,),>1. From that viewpoint, we highlight the fact that the Lt
norm over A can be interpreted (up to a multiplicative constant) as the total variation distance: indeed,

for any x,7 € A,
1 1 D D
‘.’E - £L'| - §dTV (‘T ) L ) - idTV <l§_1 xz(szv ;:1 x251> .

Remark 2.6 (Weighted means). Note that one could consider weighted means of the form
1 n

LTy = n
w
Zk:1 k=1

WEE€iy ,

for any sequence of positive weights (w,,)n>1, as in [BC15, Remark 1.1] or [BBC16, Section 3.1]. Then,
we define v, = Zzzl wg, and Theorem 2.11 below still holds with the bound

|z, —v| < Cexp (—UZ%> .

k=1
¢

Following [Ben99, BBC16], and given sequences (Vn)n>1, (€n)n>1, We define the following parameter
which rules the speed of convergence in the context of standard fluctuations:

. log(vn V €n)
Ay, €) = —limsup —=——. 2.5
(1) =~ limsup < (2:5)
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Finally, we need to introduce a fundamental tool in the study of the standard fluctuations: the matrix
h, which is solution of the multidimensional Poisson equation

Zq(z’,j)(hj —h;) =v —e;, or equivalently Zq(i,j)(h;w— —hii) =vi — Ly (2.6)
J#i i

for all 1 < 4,k < D, where we denoted by h; the i-th column vector of the matrix h. This solution is
classically defined by
“+o0
h; = —/ (eiT etld+q) —Z/T) dt.
0

With the help of Perron-Frobenius Theorem (see [Gan59, Theorem 2p.53|), it is easy to see that h is
well-defined.

Throughout the paper, we shall treat two different cases, which entail different limit behaviors for
the fluctuations of (z,)n>1 Or (Yn)n>1. Each of these cases corresponds to one of the two following
assumptions.

Assumption 2.7 (Non-standard behavior). Assume that

a
DPn ~ -

n—+oco n ’

Note that, under Assumption 2.7, the sequences (v,)n>1 and (p,)n>1 are equivalent up to a mul-
tiplicative constant and the scaling (a;,)n>1 is trivial, hence we are not interested in the behavior of

(yn)nzl'
Assumption 2.8 (Standard behavior). i) Assume that

=0.

. Tn
lim sup —
n—+oo Pn

it) Assume that

n T 1 R,
e T oY), e B
Pn n n n—=+00 \/PnYn

with Rn = sup, E];ﬁl I’I“n<Z,])|

Now, we have all the tools needed to study the behavior of the empirical measure (2, ),>1.

Theorem 2.9 (Non-standard fluctuations). Under Assumptions 2.1 and 2.7,

lim (2,,i,) = 7 in distribution,
n—-+oo

where 7 is characterized in Propositions 3.1 and 3.4.

Moreover, if there exist positive constants A > 1,0 <1 such that

A
n .7 ' < R
max(|ra (i.)]) < 75

then, denoting by p the spectral gap of Id +q, for any
0
U< —,

a+0(1+L)

there exist a class of functions .7 defined in (5.4) and a positive constant C such that

dg (L (xn,in),7) < Cn™".



Florian BOUGUET, Bertrand CLOEZ

It should be noted that our approach for the study of the long-time behavior of (., i, )n>0 also
provides functional convergence for some interpolated process (X, I;)¢>o defined in (5.3) (see Lemma 5.1,
from which Theorem 2.9 is a straightforward consequence). Moreover, note that the speed of convergence
provided by Theorem 2.9 writes, for any function f : A x {1,..., D} — R, two times differentiable in the
first variable, there exists a constant C'y such that

IE(f (20, )] — 7(f)] < Cyn "

Remark 2.10 (Is it possible to generalize Assumption 2.77). This remarks leans heavily on the proof
of Theorem 2.9 and may be omitted at first reading. It is interesting to wonder whether it is possible to
obtain non-standard fluctuations for a more general freezing speed (py,)n>1. To that end, let us try to
mimic the computations of the proof of Lemma 5.1 with (Z,,, i, ),>1 with

n
Tn = Tn § Ciks
k=1

for any vanishing sequences (v, )n>1 and (5 )n>1. Our method being based on asymptotic pseudotrajec-
tories, the limit of the rescaled process of (i, )n>1 belongs to a certain class of PDMPs which can be
attained if, and only if|

_ e
im 22 =¢y,  lim 22 =¢C,, lim (711“—1)2—03, (2.7)

n—-+oo ’yn n——+oo ’yn n—-+oo 'Vn ’yn

with C1,Co,C3 > 0. Without loss of generality, one can choose v, = 7, and Cy = C3 = 1. Then, the
third term of (2.7) entails v, = (n + o(1))~! as n — 400, which in turn implies p,, = Cin~! + o(n™1)
when injected in the first term of (2.7).

Also, note that assuming A < 1 or # > 1 in Theorem 2.9 would not provide better speeds of conver-
gence, since one would obtain a speed of the form

ON1

u < 1 .
Av1+9A1(1+a—p)

¢

Theorem 2.11 (Standard convergence of the empirical measure). Under Assumptions 2.1 and 2.8.1),

lim =z, = v in probability,
n——4oo

or equivalently in L'.
Moreover, if 220:1 V2pt < 400, then limy, 400 Tp, = V a.s.

Moreover, if £ = X(y,7v/p) A Xy, R) > 0, then, for any v < £ there exists a (random) constant C > 0
such that

|z, — v < — a.s.
n'U
Theorem 2.12 (Standard fluctuations). Under Assumptions 2.1 and 2.8, (yn)n>1 converges in distri-
bution to the Gaussian distribution A (0, E(p’T))

The precise proofs of the main results are deferred to Section 5. As pointed out in the introduction,
our proofs of Theorems 2.9 and 2.12 rely on comparing (zy),>1 and (y,)n>1 with auxiliary continuous-
time Markov processes, using the theory of asymptotic pseudotrajectories and the SDE method. Then,
these discrete Markov chains will inherit some properties of the Markov processes that we shall prove in
Section 3. In particular, the results we use provide functional convergence of the rescaled interpolating
processes to the auxiliary Markov processes (see [BBC16, Theorem 2.12] and [Duf96, Théoréme 4.11.4]).
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Remark 2.13 (Examples of freezing rates). For the sake of simplicity, consider r, (i, j) = 0 for all ¢, j, n.
Assumption 2.8 covers sequences (py,)n>1 of the form p,, = n=% for any 0 < 6 < 1, since 72p; ' = n?~2.
In this case, £ = A(n~1,n"1) =1-0>0.

But we can also consider more exotic freezing rates, for instance p,, = log(n)¢n~!, for some ¢ > 1.
Then, v2p,,;* = n~tlog(n)~¢. If ( > 1, then the series converges and £ = 1. Our results do not provide
almost sure convergence in the case ( = 1, however, but only convergence in probability.

