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Dynamic responses of flexible-link mechanisms with 

passive/active damping treatment

J.-F. Deü, A.C. Galucio, R. Ohayon

Conservatoire National des Arts et Métiers (CNAM), Structural Mechanics and Coupled Systems Laboratory, 

Case 353, 292 rue Saint Martin, 75141 Paris Cedex 03, France
This work presents a finite element formulation for non-linear transient dynamic analysis of adaptive beams. The main contribution 
of this work concerns the development of an original co-rotational sandwich beam element, which allows large displacements and rota-
tions, and takes active/passive damping into account. This element is composed of a viscoelastic core and elastic/piezoelectric laminated 
faces. The latter are modeled using classical laminate theory, where the electromechanical coupling is considered by modifying the stiff-
ness of the piezoelectric layers. For the core, a four-parameter fractional derivative model is used to characterize its viscoelastic dissipa-
tive behavior. Equations of motion are solved using an incremental-iterative method based on the Newmark direct time integration 
scheme in conjunction with the Gru¨nwald approximation of fractional derivatives, and the Newton–Raphson algorithm.
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1. Introduction

In the context of linear dynamics, the active constrained
layer damping treatment is widely used due to its beneficial
performance in attenuating structural vibrations. The
investigation of such a treatment in the geometric non-lin-
ear case, more specifically for flexible multibody systems, is
very sparsely analyzed. This paper presents a non-linear
finite element formulation for dynamic analysis of adaptive
sandwich beams composed of a viscoelastic core con-
strained by elastic/piezoelectric laminated faces. It is
important to mention that flexible beams undergoing finite
rotations have been investigated by several approaches
namely the floating frame approach, the inertial frame
approach or the co-rotational approach. Most of these
methods are described in standard textbooks and the inter-
1

ested reader can be referred to the review article [10] which
compares these methods and summarizes the recent devel-
opments in computational modeling of flexible multibody
systems. In this paper, following the works of Crisfield
[2], a co-rotational approach is used to describe the large
displacement analysis of the sandwich beam. One of the
main difficulties in modeling such structures is the charac-
terization of the damping properties of the viscoelastic
layer. In this study, a four-parameter fractional derivative
model [1] is used to describe the frequency-dependence of
the viscoelastic material. The advantage of employing frac-
tional operators is related to the small number of parame-
ters required to represent the material damping over a
broad range of frequencies. Concerning the active compo-
nent, the electromechanical coupling is taken into account
by modifying the stiffness matrix of the piezoelectric layers
(sensor) and by applying a mechanical load written in
terms of the applied tension (actuator). Consequently, in
the final finite element formulation, no electrical degree-
of-freedom explicitly appears [5]. Elastic/piezoelectric faces
are modeled using classical laminate theory whereas a stan-
dard three-layer sandwich theory is used for the face/core/



face system [9]. In order to implement the fractional deriv-
ative constitutive equations, the Grünwald formalism is
used in conjunction with a time discretization scheme based
on Newmark method. One of the particularities of the pro-
posed algorithm lies on the storage of displacement history
only. This considerably reduces the numerical efforts
related to the non-locality of fractional operators. Finally,
numerical examples, including a flexible robot arm and a
slider-crank mechanism, are considered in order to show
the effectiveness of the present co-rotational formulation.

2. Active/passive damping treatment

Consider a sandwich beam composed of a viscoelastic
core and elastic/piezoelectric laminated faces. Hypotheses
proposed in this section are valid in a local coordinate sys-
tem, which continuously rotates and translates with the
beam element. Furthermore, a linear strain definition is
used. The first part is addressed to the kinematical (for
the mechanical displacement) and electrostatic (for the
electric potential) assumptions. In the second part, consti-
tutive equations for the piezoelectric and viscoelastic mate-
rials are outlined. Finally, the internal virtual energy of the
sandwich beam is derived.

