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GENERALIZED KDV EQUATION
SUBJECT TO A STOCHASTIC PERTURBATION

ANNIE MILLET AND SVETLANA ROUDENKO

Abstract. We prove global well-posedness of the subcritical generalized Korteweg-de Vries

equation (the mKdV and the gKdV with quartic power of nonlinearity) subject to an additive

random perturbation. More precisely, we prove that if the driving noise is a cylindrical Wiener

process on L2(R) and the covariance operator is Hilbert-Schmidt in an appropriate Sobolev

space, then the solutions with H1(R) data are globally well-posed in H1(R). This extends

results obtained by A. de Bouard and A. Debussche for the stochastic KdV equation.

Dedication: In the memory of Igor Chueshov.

1. Introduction

In this paper we study a subcritical generalization of the Korteweg-de Vries (gKdV) equation

subject to some additive random perturbation f(t), that is,

∂tu(t) + ∂3xu(t) + µu(t)k∂xu(t) = f(t), (x, t) ∈ R× R, u(0, .) = u0, (1.1)

with k = 2, the mKdV case, or k = 3, referred to as the gKdV equation. Here, µ = ±1, which

is referred to as focusing or defocusing nonlinearity.

The well-known KdV equation (k = 1) describes the propagation of long waves in a channel.

Its generalizations (k > 1) appear in several physical systems; a large class of hyperbolic

models can be reduced to these equations. The well-posedness in the KdV equation has

been extensively studied by many authors in the deterministic setting without any forcing

term (f = 0) and goes back to works of Kato [9], Kenig-Ponce-Vega [11] to name a few;

there is an abundant literature available on that. The question about the minimal regularity

assumptions on initial data needed for well-posedness has been also investigated intensively in

recent years; two important methods should be mentioned: the so-called I-method (e.g., [3])

and the probabilistic approach of randomizing the initial data and showing the invariance of

Gibbs measures (e.g., [2], [15]). In this paper we also take a probabilistic approach, however,

in a completely different setting, where the equation itself has a random term. We do not

aim to obtain the lowest possible regularity for such an equation, but simply show how to

combine the deterministic and probabilistic approaches in this case to study well-posedness

for the initial data with finite energy.

2010 Mathematics Subject Classification. Primary: 60H15, 35R60, 35Q53; Secondary: 35L75, 37K10.
Key words and phrases. Generalized Korteweg de Vries (gKdV) equation, Cauchy problem, well-posedness,

stochastic additive noise.
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2 A. MILLET AND S. ROUDENKO

In [11], Kenig, Ponce, Vega showed that for k = 1, 2, 3, if u0 ∈ H1(R), the subcritical

gKdV equation has a global solution in L∞
(
[0,∞);H1(R)

)
. In the critical case k = 4 (resp.

supercritical case k > 4), there is a local existence in Hs(R) with s > 0 (resp. in Ḣsk(R) for

sk = (k−4)/(2k)), when u0 belongs to the corresponding Sobolev space. Global well-posedness

holds if the L2(R) norm of u0 (resp. the L2(R)-norm of Dsku0) is small.

Here, we study the subcritical case of the generalized KdV equation,

dut +
(
∂3xu(t) + µu(t)k∂xu(t)

)
dt = d f(t) ≡ ΦdW (t), (1.2)

where an external random forcing f is driven by a cylindrical Brownian motion W on L2(R)

and multiplied by some smoothing covariance operator Φ. The driving Wiener process W

describes a noise in the environment, that is, a sum of little independent shocks properly

renormalized. The smoothing operator describes spatial correlation of the noise, but the time

increments of ΦW are independent, that is, the noise is white in time. The stochastic KdV

equation (k = 1) on R has been studied in a series of papers by A. de Bouard and A. Debussche

(see e.g. [4], [6], [5]). In [4] they proved that if u0 ∈ H1(R) and if Φ is a Hilbert-Schmidt

operator from L2(R) to H1(R), then there is a global solution to the stochastic KdV equation

which belongs a.s. to C([0, T ];H1(R)). Using Bourgain spaces, when u0 ∈ L2(R) and the

covariance operator Φ is Hilbert-Schmidt both from L2(R) to L2(R) and to Ḣ−3/8(R), they

have shown in [6] the existence and uniqueness of the solution in L2
(
Ω;C([0, T ];L2(R))