It should be noted that assuming that (p,),>1 is decreasing, lim,, 4o p, = 0 and Zzo:l Pn = +00
do not imply in general that p,11 ~ p,. A slight modification of the proof shows that, if p,y; is not
equivalent to p,, we have to assume the existence of a sequence (3,),>1 such that

- pa [ Ba — a0 :
lim 1—,) — 1) =1, R = 40, lim Bpyn =-1
n—s+oo 7%5% (ﬂn—l ( ) 7;1 Pn n—-+oo

and such that the sequences (v232p;!)n>1 and (B,7n)n>1 are decreasing; then the conclusion of Theo-
rem 2.12 holds. &

3 The auxiliary Markov processes

In this section, we study the ergodicity of the processes arising as limits of the freezing Markov from
Section 2. We also study their invariant measure, and provide explicit formulas when it is possible.

3.1 The exponential zig-zag process

In this section, we investigate the asymptotic properties of the exponential zig-zag process, which arise
from the non-standard scaling of the Markov chain (i,,),>1. To this end, let (X;,I;);>0 be the strong
solution of the following SDE (see [IW89]), with values in E:

t D t
(Xt,It):(XO,Io)+/ (A(xr,lr)ﬂlr)dwz/ Br_ j(X,-,L,-)Ny_ ;(ds), (3.1)
0 =170

where the N ; are independent Poisson processes of intensity aq(i, j)1;; and

-1 0 --- 0 0
0 (0) .

A: 5 B’L,] : . (3.2)
a1 o
0O --- 0 0 0 -+ 0 i—j

Thus, the infinitesimal generator of this process is Lz defined in (1.3) (see e.g. [EK86, Dav93, Kolll]).
Actually, the exponential zig-zag process is a PDMP; the interested reader can consult [Dav93, BLBMZ15]
for a detailed construction of the process (X,I). Let us describe briefly its dynamics: setting Iy = i,
the process possesses a continuous component X which is exponentially attracted to the vector e;. The
discrete component I; is piecewise-constant, and jumps from i to j following the epochs of the processes
N, ;, which in turn leads the continuous component to be attracted to e; (see Figure 3.1 for sample paths
of the exponential zig-zag process, and Figure 4.2 for a typical path in the framework of Section 4.2).

The following result might be seen as a direct consequence of [BLBMZ12, Theorem 1.10] or [CH15,
Theorem 1.4], although these articles do not provide explicit rates of convergence, which are useful for
instance in the proof of Corollary 3.9.
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Figure 3.1: Sample paths on [0, 5] of the exponential zig-zag process for X = (1/3,1/3,1/3),q(i,5) =1
and a = 0.5,a = 2,a = 20 (from left to right).

Proposition 3.1 (Ergodicity). The exponential zig-zag process (X, I )i>0 admits a unique stationary
distribution 7. If p is the spectral gap of q, then for any for any v < ap(1+ap)~*, there exists a constant
C > 0 such that

A > 0, W((Xt7It),7T) < Ce_vt.

Moreover, if £ (Io) =v', then

Vtz(), W((Xt,]:t),ﬂ') SW((X0710)77T)6725.

Note that the speed of convergence provided in Proposition 3.1 can be improved when D = 2, since
we are able to use more refined couplings (see Proposition 4.5).

Proof of Proposition 3.1: The pattern of this proof follows [BLBMZ12]. Let (XuIt,Xt,it)tzo be

the coupling for which the discrete components I and I are equal forever once they are equal once. Let
t >0 and a € (0,1). Firstly, note that, if I,,, = I,,, then the processes always have common jumps and

Xy — Xy| = |Xa, — Xao,|et <267, (3.3)
From the Perron-Frobenius theorem (see [Gan59, SC97]), for any ¢ > 0, there exists C' > 0 such that
dry (I, I,) < Ce (@)t
Then there exists a coupling of the random variables I,; and Tat such that
P(Iae # Ioy) < Ce(ap=9)at, (3.4)
Now, combining (3.3) and (3.4),

E[I(Xe, 1) - (X I)I| <E [1(X0, 1) = (Ko, T)|

Iat 7é iat] P(Iat 7é iat)

+E[1(X0, 1) = (X, 1) | Tat # Tae| PLas # o)
< WP(Lyp # Toy) + 2e -t
< 25 e—(ap—a)at +2 e—(l—a)t )

One can optimize this speed of convergence by taking o = (1 +ap — )~ !, and get

W ((Xt, L), (Xt,it)) < Ce v (3.5)

10
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with C' = 2C +2 and v = (ap—e)(14+ap—e)~*. Then, (L((X;,1;)) is a Cauchy sequence and converges
to a (stationary) distribution 7. Letting .Z(Xo,Ip) = 7 in (3.5), achieves the proof in the general case.

Now, if Z(Iy) = v7, then Z(Iy) = £(Iy); we can let Iy = I, and then it suffices to use (3.3) with
a=0. O

If Assumption 2.1 is in force, there exists a unique invariant measure 7, which satisfies

/ Lof(a,i)r(d, di) = 0,
E

for any function f smooth enough. Now, let us establish the absolute continuity of this invariant distri-
bution with respect to the Lebesgue measure L.

Lemma 3.2 (Absolute continuity of the exponential zig-zag process). Let K C A be a compact set.
There exist constants to,co > 0 and a neighborhood V' of K such that, for any (x,i) € E and for all
t > to,

P(X; € I = j|Xo = 2,Ip = i) > c)L(- NV (y)). (3.6)

Remark 3.3 (When Id +¢ is only indecomposable).  This remark echoes Remark 2.2 and describes
the behavior of the Markov chain (zy,i,)n>1 when Id +¢ is reducible but indecomposable. In that
case, Proposition 3.1 holds as well. However, Id +q possesses a unique recurrent class which is strictly
contained in {1,..., D}, the vector v possesses at least one zero and belongs to the frontier of the simplex
A, and W(A) = 0. It is then impossible to obtain an equivalent to Proposition 3.1 with a convergence
in total variation; when Id +¢ is irreducible, this is possible using techniques inspired from [BMP*15,
Proposition 2.5].

If Id +q is indecomposable, one can obtain equivalents of Lemma 3.2 and Proposition 3.4 below by
replacing the Lebesgue measure L. on R” by the Lebesgue measure on the linear subspace spanned by
the recurrent class of Id +q. O

Proof of Lemma 3.2: The proof is mainly based on Hérmander-type conditions for switching dynam-
ical systems obtained in [BH12, BLBMZ15|. Using the notation of [BLBMZ15|, let F*: z + e¢; — x and
then, if D > 3,

Vo € A, Go(z) = Vect{F'(x) — Fi(x) :i # j} = Vect{e; —e; :i # j} = RP,

where Vect A denotes the vector space spanned by A C RP. If D = 2, then G; (x) = R?. As a consequence,
the strong bracket condition of [BLBMZ15, Definition 4.3] is satisfied. In particular, using [BLBMZ15,
Theorems 4.2 and 4.4], we have that, for every z € A, y € A, there exist to(x), co(z) > 0 and open sets
Uo(z),V(z,y), such that for all g € Up(x),4,j € {1,...,D},AC A and t > to(z),

P(X; € A1 = j|Xo = 20,10 = @) > co(x)L(ANV(z,y)).