2.1. Planar sandwich beam

The sandwich beam is modeled using Euler–Bernoulli
assumptions for the faces and Timoshenko ones for the
core. The elastic/piezoelectric faces are modeled using clas-
sical laminated theory with linear electric potential through
the thickness of each piezoelectric sublayer. The mechani-
cal displacement field within the ith layer can be written as

uxiðx; z; tÞ ¼ uiðx; tÞ � ðz� ziÞhiðx; tÞ ð1aÞ
uziðx; z; tÞ ¼ wðx; tÞ ð1bÞ

where the subscript i ¼ a; b; c stands for upper (composed
of Na sublayers), lower (composed of N b sublayers) and
middle layers, respectively; uxi and uzi are the axial and
transverse displacements of each layer; ui and hi are the ax-
ial displacement of the center line and the fiber rotation of
each layer; and w is the transverse displacement (Fig. 1).
Fig. 1. Sandwich beam kinematics.
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Let us introduce the mean and relative axial displace-
ments given by �u ¼ ðua þ ubÞ=2 and ~u ¼ ua � ub. Euler–Ber-
noulli hypotheses for the faces lead to hk ¼ w0 for k ¼ a; b
with ð�Þ0 ¼ oð�Þ=ox. As all layers are supposed to be per-
fectly bonded, the displacement continuity conditions at
interface layers can be written as uxa ¼ uxc at z ¼ hc=2
and uxb ¼ uxc at z ¼ �hc=2. Therefore, axial displacements
of the centerlines and rotations of each layer can be written
in terms of w 0 and the above defined variables �u and ~u as

ua ¼ �uþ ~u
2
; ub ¼ �u� ~u

2
; uc ¼ �uþ

~h
4

w0;

ha ¼ hb ¼ w0; hc ¼ �
~uþ �hw0

hc
ð2Þ

where �h ¼ ðha þ hbÞ=2 and ~h ¼ ha � hb.
From (1) and (2), and taking the hypothesis of plane

stress state into account, we can write the axial strain of
the ith layer e1i and the shear strain of the core e5c as
follows:

e1i ¼ �i þ ðz� ziÞji; e5c ¼ cc ð3Þ

where �i and ji are the membrane strain and curvature of
the ith layer, and cc the shear strain of the core.

Concerning the electrostatic aspects, two main assump-
tions are taken under consideration. The first one concerns
the electric potential, which is supposed to be linear within
the thickness of each piezoelectric sublayer

/kj
ðx; z; tÞ ¼ �/kjðx; tÞ þ ðz� zkjÞ

V kjðx; tÞ
hkj

ð4Þ

where �/kj ¼ ð/þkj
þ /�kj

Þ=2 and V kj ¼ /þkj
� /�kj

. The quanti-
ties /þkj

and /�kj
are the electrical boundary conditions at

top ðz ¼ zkj þ hkj=2Þ and at bottom ðz ¼ zkj � hkj=2Þ sur-
faces. The local z-axis of the kjth face sublayer is situated
at (for k ¼ aðþÞ; bð�Þ)

zkj ¼ �
hkj þ hc

2
�
Xj�1

r¼1

hkr

with hkj being the thickness of the kjth layer. Secondly, the
axial component of the electrical field can be neglected be-
cause its contribution to the electromechanical energy is
small if compared to that of the transverse one [5]. The
two above assumptions imply a constant transverse electri-
cal field within the kjth piezoelectric sublayer

E3kj ¼ �
o/kj

oz
¼ �

V kj

hkj

ð5Þ
2.2. Fractional derivative viscoelastic model

The one-dimensional constitutive equation introduced
by Bagley and Torvik [1] is adopted in this work to describe
the viscoelastic behavior of the core

ri þ saDari ¼ �cii ei þ sa E1
E0

Daei

� �
ð6Þ



where ri and ei are axial ði ¼ 1Þ and shear ði ¼ 5Þ stress and
strain. Since the core is supposed to be isotropic, the elastic
constants are defined by: �c11 ¼ E0=ð1� m2Þ and �c55 ¼
E0=ð2þ 2mÞ. Furthermore, E0 and E1 are the relaxed and
non-relaxed elastic moduli, s is the relaxation time, a is
the fractional order of the time derivative, and Da denotes
the operator of fractional derivation of ath order. The
statements 0 < a < 1, s > 0 and E1 > E0 fulfill the second
law of thermodynamics.