)
for

any T > 0. Note that for the mKdV or gKdV equations, the Bourgain spaces approach

to lower the regularity of global solutions is not needed (since it gives the same results but

is more technically involved). Therefore, for mKdV and gKdV, k ≥ 2, it suffices to use

arguments from [11]. In [5], the authors have proved the global well-posedness of solutions to

the stochastic KdV equation in L2(R) (resp. H1(R)), when the noise is homogeneous, that

is, of the form u(s)φdW (s) for a convolution operator φ defined in terms of an L2(R)∩L1(R)

(resp. H1(R)∩L1(R)) kernel. They used the Bourgain space approach, which is necessary to

lower regularity of solutions in the KdV case; it is also helpful when dealing with multiplicative

noise.

We do not give a full reference for the stochastic KdV and related equations in the periodic

setting. However, to guide the reader in the proper direction, we mention a few results. T. Oh

[12] studied a stochastic KdV equation on the torus T = [0, 2π). For specific assumptions

on the covariance operator Φ, he proved that there is a local well-posedness in a certain

Bourgain space if the initial condition belongs to it as well. Other KdV-type models can also

be considered with variations of the additive noise, such as adding a derivative to the noise

(e.g., see the work of G. Richards [13]).

The main goal of this paper is to obtain the global well-posedness of solutions to the mKdV

and gKdV with k = 3 equations in H1(R); global solutions with finite energy are important

for physical applications, i.e., in study of solitary waves. To study well-posedness, we need to

set up a specific functional framework that provides the necessary flexibility to use smoothing

properties of the Airy group while considering the stochastic term. We note that we consider

a driving cylindrical Wiener process, which is quite usual in nonlinear dispersive hyperbolic
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models, such as the stochastic nonlinear Schrödinger (NLS) equation, this, in its turn, requires

the use of non-Hilbert Sobolev spaces. We now state the main result and refer the reader to

the next section for all notations.

Theorem 1.1. Let u0 be G0-measurable and belong to H1
x a.s.

(1) Let k = 2 and Φ ∈ L0,1+ε
2 for some ε > 0. Then given any positive time T , there exists

a unique solution to (1.2) which belongs a.s. to XT
2 ∩ C([0, T ], H1

x). Furthermore, if

u0 ∈ L2
ω(H1

x) ∩ L6
ω(L2

x), then u ∈ L2
ω(L∞t (H1

x)).

(2) Let k = 3 and Φ ∈ L0,1
2 . Then given any positive time T , there exists a unique solution

to (1.2) which belongs a.s. to XT
3 ∩ C([0, T ], H1

x). Furthermore, if u0 ∈ L2
ω(H1

x) ∩
L14
ω (L2

x), then u ∈ L2
ω(L∞t (H1

x)).

While we follow the main framework of [4], additional difficulties appear which are due to

higher power of nonlinearity considered. When k = 2, u0 ∈ H1/4(R) and Φ is Hilbert-Schmidt

from L2(R) to H1+ε(R) for some ε > 0, we prove that there exists a unique solution until

some stopping time T2 > 0. The hypothesis on Φ with some “larger derivative” is due to the

functional space L4
x(L

∞
t ). A similar space L2

x(L
∞
t ) appears for the fixed point argument of the

KdV equation; technical problems arise going from L2
x to L4

x. When k = 3, u0 ∈ H1/12(R) and

Φ is Hilbert-Schmidt from L2(R) to H5/12(R)), we prove that there exists a unique solution

until some stopping time T3 > 0. This technique does not easily extend to multiplicative

noise; indeed change of variables in time is no longer possible for moments of norm estimates

of the corresponding stochastic integral. The problem of multiplicative noise will be addressed

elsewhere.

The paper is organized as follows. In section 2, we prove some technical lemmas on func-

tional properties of the stochastic integral
∫ t
0
S(t−s)Φ dW (s). Using the functional framework

introduced in [11] and a contraction principle in an appropriate function space, we prove local

well-posedness of the solution in section 3. In section 4, we prove that if the initial condition

belongs to H1(R) and Φ is Hilbert-Schmidt from L2(R) to H1+ε(R) when k = 2 (and from

L2(R) to H1(R) when k = 3), the solution can be extended to any given time interval [0, T ].