Now, A = UzeaUp(z) and is compact, so there exist z1, ..., x, such that A = U?_,Up(z) . In particular,
setting V(y) = UR_, V(zk,y), co = minj<g<n co(zk), to = maxi<k<n to(zx), we have, for all zy € A,i,j €
{1,,D}7Ag A and t > tg,

P(Xt € A,It == ]|X0 == IQ,IO = Z) Z C()L(A N V(y)),

Once again, K is compact so we can extract a finite family from the open sets (V(y))yex. Using the
Markov property, this holds for every t > ¢, which entails (3.6). O

Proposition 3.4 (System of transport equations for 7). The distribution 7 introduced in Proposition 3.1
admits the following decomposition:

D
T = Z v ® 0, mi(dr) = ¢(x,i)dr. (3.7
i=1

11



Florian BOUGUET, Bertrand CLOEZ

where the function ¢ satisfies, for any (x,i) € E,

D D

(D - 1)‘)0(3:7@) + Z'xkﬁk@(maz) 1410 Z, Z +

) = 0. (3.8)

Y aq
v;
I

Once we will have proved that 7 admits the decomposition (3.7), the next step is the characterization
of ¢. Indeed, since it satisfies

D
Z ui/ Lzf(x,i)o(x,i)dx =0, (3.9)
— N
for every smooth enough function f, all we have to do is compute the adjoint operator of Lz. For general
switching model, it would not possible to characterize ¢ as a solution of a simple system of PDEs like
(3.8). However, the present form of the flow enables us to derive a simple expression for the adjoint

operator of Lz. Before turning to the proof of Proposition 3.4, let us present the following formula of
integration by parts over the simplex A.

Lemma 3.5 (Integration by parts over A). For all f,g € €} (A), and k,l € {1,..., D}, we have

/ 9(2) (O — B1) f (x)de = — / (O — 0)g(x)f (z)dz.
yAN A

Proof of Lemma 3.5: Fix ! =1 and let A; = {:1:2, ...,xp €[0,1]: Zing z; < 1}. Then,
D D
/ 9(2)Or f(z)dzy ... dxp = / g (1 — in,xg, ) O f (1 — in7x2, ) dx
A ! i=2 i=2
D D
= / [8}c (g (1 — in,xg,...> f <1 — Zl’i,l’g,...>>
! =2 i=2
D D D
+ 619 (1 - Liy L, > f (1 - Zl‘i,$27 > + g (1 - le?i,lig, > 81f <1 - ZIZ‘,IQ, )
i=2 i=2 i=2
D
—0kg (1 — in7x27 ) f <1 — in,xg, )1 dry...dxzp.
i=2

=2

s [0

Now, as ¢g(0,z2,...) = f(0,z2,...) = 0 and 9x1 = 0, use a (classic) multidimensional integration by
parts to establish that

D D
/ Ok <g <1 — Zwi,xg, ) f <1 — in,l‘g, )) dry...dzp =0,
S i=2 i=2

which entails Lemma 3.5. O

Proof of Proposition 3.4: Integrating (3.6) with respect to the unique invariant measure 7, we obtain
that 7 admits an absolutely continuous part (note that uniqueness comes from Proposition 3.1). Since
7 cannot have an absolutely continuous part and a singular one (see [BH12, Theorem 6]|), = admits a
density with respect to the Lebesgue measure, which entails (3.7).

Now, let us characterize the function ¢. We have

D
I/i/ (—xk + iz )p(x,0) 0k f (x, i)dx
i k=1 AN
D D
= vi | app(z, )0 f(z,i)de + 14 x,1)0; f(x,i)dx
;(;/AW o0t @i)da + v [ ol i)ouf( >>

12
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and, using Lemma 3.5, for any 1 <i < D,
D
> / el )00 f (@, i)dn + [ pla )9S (@ )da

= 72/ zrpp(x,1)0k f(x,i)dx — /ASMP(OS 1)0; f (x, z)dw+/ o(x,1)0; f(x,1)dzx

k#i

= Z [/ O (zrp(,1)] f (2, i)dr — /Axks@(x )0; f(x,i)dx —/ 0; (xpp(,1)) f(x, z)dm)

k#i
—/ xi@(x,i)aif(x,i)da:—i—/ o(x,1)0; f(x,1)dzx
A A
_Z{/kakapxz xzdw—/a (xpe(x, 1)) f(xz)dx}

k#1

—Z/@k xpo(x, 1)) fla,i)de — 1—901/81903:2 (x,i)dx.

k#1

Hence, (3.9) writes

D D
v . . 7
Z/ v f(x, 1) Z@k zpe(x, 1)) — (1 — z;)0p(x, 1) + V—Z )72(](1,])9&(:&1) dx = 0.
k#i j=1 j=1
It follows that ¢ is the solution of (3.8). O

3.2 The Ornstein-Uhlenbeck process

In this short section, we recall a classic property of multidimensional Ornstein-Uhlenbeck processes, which
is useful to characterize the behavior of (y,)n>1 in a standard setting. Thus, we define (Y;);>0 as the
strong solution of the following SDE, with values in RP:

t t
Y: =Y, _/ Y, ds+ \/5/ (=PI 2qw,, (3.10)
0 0

where W is a standard D-dimensional Brownian motion and (X 7))1/2 is the square root of the positive-
definite symmetric matrix X®1) ie. (Z®1)/2((ZP1)/2)T = 5T The process Y is a classic
Ornstein-Uhlenbeck process with infinitesimal generator Lo defined in (1.1). Such processes have already
been thoroughly studied, so we present only the following proposition, which quantifies the speed of
convergence of Y to its equilibrium.

Proposition 3.6 (Ergodicity of the Ornstein-Uhlenbeck process). The Markov process (Y)i>o generated
by Lo in (1.1), with values in R, admits a unique stationary distribution A (0, Z(p’T)) .

Moreover,

W (YWV (0, 2<P7T>)) — W(Yo,m)e .

Proof of Proposition 3.6: First, since

T (p,Y)\—1
N (0, E(p’T)) (dz) = Cexp (36(22)96) dz,

a straightforward integration by parts shows that, for any f € €2, A (0, Z(p’r)) (Lof) = 0 so that
A (0,2 1) is an invariant measure for the Ornstein-Uhlenbeck process Y.

13
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It is well-known and easy to check that (Y);>o writes
¢
Y; =Yoe ! +\@(2<va>)1/2/ e~ (=9) qw,
0

where W is a standard Brownian motion. Consequently, if we consider Y another Ornstein-Uhlenbeck
process generated by Lo and driven by the (same) Brownian motion W,

E [|Yt—3?t|] =E [\YO—?OQ et (3.11)
Taking the infimum over all the couplings gives a contraction in Wasserstein distance. Now, if & ({/0) =
N (O, E(”*T)) and (Yo, Yo) is the optimal coupling between #(Yy) and A" (O7 Z(T”T)) with respect to
W, then (3.11) writes
W (Yt7JV (0, 2<va>)) —W (YO,/ (0, z@vT))) et

which entails the uniqueness of the invariant probability distribution as well as the exponential ergodicity
of the process. O

3.3 Acceleration of the jumps

The current section links the Sections 3.1 and 3.2 in the following sense:

Slow freezing jExponential zig-zag process

( 'L (X, It) >0

Markov chai ?
ariov chail - Acceleration of the jumps

(in)nz 1 :
-
L jOrnstein—Uhlenbeck process
Fast freezing VL (Yi)i>o

Indeed, we prove in Theorem 3.7 the convergence of the (rescaled) exponential zig-zag process to a
diffusive process as the jump rates go to infinity. Such results are fairly standard and are already known
in the cases of (linear) zig-zag processes (see [FGM12, BD16]) or of particle transport processes (see
[CKO06]). Heuristically, since there are more frequent jumps, the process tends to concentrate around its
mean v, and the effect of the discrete component fades away. This phenomenon can be seen on Figure 3.1.
We shall end this section with Corollary 3.9, which provides the convergence of the stationary distribution
of the exponential zig-zag process toward a Gaussian distribution.