This four-parameter fractional derivative model has
been shown to be an effective tool to describe the weak fre-
quency-dependence of most viscoelastic materials [1,7]. Its
behavior in frequency domain is described between two
asymptotic values: the static modulus of elasticity E0 and
the high-frequency limit value of the dynamic modulus
E1. The Fourier transform of Eq. (6) leads to the calcula-
tion of the complex modulus of elasticity, which is given by

E�ðxÞ ¼ E0 þ E1ðixsÞa

1þ ðixsÞa ð7Þ

The fractional operator Da, appearing in the constitutive
Eq. (6), can be approximated by several methods. One of
them is the Grünwald definition, which is often adopted
in literature since it is valid for all values of a and easy to
implement numerically. The finite difference approximation
of the Grünwald definition is given by

ðDaf Þn �
1

Dta
XN t

j¼0

Ajþ1fn�j ð8Þ

where Dt is the time step increment of the numerical scheme
(the function fn is approximated by f ðtnÞ, with tn ¼ nDt), N t

is the truncation number of the series, and Ajþ1 represents
the Grünwald coefficients given either in terms of the gam-
ma function or by a recurrence formula

Ajþ1 ¼
Cðj� aÞ

Cð�aÞCðjþ 1Þ ¼
j� a� 1

j
Aj
2.3. Piezoelectric constitutive equations

The piezoelectric sublayers of the laminated faces are
poled in the thickness direction with an electrical field
applied parallel to this polarization. Such a configuration
is characterized by the electromechanical coupling between
the axial strain e1 and the transverse electrical field E3. The
three-dimensional constitutive equations can be reduced to

r1 ¼ �c11e1 � �e31E3 ð9aÞ
D3 ¼ �e31e1 þ �d33E3 ð9bÞ

where r1 and D3 are the axial stress and the transverse elec-
trical displacement. Modified elastic, piezoelectric and
dielectric constants are respectively given by

�c11 ¼ c11 �
c2

13

c33

; �e31 ¼ e31 �
c13e33

c33

; �d33 ¼ d33 þ
e2

33

c33

ð10Þ
3

For elastic faces, the piezoelectric constants vanish. More-
over, if the material is isotropic, �c11 ¼ E=ð1� m2Þ, where E

and m are the elastic modulus and the Poisson’s ratio.

2.4. Virtual strain energy

The virtual strain energy of the three-layer sandwich
beam is the sum of the variations of the internal energy
of each layer: dU ¼ dU a þ dUb þ dU c. This will be used
in the finite element formulation in order to evaluate the
internal force vector and stiffness matrix in the local coor-
dinate system.

2.4.1. Viscoelastic core

For the core, the variation of the strain energy is given
by

dUc ¼
Z

Xc

ðr1cde1c þ r5cde5cÞdV ð11Þ

In order to take into account the fractional derivative vis-
coelastic behavior, let us introduce the internal variable �eic

such that

ric ¼ �cc
ii

E1
E0

ðeic � �eicÞ ð12Þ

The constitutive equation (6) can then be rewritten as

�eic þ saDa�eic ¼
E1 � E0

E1
eic ð13Þ

This variable change implies that Eq. (13) contains only
one fractional derivative term instead of two as in (6).

Using the Grünwald approximation (8) and noting that,
by definition, A1 ¼ 1, relation (13) takes the following dis-
cretized form:

�enþ1
ic ¼ ð1� caÞ

E1 � E0

E1
enþ1

ic � ca

XN t

j¼1

Ajþ1�e
nþ1�j
ic ð14Þ

where ca is a dimensionless constant given by
ca ¼ sa=ðsa þ DtaÞ.

Replacing this expression in Eq. (12), the axial and shear
stresses in the core at time tnþ1 are given by

rnþ1
ic ¼ �cc

ii 1þ ca
E1 � E0

E0

� �
enþ1

ic þ ca
E1
E0

XN t

j¼1

Ajþ1�e
nþ1�j
ic

( )
ð15Þ

The variation of the strain energy of the core is thus com-
posed of two terms: the first one can be associated with a
modified internal force vector or stiffness matrix, and the
second one, which depends on the anelastic deformation
history, can be shifted to the right-hand side of the govern-
ing equation modifying in this way the external force
vector.