Then it belongs to L2(Ω;L∞(0, T ;H1(R))), and takes a.s. its values in the set of continuous

trajectories from [0, T ] to H1(R). The proof uses the time invariance of mass and Hamiltonian

for solutions to the deterministic gKdV equation. In order to use these invariant quantities,

we need a more regular solution. This is achieved approximating the solution u by a sequence

{un}n of solutions defined in terms of smoother initial conditions u0,n and of more regularizing

operators Φn.

The first named author collaborated with Igor Chueshov on general 2D hydrodynamical

models related with the Navier-Stokes equations. In this paper, we try to further develop the

intertwining between deterministic and stochastic approaches in PDEs. Such interplay was

one of the fundamental contributions of Igor Chueshov’s scientific work.
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2. Local existence of the solution

In this section we study the stochastic generalized KdV equation with additive noise defined

for x ∈ R and t ≥ 0

du(t) +
(
∂3xu(t) + µu(t)k∂xu(t)

)
dt = ΦdW (t), k = 2, 3, (2.1)

with the initial condition u(x, 0) = u0(x). From now on we will assume µ = 1 (focusing case);

the defocusing case follows automatically. The case k = 1, which is that of the stochastic KdV

equation, has been studied in [4] and [6]. Here, W is a cylindrical Wiener process on L2(R)

adapted to a filtration (Gt, t ≥ 0), that is, W (t)ϕ =
∑

j∈N(ej, ϕ) βj(t) for any ϕ ∈ L2(R),

where the processes βj(t), j ≥ 0 are independent one-dimensional Brownian motions adapted

to (Gt) and {ej}j≥0 is an orthonormal basis of L2(R), often referred to as a CONS (complete

orthonormal system). Note that the process W (t) is not L2(R)-valued, but W (t)ϕ is a centered

Gaussian random variable with variance ‖ϕ‖2L2 =
∑

j≥0(ej, ϕ)2. We suppose that Φ is a linear

map which is Hilbert-Schmidt from L2 into Hσ(R) for some non-negative σ, that is,

‖Φ‖L0,σ
2

:= ‖Φ‖L0
2(L

2(R),Hσ(R)) <∞. (2.2)

We suppose that u0 is G0-measurable and H1-valued.

As in [4] using Duhamel’s formula we write this equation using its mild formulation, that

is,

u(t) = S(t)u0 −
∫ t

0

S(t− s)
(
u(s)k∂xu(s)

)
ds+

∫ t

0

S(t− s)ΦdW (s), (2.3)

where

S(t)u = F−1ξ
(
eitξ

3

û(ξ)
)
,

and F(u) = û denotes the Fourier transform of u. Note that∫ t

0

S(t− s)ΦdW (s) =
∑
j≥0

∫ t

0

S(t− s)Φejdβj(s)

is a centered Hσ(R) - valued Gaussian variable. Since S(t − s) is an Hσ(R) isometry for all

σ ≥ 0, the variance of this stochastic integral is∫ t

0

∑
j≥0

‖Φej‖2Hσ
x
ds = t‖Φ‖2

L0,σ
2
.

Following the approach in [11] (and [4] for the case k = 1), we introduce the following spaces

of functions u : R× [0, T ]→ R:

XT
2 =

{
u ∈ C

(
[0, T ];H1/4(R)

)
∩ L4

x

(
L∞t
)

: Dxu ∈ L20
x

(
L
5/2
t

)
,

D1/4
x u ∈ L5

x

(
L10
t

)
, D1/4

x ∂xu ∈ L∞x
(
L2
t

)}
(2.4)

for the mKdV equation (k = 2), and

XT
3 =

{
u ∈ C

(
[0, T ];H1/12(R)

)
∩ L42/13

x

(
L
21/4
t

)
∩ L60/13

x

(
L15
t

)
∩ L10/3

x

(
L
30/7
t

)
:

D1/12
x u ∈ L10/3

x

(
L
30/7
t

)
, ∂xu ∈ L∞x

(
L2
t

)
, D1/12

x ∂xu ∈ L∞x
(
L2
t

)}
(2.5)
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for the gKdV equation (k = 3). Here, Lqx (resp. Lpt ) denotes Lq(R) (resp. Lp(0, T )).