To this end, let (an)n>1 be a sequence of positive numbers such that a,, — +o00 as n — 400 and, for

any integer n, let (Xin), I,En))tzo be a Markov process with values in E generated by

L) f(a,i) = (es —2) - Vo f (,8) + an Y q(i, §)[f (2, 5) = f(,4)].
J#i

We define an) = /an(X™ — ) and denote by Yt(n) (k) and Xi") (k) the respective k™ component of
Y™ and X{™
¢ ¢

14
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Theorem 3.7 (Convergence of the processes). If (Y(()"))nzl converges in distribution to a probability
distribution u, then the sequence of processes (Y(”))nzl converges in distribution to the diffusive Markov
process generated by

Lof(y) =~y -Vfy) + Vi TOVVf(y)
with initial condition p.

Proof of Theorem 3.7: We shall use a diffusion approximation and follow the proof of [FGM12,
Proposition 1.1]. For now, we drop the superscript (n), and let, for any 1 < k,l < D,

o (r,1) = Van (g —vg) +

1
—hyg 4, r,1) = xT,1 ,1).
\/@ k, djk,l( ) @k( )@l( )
Then,

Log(x,1) = v/an (Vg — x1),
LYpa(w,i) = an (Lizk — zk)p1(2,7) + (Lizt — 20)pr (2, 1))

+an (r —vi)(v — Licy) + (1 — ) (v, — L)) + ZQ(i,j) (hijhij — hiihai) -
i

Then, by Dynkin’s formula, for fixed n, the processes (M;(k));>0 and (N;(k,1));>0 are local martingales
with respect to the filtration generated by (X, 1(®)), where

M) = Yih) - v [ (o — X, (R))ds + =t

1
Ni(k, 1) =Y (k)Y (1) + Y(k)hiy, + Y (Dhe, + CTh/.c,Ithz,It
t
- / [=2Y(DYs(k) + hix, (L= — Xs (D) + hux, (Lgr,=ky — Xs(k))

0
+ q(Xs, 5) (hijhi; — hip hut,) ] ds.
AL,

Remark that, for any 1 <i < D, if o,1(i) = Z?:l q(i,5) (P — i) (hej — Pgy),

D
q(i, ) (hkjhaj — hi,ihui) = ZQ(i,j) (Pug = hai) (g = hiei) + hei (Ve — Lizk) + hii (10— Lizy)

j=1 j=1
=0,1(0) + hys (Ve — Lizi) + hes (1 — 1i=y)

Then, denoting by Z4(k) = fg Y (k)ds,

t t
1
Nt(k,l) = Yt(k)Yt(l) + 2/ YS(]C)YS(Z)(ZS — / O'k’l(IS)dS + ;hk,IthlaIt
0 0 n

b o, (Yol + ZulD) + ——

T \/@hl,h (Yi(k) + Zyi(K)) ,

and

MRV = Nk, + Yo Z(0) + Yel0Zb) + Ze W0 2 [ Y0¥t + [ onattyis

1 t t
+ hix, Zo(1) + h tZk—/h SYSlds—/h,sYskds>.
\@(m 0+ s 2e0) — [ Yeds— [ i Y
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By integration by parts,

nwamzéEwwmw—AEwnumkﬁfmww

1 t
hie1.Ys(l)ds — hg1,Zs(1) ),
o= ([ o Xaas - ma )

hence

Awmmmzm%w+Azﬂwmm+AZmew+Aame.

Finally, for any 1 < k,I < D, the processes M) (k) — B (k) and M (k)M ™) (1) — A" (k,1) are local
martingales, with

t
(n) _ n (n) n
AP = [ o B - AWMHJHM
Note that I(™) is a Markov process on its own, generated by
£V 16) = an Y a6, IFG) — FG).
j#i

In other words, for any ¢ > 0, we can write Ign)

generated by

=1, a.s., for some pure-jump Markov process (I;);>0

Lif(i) =Y q(i, )IFG) - FG))-
J#i
Using the ergodicity of (I;);>o together with lim,,_, . a,, = +00, we have

t

1 ant
lim A( (k,1) = lim Uk-l( ans)dS— lim 7/ O'kl du—tZVlakl —tl/(O'k-J).
0

n—-+oo n—-+oo 0 n——+oo Ay

Thus, the processes Y™ (k), B (k), A (k,1) satisfy the assumptions of [EK86, Chapter 7, Theo-
rem 4.1], which entails Theorem 3.7. O

Remark 3.8 (Heuristics for a direct Taylor expansion of the generator). As for many limit theorems
for Markov processes, one would like to predict the convergence of the exponential zig-zag process to
the Ornstein-Uhlenbeck diffusion from a Taylor expansion of the generator. Let us describe here a quick
heuristic argument based on [CKO06], which justifies the particular choice of functions ¢y in the proof of
Theorem 3.7. For the sake of simplicitylet us work in the setting of Section 4.2, that is the generator of
(X4, It)i>0 is of the form

,sz($7i) = gi(x)axf(xﬂ;) + aeSfi[f(xv?’ - Z) - f(mvl)]

where g; : & — (L{;=1} — ). For some smooth function f: R?” — R, we have Lz f(z,i) = g;(x) - Vo f(z)
which cannot be rescaled to converge to some diffusive operator. We need an approximation f, of f in a
sense that lim,_, 1 fo = f and Lz f, has the form of a second order operator. Then, let

fa:(z,9) = f(z) +a " h(x,i) - Vuf(x)

where h(z, 1) is the solution of the multidimensional Poisson equation associated to the transitions of the
flows

> ali )iz, j) — hw,i)] = 0s—i[h(x,3 — i) ZV]gJ (2) = v = L=y

J#i
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Then, )
Lrfalw,i) = ~gi(x) - Valh Vo f)(2,0) + Vo f(a Zv]g]

Here, Zj v;gj(x) — gi(w) = v1 — 1 ;—1y does not depend on =, neither does the function h, which is thus
defined by (2.6). Furthermore, h(z,i) = (61 + 02) " 1;-1. Moreover lim, o0 ¢;(v + y/v/a) = €; — v, s0
lim, 400 L7 fa(2,7) = Lo f(z) up to renormalization. &

From Proposition 3.1, for any fixed n > 1, the process (XE”),I@)QO admits and converges to a
unique invariant distribution 7("), characterized in (3.7) as

D
W =3 wir o, w"(de) = o™ (v, i)da.