It should be stated that the Grünwald coefficients in Eq.
(14), which are strictly decreasing when j increases, describe
the fading memory phenomena. In other words, the behav-
ior of the viscoelastic material at a given time step depends
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Fig. 2. Co-rotational sandwich beam coordinate system.
more strongly on the recent time history than on the dis-
tant one.

For an elastic material, since the constant ca is zero,
using strain relations (3) and integrating over the cross sec-
tion, Eq. (11) gives

dU c ¼
Z L

0

�cc
11ðAc�cd�c þ IcjcdjcÞ þ �cc

55Acccdcc

� �
dx ð16Þ

where Ac ¼ bhc and Ic ¼ bh3
c=12 are the cross section area

and moment of inertia of the core. Moreover, L and b

are the total length and width of the beam.

2.4.2. Piezoelectric laminated faces

For the piezoelectric/elastic laminated faces ðk ¼ a; bÞ,
the virtual internal energy is

dU k ¼
XNk

j¼1

Z
Xkj

ðr1kjde1k � D3kjdE3kjÞdX

¼ dUM
k þ dU ME

k þ dUEM
k þ dUE

k ð17Þ

where dUM
k and dU E

k are the virtual mechanical and dielec-
trical internal energies, and dU ME

k and dUEM
k comprise the

virtual piezoelectric internal energy, i.e., the electrome-
chanical coupling.

Using strain relations (3), piezoelectric constitutive
equations (9), and electrical field expression (5), each term
in the right-hand side of Eq. (17) can be evaluated as
described below.

The virtual mechanical internal energy can be written as

dU M
k ¼ b

Z L

0

Ak�kd�k þ Bkðjkd�k þ �kdjkÞ þ Dkjkdjk

� �
dx

ð18Þ

where Ak is the extensional stiffness, Dk is the bending stiff-
ness, and Bk is the bending-extensional coupling stiffness
defined as

½Ak;Bk;Dk� ¼
XNk

j¼1

�ckj

11

Z zkjþhkj =2

zkj�hkj =2

½1; ðz� zkÞ; ðz� zkÞ2�dz ð19Þ

The three last terms in the Eq. (17) are related to the elec-
tromechanical coupling and the dielectrical quantities in
the virtual internal energy of the faces. These terms are de-
fined as

dU ME
k ¼ b

XNk

j¼1

Z L

0

�ekj

31V kj d�k þ ðzkj � zkÞdjk

� �
dx ð20aÞ

dU EM
k ¼ b

XNk

j¼1

Z L

0

�ekj

31 �k þ ðzkj � zkÞjk

� �
dV kj dx ð20bÞ

dU E
k ¼ �b

XNk

j¼1

Z L

0

�dkj

33

V kj

hkj

dV kj dx ð20cÞ

It is easy to see in Eqs. (20a) and (20b) that the electrome-
chanical coupling is taken into account by means of the
piezoelectric constant �ekj

31. This electromechanical coupling
4

describes the so-called inverse and direct piezoelectric
effects.

An actuator configuration consists of applying an electri-
cal field to a piezoelectric ceramic in order to induce a
mechanical deformation. This electrical field is imposed
here by means of an external force, which is written as a
function of the voltage applied to the piezoelectric patch.
Consequently, the variation of the difference of electrical
potential of the kjth lamina vanishes and the above men-
tioned external force is extracted from Eq. (20a) (see [5]
for more details).

The case where an electrical field is induced by a mechan-
ical deformation in the piezoelectric material corresponds
to a sensor configuration. The unknown is the difference of
electric potential of the kjth piezoelectric layer. Using Eqs.
(20b) and (20c), it can be shown that the virtual electrome-
chanical internal energy of the kth lamina corresponds to an
increase of the internal force vector or stiffness matrix of the
beam due to the direct piezoelectric effect [5].

3. Co-rotational finite element formulation

The co-rotational finite element formulation provides a
simple method for large displacement analysis. The key
idea is to separate the motion of each finite element in a
rigid body part and a deformational part, which is small
relative to a local coordinate system [3,6]. The equations
of motion are defined in the global frame while strains
are measured in the co-rotational coordinate system of
the element. In this study, the linear sandwich beam theory
is used in a coordinate system, which rotates and translates
with the element but do not deform with it (Fig. 2).