In order to prove that the process v, defined by the stochastic integral

v(t) :=

∫ t

0

S(t− s)ΦdW (s), t ∈ [0, T ], (2.6)

belongs a.s. to the spaces XT
k for k = 2, 3 under proper assumptions on the operator Φ, we

first prove some technical lemmas. In each result we state the minimal regularity assumption

on the operator Φ and the corresponding power of T obtained in the upper estimate, in order

to deal with the XT
k -norm of v.

The following lemma is a generalization of Proposition 3.1 in [4].

Lemma 2.1. Let σ ≥ 0 and q ∈ [1,∞). Then for every T > 0, we have

E
(

sup
t∈[0,T ]

‖v(t)‖2qHσ
x

)
≤ Cq T

q ‖Φ‖2q
L0,σ
2

.

Proof. The proof is quite classical; it is sketched for the sake of completeness. The upper

estimate is proved for q ∈ [2,∞) and deduced for q ∈ [1,∞) by Hölder’s inequality. Let

Jσu = F−1
(

(1+|ξ|2)σ2 û(ξ)
)

. First, note that since S(t) is a group and an Hσ
x -isometry, we have

‖v(t)‖Hσ
x

= ‖v̄(t)‖Hσ
x
, where v̄(t) =

∫ t
0
S(−s)ΦdW (s). For fixed t ∈ [0, T ] the random variable

v̄(t) is an Hσ
x - valued, Gaussian with mean zero and variance

∫ t
0

∑
j≥0 ‖JσS(−s)Φej‖2L2

x
ds =

t‖Φ‖2
L0,σ
2

, where {ej}j≥0 is the CONS of L2(R) in the definition of W . Itô’s formula implies

‖v̄(t)‖2Hσ
x

= 2

∫ t

0

(
Jσv̄(s), JσS(−s)ΦdW (s)

)
+

∫ t

0

∑
j≥0

‖JσS(−s)Φej‖2L2
x
ds

for every t ∈ [0, T ]. Using once more the Itô formula, we deduce that for q ∈ [2,∞), we have

‖v̄(t)‖2qHσ
x

=
∑3

i=1 Ti(t), where

T1(t) = 2q

∫ t

0

(
Jσv̄(s), JσS(−s)ΦdW (s)

)
‖v̄(s)‖2(q−1)Hσ

x
,

T2(t) = q

∫ t

0

‖Φ‖2
L0,σ
2
‖v̄(s)‖2(q−1)Hσ

x
ds,

T3(t) = 2q(q − 1)

∫ t

0

∑
j∈N

(
JσS(−s)Φej , Jσv̄(s)

)2 ‖v̄(s)‖2(q−2)Hσ
x

ds.

The Cauchy-Schwarz inequality implies

E
(

sup
t∈[0,T ]

(T2(t) + T3(t))
)
≤ Cq‖Φ‖2L0,σ

2
E
(∫ T

0

‖v̄(s)‖2(q−1)Hσ
x

ds
)
≤ Cq T

q ‖Φ‖2q
L0,σ
2

.
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The Davies inequality for martingales, Young’s inequality and Fubini’s theorem imply

E
(

sup
t∈[0,T ]

T1(t)
)
≤ 6q E

({∫ T

0

‖v̄(s)‖4(q−1)Hσ
x

∑
j≥0

(Jσv̄(s), JσS(−s)Φej)2ds
} 1

2
)

≤ 6q
√
T ‖Φ‖L0,σ

2
E
(

sup
s∈[0,T ]

‖v(s)‖2q−1Hσ
x

)
≤ 1

2
E
(

sup
s∈[0,T ]

‖v(s)‖2qHσ
x

)
+ CqT

q‖Φ‖2q
L0,σ
2

,

which concludes the proof. �

The following result will be used to upper estimate one of the norms in the definition of

‖v‖XT2 .