Let 7™ be the first margin of the invariant measure of the Markov process (Y,E”),Ign))

probability distribution over R? defined by

7 Y ;
(dy) = Z (M + v, z) dy.

Corollary 3.9 (Convergence of the stationary distributions). The sequence of probability measures
(7)) >1 converges to N (0,2(071)).

t>0, i.e. the

Proof of Corollary 3.9: Let n > 1,t >0 and
F={fet®R") : |flo <LIf(z)— fW)| < |z —yl}.

Up to a constant, dg is the Fortet-Mourier distance and metrizes the weak convergence. Fix ¢t > 0 and
let X(()n) = v and ,,?(Ién)) =", From Theorem 3.7,
: (n) ) _
nEI-Ir—loo dg (Yt ,Yt 0,

where Y is an Ornstein-Uhlenbeck process with generator Lo and initial condition 0. Using the definition
of d# and Proposition 3.1,

dz (Y, 7)< (v 1), 7)) < W (89 @w,m ) et = W (3,7 ) et
Let us check that the term W (50, 7’r(”)) is uniformly bounded. To that end, let
2
F(2,i) = T3+ —hg iy 4 20Tk,
an

so that 5
ﬁ(n)f(n) (.’L‘,Z) = —2.’)3‘% + — (]l{i:k} — .Z’k> hi,i + 2Vk]l{i:k}-
an,

Since (™) (E(”)f(")) =0,

1
/ 220 (da, di) — v} = (h;c kVk —/ zphg ™ (d;v,di)) .
E Gn E

Hence, with C' = ZkD_l i kv — ming j h; j, and since [, ™ (da, di) = vy,

/ |z — v| 27 (dz, di) Z/ z — ve)2r ™ (dx, di) Z/ — vk + V) 7 (dx, di)
D 1
— 2 (n) _ _
_Z/ (dz, di) p; (Z Rk Vi /mkhk € (dx dz))
k=1 k=1
D

n

1 C
San<z kak_mlnhzy> Saf
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By Holder’s inequality,

W (50,7?(")) = / lylx ™ (dy) = / Va|z — v|x™ (da, di) < VC.
R E
Consequently to Proposition 3.6,

ag (7,0 (0,500)) < ds (2, ¥() +ds (Y0, ¥0) +dz (Yo, (0,500))

<o/Cet +dg (Yt("),Yt> .

Then,
timsupds (7,4 (0,20D)) < 2v/Ce,

t——+o0

which goes to 0 as t — 400. O

4 Complete graph

In this section, we consider a particular case of freezing Markov chain, where all the states are connected,
and the jump rate to a state does not depend on the position of the chain. This example of Markov
chain has already been studied in the literature, for instance in [DS07]. Section 4.1 deals with the general
D-dimensional case, for which most of the results of Section 3 can be written explicitly, notably the
invariant measure of the exponential zig-zag process, which is a mixture of Dirichlet distributions (see
Figure 4.1). Section 4.2 studies more deeply the case D = 2, where we can refine the speed of convergence
provided in Proposition 3.1.

4.1 General case

Throughout this section, following [DS07|, we assume that there exists a positive vector 6 € (0, 4+o00)?
such that, for any 1 <i,j < D,

D
Q(Zvj) = ej - |0|]li:j7 |0‘ = Zeﬁ (41)
j=1

and we will recover [DS07, Theorem 1.4]. If D = 2, let us highlight that an irreducible matrix Id +¢
automatically satisfies (4.1) (if Id +¢ is indecomposable then this is true as soon as ¢(1,2)g(2,1) # 0).

\

€3 €3 €3

\

€1 €2 €1 €2 €1 €2

Figure 4.1: Probability density functions of m = 2(2,2,5),m = 2(1,3,5), 73 = 2(1,2,6), for
01 =1,0,b =205 =5.
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Proposition 4.1 (Limit distribution for the complete graph in the non-standard setting). Under As-
sumptions 2.1 and 2.7, and if q satisfies (4.1), then v; = 6;|0|~! and

D
ngr}rloo(xn, in) = Z; v; P (ab + ;) ® 0; in distribution.
In particular,

lim x, = 2(ab) in distribution,  lim i, = v in distribution.
n—-+oo n—+oo

Proof of Proposition 4.1: If ¢ satisfies (4.1), it is straightforward that its invariant distribution v"

is given by v; = 6;]0| ™! for any 1 <14 < D. The convergence of (i, ),>1 to vT and of (Zpyin)n>1 tO SOmMeE
distribution 7 are direct corollaries of Theorems 2.4 and 2.9. Moreover, Proposition 3.4 holds, hence 7
satisfies (3.7) and it is clear that

L r(lo] +1) e _raen 2
QO(.T,Z) = F(ez + 1) Hﬁélr H H] 1F(9 ) H

J#i J#i

is the unique (up to a multiplicative constant) solution of (3.8), which entails that
D
™= Z v; P (ab + ;) ® 0;.
Finally, if £ (X, ) = 7, it is clear that .Z(I) = v" and that
0 af;—
ZVLQO x,1) & 2%y = 2(6)(dx).

Hj:l F(ej) e !

O

In the framework of (4.1), it is also possible to obtain explicitly the solution of the Poisson equation
related to ¢ as well as the covariance matrix of the limit distribution in the standard setting. This is
the purpose of the following result, whose proof is straightforward using Theorem 2.12 together with the
expressions (1.2) and (2.6).

Proposition 4.2 (Limit distribution for the complete graph in the standard setting). Under Assump-
tions 2.1 and 2.8, and if q satisfies (4.1), then v = |0]720 and h; = |0|~te; and

if k#1
lim y, =4 (0, E(p’Y)) in distribution, with E,(Cpl"r) = { 2,1+T Vvt Zf 7
WU ’ 2B - ) k=]

Finally, let us emphasize the fact that Corollary 3.9 provides an interesting convergence of rescaled
Dirichlet distributions, when considered in the particular case of the complete graph.

Corollary 4.3 (Convergence of the rescaled Dirichlet distribution to a Gaussian law). For any vector
0 € (0,+00)P, if (Xp)n>1 is a sequence of independent random variables such that £(X,) = Z(an0),
then

lim /a, (X, —v) =4 (0,diag(v) — w/T) in distribution.

n—-+oo

4.2 The turnover algorithm

In this subsection, we consider the turnover algorithm introduced in [EV16]. This algorithm studies
empirical frequency of heads when a coin is turned over with a certain probability, instead of being tossed
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as usual. The authors provide various convergences in distribution for this proportion, depending on
the asymptotic behavior of the turnover probability, which corresponds to (p,)n>1 in the present paper.
However, this turnover algorithm can be seen as a particular case of freezing Markov chain, and can then
be written as the stochastic algorithm defined in (2.4), in the special case D = 2. Since 2, (1) = 1—2,(2),
there is only one relevant variable in this section, which belongs to [0, 1]:

Ty = (1) = 5 Z 1g,=13- (4.2)
k=1

Note that we are in the framework of Section 4.1, with 61 = ¢(2,1) and 62 = ¢(1,2), and that
Propositions 4.1 and 4.2 hold. In particular, we have v; = 6;(6; + 03)~!. Then, for any y € R and
(x,7) € ]0,1] x {1, 2}, the infinitesimal generators defined in (1.1) and (1.3) write

—-Pp

Lof(y) = —uf' () + (1= )1 (9) (13)
and
£2f(2.1) = (Lggmy — 2)0u(2,1) + B[ (2,3 — ) = F(,1) (14)

Remark 4.4 (Comparison with [EV16]). In the present paper, we recover [EV16, Theorems 1 and 2]
as direct consequences of Theorems 2.9 and 2.12. The aforementioned results are extended by allowing
q(1,2) # ¢(2,1), but mostly by obtaining results for general sequences (p,)n>1 while [EV16] deals only
with p,, = an~? for positive constants a and 6. It should be noted that, in order to perfectly mimic the
algorithm of the aforementioned article, one should consider the chain z} = v, >, _; (]l{ikzl} — ]l{ik:2})7
which evolves in [—1, 1]. The behavior of this sequence being completely similar to the one we are studying,
we chose to work with (4.2) for the sake of consistence.