Stiffness and mass matrices of the individual elements
are constructed in the element coordinate system, and then
transformed to the global coordinate system using
standard procedures [2]. The resulting equations of motion
are the same as those typically arising in non-linear



structural dynamics. In this section, we first derive relations
between the local and global virtual displacement vectors.
Then we define the internal force vector as well as the tan-
gent stiffness matrix in the global coordinate system.
Finally, the resolution method, based on the Newmark
direct integration scheme and the Newton–Raphson algo-
rithm, is briefly described.

3.1. Virtual displacement vectors

The linear finite element formulation of the sandwich
beam composed of elastic/piezoelectric laminated faces
and a viscoelastic core is thoroughly described in [5]. We
just recall that the displacements are discretized with linear
(axial displacement) and cubic (deflection) shape functions.
We propose in this section to determine relations between
the local and global virtual displacement vectors. These
relations will be used to compute the internal force vector
and tangent stiffness matrix.

The vectors of global and local displacements are respec-
tively defined by

q ¼ ½ �u1 w1 b1 ~u1 j �u2 w2 b2 ~u2 �T ð21Þ

and

q̂ ¼ ½ �̂u1 ŵ01 ~̂u1 j �̂u2 ŵ02 ~̂u2 �
T ð22Þ

Using the notations defined in Fig. 2, the displacements
and rotations for nodes 1 and 2 in the local coordinate sys-
tem ðx̂; ẑÞ are given, in terms of global quantities, by

ûc1
¼ 0; ĥc1

¼ hc1
� /; ŵ01 ¼ b1 � /

ûc2
¼ ‘� ‘0; ĥc2

¼ hc2
� /; ŵ02 ¼ b2 � /

ð23Þ

where ‘0 and ‘ denote the initial and current lengths of the
element.

In these equations, local components of axial displace-
ments and rotations of the core can be written in terms
of the local degrees of freedom (for node i ¼ 1; 2)

ûci ¼ �̂ui þ h1ŵ0i ð24Þ

ĥci ¼ �
1

hc
~̂ui �

h2

hc
� 1

� �
ŵ0i ð25Þ

where h1 ¼ ~h=4 and h2 ¼ hc þ �h.
Using previous equations and geometrical consider-

ations, it can be shown that the variations of ‘ and / are
given by

d‘ ¼ rTdq ð26Þ

d/ ¼ 1

‘
zTdq ð27Þ

where the following notations are introduced:

r ¼ �c �s �h1c 0 c s h1c 0½ �T

z ¼ s �c h1s 0 �s c �h1s 0½ �T

with c ¼ cosð/þ /0Þ and s ¼ sinð/þ /0Þ.
The virtual local displacements are obtained through

differentiation of the components of the local degrees of
5

freedom vector. Hence, the transformation matrix T, which
connects local and global virtual displacement vectors

dq̂ ¼ Tdq ð28Þ
is given by

T¼ 1

‘

h1s �h1c �‘h1þh2
1s 0 �h1s h1c �h2

1s 0

�s c ‘�h1s 0 s �‘c h1s 0

h2s �h2c h1h2s ‘ �h2s h2c �h1h2s 0

�‘cþh1s �‘s�h1c �‘h1cþh2
1s 0 ‘c�h1s ‘sþh1c ‘h1ðc�1Þ�h2

1s 0

�s c �h1s 0 s �c ‘þh1s 0

h2s �h2c h1h2s 0 �h2s h2c �h1h2s 1

2666666664

3777777775
3.2. Internal force vector

The local and global internal force vectors are calculated
by using the internal virtual work in both local and global
systems

dU ¼ dqTF ¼ dq̂TbF ¼ dqTTTbF ð29Þ
From the internal virtual energy in the local coordinate sys-
tem dU ¼ dUa þ dU b þ dUc and using linear and cubic
shape functions, the local internal force vectorbF ¼ bFa þ bFb þ bFc ¼ N 1 M1

eN 1 N 2 M2
eN 2

� �T

ð30Þ
can be evaluated analytically. It can be noted that the resul-
tant forces N and eN are associated with mean and relative
axial displacements.