Lemma 2.2. Let p, q satisfy 2 ≤ p ≤ q <∞ and σ ≥ 0. Then for some C > 0, we have

‖Dσ+1
x v‖L∞x (Lqω(L

p
t ))
≤ C T

1
p ‖Φ‖L0,σ

2
. (2.7)

Proof. Since q ≥ p, Hölder’s inequality with respect to dt, Fubini’s theorem and moments of

the stochastic integral yield for the CONS {ej}j≥0 of L2(R) in the definition of W :

sup
x∈R

E
∣∣∣ ∫ T

0

∣∣Dσ+1
x

∫ t

0

S(t− s)ΦdW (s)
∣∣pdt∣∣∣ qp

≤ T
q
p
−1 sup

x∈R
E
(∫ T

0

∣∣Dσ+1
x

∫ t

0

S(t− s)ΦdW (s)
∣∣qdt)

≤ Cq T
q
p
−1 sup

x∈R

∫ T

0

∣∣∣∑
j≥0

∫ t

0

|Dσ+1
x S(t− s)Φej

∣∣2ds∣∣∣ q2dt
≤ Cq T

q
p
−1
∫ T

0

sup
x∈R

∣∣∣∑
j≥0

∫ t

0

|Dσ+1
x S(t− s)Φej

∣∣2ds∣∣∣ q2dt
≤ Cq T

q
p
−1
∫ T

0

∣∣∣∑
j≥0

sup
x∈R

∫ t

0

|Dσ+1
x S(t− s)Φej

∣∣2ds∣∣∣ q2dt.
The local smoothing property (see Lemma 2.1 in [10]) implies that for every j ∈ N and

t ∈ [0, T ]

sup
x∈R

∫ t

0

|Dσ+1
x S(s)Φej

∣∣2ds ≤ C ‖Dσ
xΦej‖2L2(R) ≤ C‖Φej‖2Hσ

x
.

Therefore,

‖Dσ+1
x v‖q

L∞x (Lqω(L
p
t ))
≤ C T

q
p
−1 T

(∑
j≥0

‖Φej‖2Hσ
x

) q
2 ≤ C T

q
p ‖Φ‖q

L0,σ
2

.

This completes the proof of (2.7). �

Lemma 2.3. Let p, q be such that 2 ≤ p < q < ∞; for γ ≥ q−2
q

let σ̃ = γ q
q−2 ≥ 1. There

exists a positive constant C such that

E
(
‖Dγ

xv‖
q
Lqx(L

p
t )

)
≤ C T

q
p
+1‖Φ‖q

L0,σ̃−1
2

. (2.8)
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Proof. Lemma 2.2 applied with σ = σ̃ − 1 yields

‖Dσ̃
xv‖L∞x (Lqω(L

p
t ))
≤ C T

1
p ‖Φ‖L0,σ̃−1

2
.

The proof of (2.8) relies on the above inequality and on the upper estimate

‖v‖L2
x(L

q
ω(L

p
t ))
≤ CT

1
p
+ 1

2 ‖Φ‖L0,0
2
. (2.9)

Indeed, suppose that (2.9) has been proved. Since γ ∈ [0, σ̃], an interpolation argument (see [4]

Proposition A1) proves that for p(γ) defined by 1
p(γ)

= 1
2

(
1− γ

σ̃

)
, we have Dγv ∈ Lp(γ)x (Lqω(Lpt )).

Note that γ
σ̃

= 1− 2
q
; hence, p(γ) = q and the Fubini theorem implies that Dγv ∈ Lqω(Lqx(L

p
t )).

Furthermore,

‖Dγv‖Lqω(Lqx(Lpt )) ≤ C‖v‖1−
γ
σ̃

L2
x(L

q
ω(L

p
t ))
‖Dσ̃

xv‖
γ
σ̃

L∞x (Lqω(L
p
t ))
≤ C T

1
p
+ 1
q ‖Φ‖L0,σ̃−1

2
.

Thus, in order to complete the proof of the lemma, we have to check that (2.9) holds. Since

q ≥ p, Hölder’s inequality applied with respect to dt and moments of the stochastic integral

imply that for the CONS {ej}j≥0 of L2(R) in the definition of W (t), we have

‖v‖2L2
x(L

q
ω(L

p
t ))