However, the reader should notice that the invariant measure of the process generated by (4.3) is a

)

Gaussian distribution with variance ng iT . In the particular case where p = 0 and 61 = 65, this variance

writes
o1 _ 1
1.1 2(1+17)’
which is, at first glance, different from the variance provided in [EV16], which is (under our notation)
2 1
a?(14+71)"

The factor a? comes from the fact that [EV16] studies the behavior of a=1y,. The factor 2 comes from
the choice of normalization mentioned earlier, since z,, € [0,1] and z}, € [-1,1]. &

Whenever D = 2, it is easier to visualize the dynamics of (X, I) (see Figure 4.2), and we can improve
the results of Proposition 3.1 concerning the speed of convergence of the exponential zig-zag process to
its stationary measure .

Proposition 4.5 (Ergodicity when D = 2). The Markov process (X, 1;)i>0 generated by Lz in (4.4),
with values in [0,1] x {1,2}, admits a unique stationary distribution
01
01 + 62

02
01 + 6,

B(aby +1,a02) ® 61 + B(aby, a0 + 1) @ ds.

m =

Moreover, let v = a(01 V 03), then

(2 + ‘ffv\) em (It p £ 1
W((Xtvlt)vﬂ-) < (2+t) e—t lfU -1
W((Xo,To),m) e~ if Z(Lo) = 5:%;01 + 5,%5; 02
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Iy =2 Iy =1 Iy =2

Figure 4.2: Typical path of the exponential zig-zag process when D = 2.

Since the inter-jump times of the exponential zig-zag process are spread-out, it is also possible to show
convergence in total variation with a method similar to [BMP™15, Proposition 2.5]. Note that, following
Proposition 4.1, the limit distribution of (X;);>¢ is the first margin of , namely S(af1, afs).

Proof of Proposition 4.5: Without loss of generality, let us assume that 6; > 65, that is v = a#b;.
Using Proposition 4.1, it is clear that 7 is the limit distribution of (X, I). Let us turn to the quantification
of the ergodicity of the process. Since the flow is exponentially contracting at rate 1, one can expect the
Wasserstein distance of the spatial component X to decrease exponentially. The only issue is to bring I

to its stationary measure first. So, consider the Markov coupling ((X7 I), ()~(,~)> of Lz on E x E, which

evolves independently if I # f, and else follows the same flow with common jumps. We set Ty = 0 and
denote by T, the epoch of its n* jump. If Iy # I, the first jump is not common a.s., but in any case,
since D =2, I, =1Ip, a.s. and Z(T1) = &(v). Consequently,

E[|(X0 1) = (X )l = B[[X0 - Xil| + BT, £ 1))

t
< [E[x -
0

t
<2e " +/ E [|Xs - Xé@ e =9 eV ds
0

T = s} ve s ds + (E [|Xt ~X |7 > t} +1) P(Ty > t)

t
< 2e7Yt —|—ve_t/ e1=)s gg
0

v ot v —t —vt
S |:(2+1_v)e —1_ve :| ﬂ{v¢1}+(2+vt)e 1{1}:1}

2v
: (2 = v|> e UMM My + 2+ ) e Lpmy.

Note that if . Z(Iy) = .Z(Io), let Iy = Iy, so that the coupling ((X7 I), ()~(,~)) always has common jumps

and

X, — X¢| = |Xo — Xole ™" as.

Letting (X, )NCO) be the optimal Wasserstein coupling entails Wasserstein contraction. The results above
hold for any initial conditions (Xg,Iy). Then, let £ (Xp,Iy) = 7 to achieve the proof; in particular,

— T _ %) (%
.,S/ﬂ(]:o) =V = 01_,’}92 61 + m(& D
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5 Proofs

In this section, we provide the proofs of the main results of this paper that were stated throughout
Section 2.

Proof of Theorem 2.4: Under Assumption 2.1, let us first assume that p > 0. The matrix (Id +¢) is
irreducible, and so is (Id +pq). Moreover, v is also the invariant measure of pq, and Perron-Frobenius
Theorem entails that there exist C' > 0 and p € (0,1) such that for every n > 1 and i € {1,..., D},

drv (6;(Id+pg)",v") < Cp™.

Now, let us prove that (i,)n>1 is an asymptotic pseudotrajectory of the dynamical system induced by
Id +pq. The limit set of such a system being contained in every global attractor (see [Ben99, Theorems 6.9
and 6.10]), we have

drv (8;, Id +pq),int1) = drv (65, Id +pq), 6, Id +¢x))

D
< lpn =2l + D [ralin, D < lpn =l + Y [ralis )], (5.1)
J#in ij=1
and the right-hand side of (5.1) converges to 0, which ends the proof.
The case p = 0 is a mere application of [BBC16, Proposition 3.13]. O

5.1 Asymptotic pseudotrajectories in the non-standard setting

In this section, we prove Theorem 2.9 using results from [BBC16], based on the theory of asymptotic
pseudotrajectories for inhomogeneous-time Markov chains. Indeed, with the convention 22:1 =0, let

n
Ty = Z’yk, m(t) = sup{k > 0: 7 <t}, (5.2)
k=1
and define the piecewise-constant processes

oo o0
Xi = E Tplr, <t<rnyy L= E inlr, <t<ryy- (5.3)
n=1

n=1

We shall show that, as ¢ — 400, the process (X¢, It)¢>0 converges in a way (see Figure 5.1) to the
exponential zig-zag process (X, I;);>o solution of (3.1), that we already studied in Section 3.1. To that
end, let (P;);>o be the Markov semigroup of (X,I), N7 = (2,...,2,0) and

Ny
F =S fe€D(Lz) NG : Lof € D(Lz), 1Lz flloo + 1L2L2 oo + D _IF P <10 (5.4)

§=0
Note that convergence with respect to dg implies convergence in distribution (see [BBC16, Lemma 5.1]).

Lemma 5.1 (Asymptotic pseudotrajectory for non-standard fluctuations). Under the assumptions of
Theorem 2.9, the sequence of probability distributions (pu;)i>0 is an asymptotic pseudotrajectory of (Pyf)i>o0
with respect to dg.

Moreover, if there exist positive constants A > 1,0 <1 such that

A
n .7 . < R
max(lra(i ) <
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Figure 5.1: Sample path of the process (X;);>0 in the setting of Section 4.2 for a =1, ¢(1,2) = % and

q(2,1) = 3.

then, for any v < ap(1 + ap)~*, there exists a positive constant C such that

dzry (L (X, 1), m) < Ce . (5.5)

Moreover, the sequence of processes ((Xnit, Inyt)i>0),>, converges in distribution, as t — +oo0,
toward (X7,I7);>0 in the Skorokhod space, where (X™,I7) is a process generated by Lz with initial
condition .