Since Eq. (29) must hold for any arbitrary dq, the global
internal force vector is simply given by

F ¼ TTbF ð31Þ
3.3. Tangent stiffness matrix

The global tangent stiffness matrix KT is obtained by
differentiation of Eq. (31)

dF ¼ TTdbF þ dTTbF ¼ KMdqþ KGdq ¼ KTdq ð32Þ
where KM and KG are material and geometrical stiffness
matrices.

The global material stiffness matrix KM is computed by

KM ¼ TTK̂T ð33Þ
where the 6 · 6 local stiffness matrix is such that

dbF ¼ K̂dq̂ ð34Þ
Using previous definitions for q̂ and bF, this matrix can be
evaluated analytically. For example, if the three layers
are elastic homogeneous, we have

bK ¼
bK 11

bK 12
bK 13 �bK 11 �bK 12 �bK 13bK 22
bK 23 �bK 12

bK 25 �bK 23bK 33 �bK 13 �bK 23
bK 36bK 11

bK 12
bK 13

sym bK 22
bK 23bK 33

26666666664

37777777775
ð35Þ



with the following components:

bK 11¼
1

‘0

ð�ca
11Aaþ�cb

11Abþ�cc
11AcÞ

bK 12¼
h1

‘0

�cc
11Ac

bK 13¼
1

2‘0

ð�ca
11Aa��cb

11AbÞ

bK 22¼
4

‘0

ð�ca
11Iaþ�cb

11IbÞþ
4ðh2�hcÞ2

‘0h2
c

�cc
11Icþ

4h2
1

‘0

�cc
11Acþ

2h2
2‘0

15h2
c

�cc
55Ac

bK 23¼
h2�hc

‘0h2
c

�cc
11Icþ

h2‘0

12h2
c

�cc
55Ac

bK 25¼
2

‘0

ð�ca
11Iaþ�cb

11IbÞþ
2ðh2�hcÞ2

‘0h2
c

�cc
11Icþ

2h2
1

‘0

�cc
11Ac�

h2
2‘0

30h2
c

�cc
55Ac

bK 33¼
1

4‘0

ð�ca
11Aaþ�cb

11AbÞþ
1

‘0h2
c

�cc
11Icþ

‘0

3h2
c

�cc
55Ac

bK 36¼�
1

4‘0

ð�ca
11Aa��cb

11AbÞ�
1

‘0h2
c

�cc
11Icþ

‘0

6h2
c

�cc
55Ac

Moreover, the evaluation of dB gives the expression of the
global geometrical tangent stiffness matrix

KG ¼
1

‘
zzTN 2 �

1

‘2
ðrzT þ zrTÞ

� h1ðN 1 þ N 2Þ � ðM1 þM2Þ þ h2ðeN 1 þ eN 2Þ
h i

ð36Þ
ISD112 Aluminum

O A

ψ(t)

OA = 200 mm
b = 0.1 mm
ha = hb = 1.5 mm
hc = 0.2 mm

t

ψ(t)

π/2 rad

20 ms

Fig. 3. Flexible sandwich robot arm.

Table 1
Mechanic and piezoelectric characteristics of the sandwich beam

Aluminum q ¼ 2690 kg=m3, m ¼ 0:345, E ¼ 70:3 GPa

ISD112 q ¼ 1600 kg=m3, m ¼ 0:5
E0 ¼ 1:5 MPa, E1 ¼ 69:95 MPa
a ¼ 0:7915, s ¼ 1:4052� 10�2 ms

PZT5H q ¼ 7500 kg=m3, c11 ¼ c33 ¼ 126 GPa
c13 ¼ 84:1 GPa, e31 ¼ �6:5 C=m2

e33 ¼ 23:3 C=m2, d33 ¼ 1:3� 10�8 F=m
3.4. Resolution algorithm

An incremental-iterative method based on the Newmark
direct integration scheme (with b ¼ 1=4 and c ¼ 1=2) and
Newton–Raphson algorithm is employed here. Assuming
the equilibrium configuration at time tn is known, one
searches the solution qnþ1 at time tnþ1 such that the follow-
ing non-linear equation of motion is satisfied:

Rnþ1 ¼M€qnþ1 þ Fðqnþ1Þ �Gnþ1 � eGnþ1 �Gnþ1 ¼ 0 ð37Þ
where R is the residual vector, M is the mass matrix, F the
internal force vector, G the mechanical external load, eG the
electrical force associated with the actuator configuration
for the faces and G the dissipative force associated with
the viscoelastic behavior of the core. All these quantities
are defined in the global reference system using transforma-
tion matrices and their local definitions given in [5] and
thoroughly explained in [4].

It is well known that in a Newmark–Newton algorithm,
an iteration loop on equilibrium is performed within the
time loop. The non-linear equation (37) is then solved at
each time step. Moreover, at each iteration, the displace-
ment correction Dq is computed using the linearized equa-
tion Sðqnþ1ÞDq ¼ �Rnþ1, where the iteration matrix is
defined by S ¼ KT þM=ðbDt2Þ.

4. Numerical examples

4.1. Flexible robot arm

This simulation is concerned with the repositioning of a
sandwich flexible beam rotating horizontally about a verti-
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cal axis passing through one end. This classical example
was studied for example in [6,8] for a single layer beam.
Here, the beam is composed of a viscoelastic core
(ISD112 at 27 �C) constrained by symmetrical elastic faces
(Aluminum). Geometry data and material properties of the
structure are shown in Fig. 3 and Table 1, respectively.
Model parameters for the ISD112 at 27 �C are identified
in [4], assuming that the Poisson’s ratio is frequency-
independent.

The robot arm is first repositioned to an angle of
p=2 rad from its initial position. This is achieved by pre-
scribing the rotation angle wðtÞ as a linear function of time,
as shown in Fig. 3. The beam is discretized by a regular
mesh with 10 elements. The study is performed up to
200 ms with a fixed time step Dt ¼ 0:05 ms. The sequence
of motion during the repositioning stage is depicted in
Fig. 4a. Once wðtÞ ¼ p=2 rad for all time t P t1 ¼ 20 ms,
the robot arm undergoes finite vibrations as shown in
Fig. 4b.

Fig. 5a illustrates the attenuation of the tip elastic dis-
placements in x and z directions due to the constrained
layer damping treatment. The damped oscillations for x
component can also be observed in the phase-space dia-
gram (Fig. 5b).
4.2. Slider-crank mechanism

This second example corresponds to a slider-crank
mechanism with a rigid crank OA, a connecting sandwich
beam AB and a slider block located at B. The sandwich
beam is composed by a viscoelastic core ðhc ¼ 0:2 mmÞ
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Fig. 4. Deflected shapes of the sandwich robot arm: (a) repositioning sequence up to w ¼ p=2 rad and (b) free vibration about w ¼ p=2 rad.
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0 π/2 π 3π/2 2π 5π/2 3π 7π/2 4π
-0.06

-0.04

-0.02

0

0.02

0.04

Crank angle (rad)

D
ef

le
ct

io
n 

(m
m

)

constrained by symmetrical elastic faces ðha1
¼ hb1

¼
1 mmÞ with piezoelectric patches ðha2

¼ hb2
¼ 0:5 mmÞ.

The dimensions and material properties of the slider-crank
mechanism are given in Fig. 6 and Table 1, respectively.
The crank is driven by a constant angular speed _w ¼ 0:15
rad/ms. The points O, A and B are initially aligned with
A between O and B. Moreover, the initial velocity and
acceleration of the mechanism are calculated by using kine-
matics of rigid mechanism.

The beam AB is discretized by a regular mesh of 10 ele-
ments. The study is performed up to 60 ms with a fixed
time step Dt ¼ 0:05 ms. The fractional operator is approx-
imated using the whole history in the Grünwald series.
Moreover, a sensor voltage feedback control law is used.
O

A

B

PZT5H ISD112 Aluminum

OA = 75 mm
AB = 250 mm
AP = 100 mm
PQ = 50 mm

P

Q

deflection

ψ(t)

Fig. 6. Slider-crank mechanism.
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The top piezoelectric patch works as an actuator and the
bottom one as a sensor. The time derivative of the voltage
measured in the sensor is used for the feedback signal and
then applied to the top piezoelectric patch with a constant
gain Kd ¼ �100 ms, as V A ¼ �Kd
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Fig. 7. Deflection versus crank angle and phase-space diagram for the
midpoint of the sandwich beam.