=

∫
R

∣∣∣E({∫ T

0

∣∣∣ ∫ t

0

S(t− s)ΦdW (s)
∣∣∣p dt} q

p
)∣∣∣ 2q dx

≤ T ( q
p
−1) 2

q

∫
R

∣∣∣E ∫ T

0

∣∣ ∫ t

0

S(t− s)ΦdW (s)
∣∣qdt∣∣∣ 2q dx

≤ Cq T
2
p
− 2
q

∫
R

[ ∫ T

0

(∑
j≥0

∫ t

0

∣∣S(t− s)Φej
∣∣2ds) q2dt] 2

q
dx

≤ Cq T
2
p
− 2
q

∫
R

∥∥∥∑
j≥0

∫ t

0

∣∣S(s)Φej
∣∣2ds∥∥∥

L
q
2
t

dx,

where in the last step we change variable s to t− s. The Minskowski inequality implies that

‖v‖2L2
x(L

q
ω(L

p
t ))
≤ Cq T

2
p
− 2
q

∫
R

∑
j≥0

∥∥∥∫ t

0

∣∣S(s)Φej
∣∣2ds∥∥∥

L
q
2
t

dx

≤ Cq T
2
p
− 2
q

∫
R

∑
j≥0

{∫ T

0

∣∣∣ ∫ T

0

∣∣S(s)Φej
∣∣2ds∣∣∣ q2dt} 2

q
dx

≤ Cq T
2
p

∑
j≥0

∫ T

0

(∫
R

∣∣S(s)Φej
∣∣2dx)ds ≤ C T

2
p
+1
∑
j≥0

‖Φej‖2L2
x
.

This completes the proof of (2.9). �

The following lemma extends Proposition 3.3 in [4] to the case σ < 3
4
. The notation a ∨ b

means max(a, b), while a ∧ b means min(a, b).

Lemma 2.4. Let σ > 0 and ε ∈ (0, 2) ∩ (0, σ]. Then there exists a constant C > 0 such that

E
(
‖Dσ−ε

x ∂xv‖2L∞x (L2
t )

)
≤ C T 2 ‖Φ‖2

L
0,( 12−

ε
4 )∨σ

2

. (2.10)
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Furthermore,

E
(
‖∂xv‖2L∞x (L2

t )

)
≤ C T 2 ‖Φ‖2

L
0, 25
2

. (2.11)

Proof. We first prove (2.10) and let q = 4
ε
. Hölder’s inequality with respect to the expectation

shows that (2.10) is a consequence of the following estimate[
E
({

sup
x∈R

∫ T

0

|Dσ−ε
x ∂xv|2dt

} q
2
)] 2

q
= ‖Dσ−ε

x ∂xv‖2Lqω(L∞x (L2
t ))
≤ CT 2 ‖Φ‖2

L
0,( 12−

ε
4 )∨σ

2

. (2.12)

Lemma 2.2 applied with p = 2 implies

‖D1+σ
x v‖L∞x (Lqω(L

2
t ))
≤ C T

1
2 ‖Φ‖L0,σ

2
.

We next prove that

‖Dσ
xv‖L2

x(L
q
ω(L

2
t ))
≤ CqT‖Φ‖L0,σ

2
. (2.13)

Indeed, the two previous estimates imply by interpolation (see [4] Proposition A1) that, since

q = 4
ε
, we have 1

q
= 1

2

(
1−

(
1− ε

2

))
, which yields

‖Dσ+1− ε
2

x v‖Lqx(Lqω(L2
t ))
≤ C‖Dσ

xv‖
ε
2

L2
x(L

q
ω(L

2
t ))
‖D1+σ

x v‖1−
ε
2

L∞x (Lqω(L
2
t ))
.

Thus, using the Fubini theorem, we deduce that

‖Dσ+1− ε
2

x v‖Lqω(Lqx(L2
t ))
≤ C T

1
2
+ ε

4‖Φ‖L0,σ
2
. (2.14)

To prove (2.13) using Hölder’s inequality with respect to dt, Fubini’s theorem and moments

of the stochastic integral, we deduce that for any CONS {ek}k≥0 of L2(R), we have

‖Dσ
xv‖2L2

x(L
q
ω(L

2
t ))