The proof of Lemma 5.1 consists in checking [BBC16, Assumptions 2.1, 2.2, 2.3 and 2.7.ii)] and relies
on three ingredients:

e Convergence of a kind of discrete infinitesimal generator £,, , which characterizes the dynamics of
(X,1), to Lz defined in (1.3).

e Smoothness of the limit semigroup (P;);>¢ and control of its derivatives with respect to the initial
condition of the process.

e Uniform boundedness of the moments of (z,,%,)n>1 up to some order, which is trivially satisfied
here since F is compact.

Proof of Lemma 5.1: In what follows, the notation O (as n — +00) is uniform over x, i, f. We define
L,f(x,i) = ’y;_}_lE[f(an,inJrﬂxn = x,i, = i], and we study the convergence of £,, to Lz in the sense
of [BBC16]. Let (z,i) € E and xn, (z,i) = Hszl z3. We recall that ¢, (i,i) = 1+ O(py,) as n — +oo.
With

1

n -
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we have
qn+1 ? ] Yn+1 . .
nJ (T, Z T+ Ynt+1€4, — J(x,1
Lof(w,i)=) — { <% Yot 39> f( )]
J#i
+ Z# alGE) {f <'y +1$+’Yn+1€z‘,l> f(z,z)]
Yn+1 n
= 32 a0+ a6 9)) [£(29) = £ 1) X010 @ D0 ()]
g#i "
1+ O(pn n .

+ L (+ +1) [((77“ - 1) +%+1ei) VL f(@) + X @8V 0 (viﬂ)}

= Lz f(2,9) + xn, (2, 9) | fY 0O (€ns1) -

We turn to the study of the regularity of the limit semigroup, following [Kun84|. Let ¢ > 0 and note that
1P flloo < || f]loo- Moreover, the process (X, I) is solution of the following SDE (we emphasize below the
dependence on the initial condition):

. . t .
(Xf’Z,If’z):(x,z‘)qL/ (AT 4 o) ds+2/ e (X2 TN (ds), (56)
0

where N; ; is a Poisson process of intensity aq(i, j)1;x;} and the matrices A and B; ; are defined in (3.2).
Then, if we denote by nf""*" = p~1 {(Xf+hek’i,lf+he"’i) — (X;”,If’)], we recover from (5.6) that the
process n™"F" satisfies the ODE

t
et = (ek70)+/ AnhE s,
0

so that n7"""" = (e~teg,0). Thus, " admits a continuous modification (notably at h = 0) and
O (X8 1%%) = (et ey, 0) is continuous. Using similar arguments, 9,0,(X%¢, 1) = 0. Gathering those
expressions, and since fV is bounded for every multi-index N < Ny, it is clear that P, f € €™, with, for
any j,k < D,

O3(Pf) (i) = B [0, (X7, 17| e,

0,00 (Pof)(z,7) = B [ajak f(xfﬂ', Ifﬂ‘)} e 2

Hence, for any j < N1, [(Pf)?||sc < ||fY)||so. Finally, for any n > 1,|2,| < 1, so that

2

Sup XN1 (xvuln) - Slipz |$n‘ < 3.
=" k=0

Hence, we can apply [BBC16, Theorems 2.6 and 2.8.ii)] with Ny = Ny =d; =d = (2,...,2,0),Cr =
1, M5 = 3, to obtain the existence and the announced properties of 7 as well as

lim dg (ZL(zn,in),m) =0.

n—-+4oo
Moreover, following [BBC16, Remark 2.5],
. log(yVen) _ 0
A, €) = —limsup Z57—> < —.
(7,€) i S

Finally, using Proposition 3.1 together with [BBC16, Theorem 2.8.ii)] entails (5.5). Recall the compact-
ness of E, then we can apply [BBC16, Theorem 2.12] and achieve the proof. O
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5.2 ODE and SDE methods in the standard setting

In the present section, we successively provide proofs for Theorems 2.11 and 2.12. We shall prove the
former with a method involving an asymptotic pseudotrajectory for some interpolated process, similarly
to Section 5.1 and [BC15]. On the contrary, the fluctuations obtained for (x,),>1 in Theorem 2.12 are
obtained through a more classic result for stochastic algorithms, namely the SDE method developed in
[Duf96] (see also [KYO03]).

Proof of Theorem 2.11: In the following, we mimic the proof of [BC15, Lemma 2.4| (see also [MP87,
Ben97]). Indeed, for any n > 1, (2.4) writes

Tpt1 = Tn + Vi1 (V — Tp) + '7n+1(ein+1 —v).
Let the sequence (73, ),>0 and the function m be as in (5.2), and define the interpolated process

o Tn4+1 — Tn
Xrn+so =Tp+S—mm,
Tn+1 — Tn

for all s € [0,v,+1) and n > 0. We will show that X is an asymptotic pseudotrajectory (and a
{—pseudotrajectory) for the flow ®(z,t) = v+ e *(x — v) associated to the ODE 0,®(z,t) = v — ®(z, ).
From [Ben99, Proposition 4.1] it suffices to show that, for all T > 0,

m(t+h)
lim A(t,T)=0, with A(t,T)= su (€. — V)|, 5.7
Jim A(LT) )= o | 3 e = (5.7)
and
log(A(t, T
i 08AET) (5.8)
t—+o0 t
Consider h defined in (2.6). Then,
D
Tn+1 (einJrl - = Tn+1 Z q Zn-i-la 1n+1 - h])
Jj=1
D
Yn+1 . . Yn+1 .
= N Pnin: §) = @n(in, 5)) i, iy + (hinsr = E [hi,y, lin])
Pn =1 Pn
- D
n+1 . . . .
= > @nlined) = pagling ) by

D

D
+ | Y+t Zq va] Z Z’m]
j=1

D D
+ | Z q Z’m] h — Tn+1 Z q(in+1,J . (59)
J=1 Jj=1

We shall bound each term of the sum (5.9) separately. We easily have

D
%+1Z(qn(zn,3)—pnq(zmj));] = Pyns1 Y ralins )| < (0]l R

and
D D

Tn+1 Z (an(inaj) - Qn(znaj)) hin+1 = ’Yn+1h2n+1 Zrn ZnJrl? ) < ”hHan'YnJrl:
j=1 j=1
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where ||h[[1 = sup; >, [hi ;

and R, =sup; > _; [ru(i,7)]. Also, for some constant C' > 0,

D D

Ynt1 ZQ(in,j)hj - ’YnZQ(in,ﬁhj < C(Yn — Yn+1)-

Jj=1 J=1

Note that (v, ZJD:1 q(in, j)hj—Ynt1 Zle q(in+1,J)h;) is the main term of a telescoping series. It remains
to bound the norm of the sum of Vy41p;* (R, y — E[hi,,|int1]). Forallm,n>1andl=1,..., D, set

m n Z 7k+1 hl ikl E [hl,ik+1 |ik+1]) .