The transverse deflection of the midpoint of the connect-
ing beam AB is measured perpendicularly to the straight
line connecting points A and B. In Fig. 7, deflection versus
crank angle and phase-space diagram are plotted in order
to illustrate the attenuation of the elastic deformation
due to the active/passive damping treatment.

5. Conclusions

A co-rotational approach for non-linear dynamic analy-
sis of flexible linkage mechanisms with active constrained
layer damping treatment is proposed in this work. An ori-
ginal co-rotational sandwich beam finite element, which
allows large displacements and rotations, is developed for
this purpose. The sandwich beam is composed of a visco-
elastic core, covered by elastic/piezoelectric laminated
faces. No electrical degrees of freedom are required in the
finite element formulation, since the electromechanical cou-
pling is taken into account by means of an augmentation of
the stiffness of the piezoelectric layers in the sensor case.
Concerning the viscoelastic damping, a four-parameter
fractional derivative model is used to describe the dissipa-
tive behavior of the core. For the numerical examples, an
incremental-iterative method based on the Newmark direct
integration scheme and the Newton–Raphson algorithm is
employed. Two particularities are associated with the
numerical resolution method. The first one concerns the
approximation of fractional operators by introducing an
external dissipative force which involves the storage of
the displacement history. Obviously, this approach reduces
the numerical costs related to the non-locality of the viscoe-
lactic behavior. The second one concerns the non linear
algorithm which requires the evaluation of the internal
force vector and tangent stiffness matrix associated with
the sandwich element. As described in the paper, these
two quantities are calculated analytically in the global
coordinate system. Finally, two numerical examples with
8

large displacements are proposed in order to test the co-
rotational active/passive sandwich beam element devel-
oped in this work. The results illustrate the effectiveness
of the proposed approach. An evaluation of the active con-
strained layer damping treatment performances in the con-
text of non-linear dynamics will be investigated in a future
work. Moreover, an experimental validation of the present
formulation would be interesting particularly to demon-
strate the effectiveness of the viscoelastic fractional deriva-
tive model.
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[5] Galucio AC, Deü J-F, Ohayon R. A fractional derivative viscoelastic
model for hybrid active/passive damping treatments in time domain –
application to sandwich beams. J Intell Mater Syst Struct 2005;16:
33–45.

[6] Hsiao K-M, Jang J-Y. Dynamic analysis of planar flexible mecha-
nisms by corotational formulation. Comput Methods Appl Mech
Eng 1991;87:1–14.

[7] Pritz T. Analysis of four-parameter fractional derivative model of real
solid materials. J Sound Vib 1996;195:103–15.

[8] Simo JC, Vu-Quoc L. On the dynamics of flexible beams under large
overall motions – the plane case: Parts I and II. J Appl Mech 1986;53:
849–63.

[9] Trindade MA, Benjeddou A, Ohayon R. Finite element modelling of
hybrid active–passive vibration damping of multilayer piezoelectric
sandwich beams – part I: Formulation; part II: System analysis. Int J
Numer Methods Eng 2001;51:835–64.

[10] Wasfy TM, Noor AK. Computational strategies for flexible multi-
body systems. Appl Mech Rev 2003;56:553–632.


	Dynamic responses of flexible-link mechanisms with passive/active damping treatment
	Introduction
	Active/passive damping treatment
	Planar sandwich beam
	Fractional derivative viscoelastic model
	Piezoelectric constitutive equations
	Virtual strain energy
	Viscoelastic core
	Piezoelectric laminated faces


	Co-rotational finite element formulation
	Virtual displacement vectors
	Internal force vector
	Tangent stiffness matrix
	Resolution algorithm

	Numerical examples
	Flexible robot arm
	Slider-crank mechanism

	Conclusions
	References