=

∫
R

[
E
({∫ T

0

∣∣∣Dσ
x

∫ t

0

S(t− s)ΦdW (s)
∣∣∣2dt} q

2
)] 2

q
dx

≤ T ( q
2
−1) 2

q

∫
R

[
E
(∫ T

0

∣∣∣Dσ
x

∫ t

0

S(t− s)ΦdW (s)
∣∣∣qdt)] 2

q
dx

≤ T 1− 2
q

∫
R

[ ∫ T

0

E
(∣∣∣Dσ

x

∫ t

0

S(t− s)ΦdW (s)
∣∣∣q)dt] 2

q
dx

≤ Cq T
1− 2

q

∫
R

[ ∫ T

0

∣∣∣∑
j≥0

∫ t

0

Dσ
xS(t− s)Φej|2ds

∣∣∣ q2dt] 2
q
dx

≤ Cq T
1− 2

q T
2
q

∫
R

[∣∣∣∑
j≥0

∫ T

0

|Dσ
xS(s)Φej|2ds

∣∣∣ q2] 2
q
dx

≤ Cq T
∑
j≥0

∫ T

0

(∫
R
|Dσ

xS(s)Φej|2dx
)
ds ≤ CqT

2
∑
j≥0

‖Φej‖2Hσ
x
,

which completes the proof of (2.13), and thus, of (2.14).
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We next compute an upper estimate of ‖v‖Lqω(Lqx(L2
t ))

. Using Fubini’s theorem, Hölder’s

inequality with respect to dt and moments of the stochastic integral, we obtain

‖v‖q
Lqω(L

q
x(L

2
t ))

=

∫
R
E
({∫ T

0

∣∣∣ ∫ t

0

S(t− s)ΦdW (s)
∣∣∣2 dt} q

2
)
dx

≤ T
q
2
−1
∫
R
E
(∫ T

0

∣∣∣ ∫ t

0

S(t− s)ΦdW (s)
∣∣∣q dt) dx

≤ Cq T
q
2
−1
∫
R

[ ∫ T

0

(∑
j≥0

∫ t

0

|S(t− s)Φej|2ds
) q

2
dt
]
dx

≤ Cq T
q
2

∫
R

(∑
j≥0

∫ T

0

|S(s)Φej|2ds
) q

2
dx.

The Sobolev embedding theorem implies that for σ̃ = 1
2
− 1

q
, we have H σ̃

x ⊂ Lqx. Therefore,

Minkowski’s inequality yields

‖v‖2Lqω(Lqx(L2
t ))
≤ Cq T

{∫
R

(∑
j≥0

∫ T

0

|S(s)Φej|2ds
) q

2
dx
} 2
q

≤ Cq T
∑
j≥0

∫ T

0

∥∥∥|S(s)Φej|2
∥∥∥
L
q
2
x

ds

≤ Cq T
∑
j≥0

∫ T

0

∥∥S(s)Φej
∥∥2
Lqx
ds

≤ Cq T
2
∑
j≥0

sup
s∈[0,T ]

∥∥S(s)Φej
∥∥2
Hσ̃
x

= C T 2 ‖Φ‖2
L
0, 12−

ε
4

2

. (2.15)

The inequalities (2.15) and (2.14) imply that

‖v‖
Lqω(W

σ+1− ε2 ,q
x (L2

t ))
≤ C T ‖Φ‖

L
0,( 12−

ε
4 )∨σ

2

.

Since q ε
2

= 2 ≥ 1, the Sobolev embedding theorem yields W
ε
2
,q

x (L2
t ) ⊂ L∞x (L2

t ); thus,

D1+σ−ε
x v ∈ Lqω(L∞x (L2

t )) and

‖D1+σ−ε
x v‖Lqω(L∞x (L2

t ))
≤ C T ‖Φ‖

L
0,( 12−

ε
4 )∨σ

2

. (2.16)

Finally,

Dσ−ε
x ∂xv =

∫ t

0

Dσ−ε
x ∂xS(t− s)ΦdW (s) =

∫ t

0

D1+σ−ε
x S(t− s)HΦdW (s),

where H denotes the Hilbert transform. Thus, we obtain

‖Dσ−ε
x ∂xv‖Lqω(L∞x (L2

t ))
≤ C T ‖HΦ‖

L
0,( 12−

ε
4 )∨σ

2

≤ C T ‖Φ‖
L
0,( 12−

ε
4 )∨σ

2

.

This completes the proof of (2.12), and therefore, of (2.10).