The sequence (M, 1, (1))m>n is & martingale and

Vi . .
E [an(l)an(C)] = Z ;—HE ZQk (i, J (hl] E[hl,ik+1|lk])(h67j - E[hcyik+1|lk])
k j=1

k=m

Moreover, as

E ZQk iy J hl,] [hl,ik+1|ik})(hc,j - E[hc,ik+1|ik])

=E Z (ks J hl,] - E[hl,ik+1|ik]E[hC,ik+1|i7€])
=1

:pk Z Zk;, h‘l,] c,j +E 1- Pk Z Q(Zk?j) hl,ik hc,ik
JFik JFik

D D
Z (ks )P | [ D ar(ins d)hej | | + o(pr)
i=1 j=1

=piE qig; J)(Pa g — hiiy ) (hej — hegy))
J#

i, §) (hiiy — ) | | aCina ) (hey — hei,) | |+ o(pr),
J#zk jAik

by Theorem 2.11, we obtain

qu iy §) (g — Elhyiy o ik]) (heyj — Elheyiy . |ix])

D D
=pk Y _ Vi | D ali,§) (b — hui)(hej — he)
i=1 j=1

D
- Z v (v — Li=y) (Ve — Lize) + o(pr). (5.10)

As a consequence of (5.10), there exists some constant C' > 0 such that
7k+1
S8 0] <03
k=m
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By Doob’s inequality and Assumption 2.8, it follows that, for every k > 0,

D m((k+1)T)
E| sup Mm(kT),m(kT+h)|:| < QZE [ Mooy, m(er1yr) (D[] < 2C Z Vit1 Ti+t
OshsT =1 j=m(kT) Pj

<2CT sup Jitl
i>m(kT) Pj

)

which implies that limg o Supg<p<7 [ M kT),mkr+1)| = 0 and then limy_, o A(KT,T) = 0 in proba-
bility. By the triangle inequality and [Ben99, Proposition 4.1], (5.7) holds.

Under the assumption that Y 7, Wiﬂpgl < o0,
D ')’2
E Z sup | Mo k1), mkr+m)|| < ZZZE [ My, m e+ (D[] < 20 Z L < too,

k>0 OShsT k>0 1=1 kom(r) PR

which implies limy, s 4 oo SUPg<j <1 | MmkT),mkr+n)| = 0 a.s. Then, limg 1 o AKT,T) = 0 a.s. and
lim¢—, oo A(t, T) = 0 since

A(t,T) < 2A(|t/T|T.T) + A(([t/T) + VT, T).

In order to obtain a /-pseudotrajectory, use Markov’s and Doob’s inequalities so that

m((k+1)T)
’ ( Sup | Mo (k1) m(k1+h)| = e_kTa> <20} i1 L < 20(T + 1) sup L
0<h<T j=m(kT) pj j>m(kT) DPj

Now, for all € > 0 and k large enough,

sup P <exp (—(A(1,79/p) — €)Tmer) < exp (—(A(1.7/p)) — E)RT),
ji>m(kT) Pj

where A(v,7/p) is defined in (2.5). Hence,

P ( sup, Mo = €7 ) < 20T + 1) exp (T 0 = A /p) + ),

and by the Borel-Cantelli lemma, we have

. 1
limsup — sup |Mp,er)m@r+n)| < —A(Y,7/p) as.
k——+oo 0<h<T

Then, bounding all the other terms of (5.9), we find

log(A(t, T
lim og(A(t, T)

</
t—4o00 t -

with
£ = min (A(3,7/p), A1), A B)) = A7, 7/p) AXG, R).

Since the flow ® converges to v exponentially fast at rate 1, use [Ben99, Theorem 6.9 and Lemma 8.7] to
achieve the proof. O

Proof of Theorem 2.12: We have

[778S]

Yn+1l = Yn + Yn ( (1 - 'YnJrl) - 1) + 'VnJrlanJrl(einﬂ - V)'

n
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Recall (5.9), so that

Tn+1 .
7n+1(ein+1 - V) = P (hin+1 - E[hin+1 ‘7’“]) + bn,

with a remainder term b,, converging to 0. Now, we want to use [Duf96, Théoréme 4.11.4]. In our setting,

its notation reads
Ynt1 = Yn + Y (B(Yn) + Tag1) + VAn€nt1,

with

R A o 1+ 72,502
o= (F57) i~ Bl T = () B has

and

~ 1 Qa, - 1+7
Tntl = Yn=— < s (1 —Ynt1) = 1 +Fnp1 <2)>

Yn+1 (07%

Q1 7Y D
L N iy ) (B iy —

St D ; n(ins 3) (R, — hj)

a D D

+1 . .

+ 7" Yort | Y alin, )by =Y qlins1,5)h;

n+ j=1 j=1

Then, by (5.10) and similar computations,

Elen|Fn] =0 E[EnGIL}—n] =x®Y) +o(pn), supE[[e,|?] < +oo, ¢> 2,

n>1
where %) is defined in (1.2). Classically, we should prove that lim, . ||7]| = 0, in order to work
in the framework of [Duf96, Hypothése H4-4|, which is quite difficult. Nevertheless, rather than checking
that lim,,_, 1o |7 = 0 it is sufficient? to prove that
m(t+s)
~ ~(1) ~2 /\(1) _ : =
T =Ty + 72, nEI_POO n’ =0, ”EIJI:OO]E O;IET Zt) 7n+17"n+1 0, (5.11)

for any T' > 0, where m(t) is defined in (5.2). Then, let

~(1) 1 (an—i-l 1+7 Ont1 Yol
Ty =UYn=< 11—, 1)_1+’Yn 1( + = Tn Zn7j (hzn —h‘,
a0\ an ( + A\ St P ; ) (i = hj)

a D D

»\(2) o n+1

Tn+1 = A E Znaj E an+1,
j=1 j=1

The sequence (?(nl))nzl goes to 0 a.s. and in L' straightforwardly under our assumptions. Furthermore

D

~ 2 . . . .
7n+17¢(n421 = Qp41Vn+1 Z q(in, J)hj = Omp2Tng2 Z q(int1,5)h;
j=1 j=1
D
+ (Ani2Vnt2 = Ong1vnt1) D qling1,5)hs. (5.12)
j=1

2This assertion can be easily checked at the end of [Duf96, p.156], whose proof is based on usual arguments on diffusion
approximation, such as [EK86]. The decomposition (5.11) is often assumed in more recent generalizations, see for instance
[Forl5]. Note that we cannot use directly [Forl5], which besides does not provide functional convergence.
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The first line of (5.12) is a telescoping series and is bounded by ;7,41 which goes to 0. The second line
of (5.12) is bounded by,
m(t+T)
C Z |nt2Vn41 — Qng1¥nl, (5.13)

n=m(t)

for some C' > 0. Since (5.12) is a telescoping series as well, and goes to 0, we established the announced
decomposition (5.11). As a conclusion, the diffusive limit (Y;);>0 is the solution of (3.10), which trivially
admits V' : z — 2z as a Lyapunov function, as required in [Duf96, Hypothése H4-3]. The only use of
an assumption on the eigenelements of ¥(Y) would be to guaranty the existence, uniqueness of and
convergence to an invariant distribution for Y, which was already proved in Proposition 3.6. O
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