To prove (2.11), let σ = ε = 2
5
. Then 1

2
− ε

4
= σ and (2.16) completes the proof. �
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Lemma 2.5. Let p, q be such that 2 ≤ q ≤ p <∞ and γ ≥ 0. There exists a constant C > 0

such that

E‖Dγ
xv‖

q
Lqx(L

p
t )
≤ C T

q
p
+ q

2 ‖Φ‖q
L
0,γ+1

2−
1
q

2

. (2.17)

Proof. Fubini’s theorem and Hölder’s inequality with respect to dt prove that

E‖Dγ
xv‖

q
Lqx(L

p
t )

= ‖Dγ
xv‖

q
Lqx(L

q
ω(L

p
t ))
≤ ‖Dγv‖Lqx(Lpω(Lpt )) = ‖Dγv‖q

Lqx(L
p
t (L

p
ω))
.

Hence, (2.17) can be obtained from the following estimate

‖Dγ
xv‖

q
Lqx(L

p
t (L

p
ω))
≤ C T

q
p
+ q

2 ‖Φ‖q
L
0,γ+1

2−
1
q

2

. (2.18)

Moments of the stochastic integral, a change of variables and Hölder’s inequality with respect

to ds imply that for the CONS {ej}j≥0 of L2(R) in the definition of W , we have

‖Dγv‖q
Lqx(L

p
t (L

p
ω))

=

∫
R

∣∣∣ ∫ T

0

E
(∣∣∣Dγ

x

∫ t

0

S(t− s)ΦdW (s)
∣∣∣p)dt∣∣∣ qpdx

= Cp

∫
R

(∫ T

0

∣∣∣∑
j≥0

∫ t

0

|Dγ
xS(t− s)Φej|2ds

∣∣∣ p2dt) qpdx
≤ Cp

∫
R

(∫ T

0

∣∣∣∑
j≥0

∫ T

0

|Dγ
xS(s)Φej|2ds

∣∣∣ p2dt) qpdx
≤ Cp

∫
R
T
q
p

(∫ T

0

∑
j≥0

|Dγ
xS(s)Φej|2ds

) q
2
dx

≤ Cp T
q
p T (1− 2

q
) q
2

∫
R

(∫ T

0

∣∣∣∑
j≥0

|Dγ
xS(s)Φej|2

∣∣∣ q2ds)dx.
Using the Fubini theorem and then the Minkowski inequality, we deduce∫

R

(∫ T

0

∣∣∣∑
j≥0

|Dγ
xS(s)Φej|2

∣∣∣ q2ds)dx =

∫ T

0

∥∥∥∑
j≥0

|Dγ
xS(s)Φej|2‖

q
2

L
q
2
x

ds

≤
∫ T

0

(∑
j≥0

‖Dγ
xS(s)Φej|2 ‖

L
q
2
x

) q
2
ds =

∫ T

0

(∑
j≥0

‖Dγ
xS(s)Φej‖2Lqx

) q
2
ds

≤ C

∫ T

0

(∑
j≥0

‖Dγ
xS(s)Φej‖2Hσ

x

) q
2
ds = C T ‖Φ‖q

L
0,γ+1

2−
1
q

2

,

where in the last line we use the Sobolev embedding Hσ
x ⊂ Lqx for σ = 1

2
− 1

q
. This completes

the proof. �

Finally, in the case of the stochastic mKdV equation, we have to prove a result similar to

Proposition 3.2 in [4]. However, we have to estimate the L4
x(L

∞
t ) norm instead of the L2

x(L
∞
t );

this requires a stronger condition on the operator Φ which has to be in L0,1+ε
2 for some positive

ε.
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Lemma 2.6. Let Φ ∈ L0,1+ε
2 for some positive ε. Then v ∈ L4

ω(L4
x(L

∞
t )) and there exists a

positive constant C such that

E
(∫

R
sup
t∈[0,T ]

∣∣∣ ∫ t

0

S(t− s)ΦdW (s)
∣∣∣4 dx) ≤ C (T + T 4) ‖Φ‖4

L0,1+ε
2

. (2.19)

Proof. The proof is based on results from the proof of Proposition 3.2 in [4]. We send to this

reference for some intermediate results. Let {ej}j≥0 be the CONS of L2(R) in the definition

of W . Let {ψk}k≥0 denote a partition of unity such that

supp ψ0 ⊂ [−1,+1], supp ψk ⊂ [2k−2, 2k] , ψk(ξ) = ψ1

( ξ

2k−1

)
for ξ ≥ 0, k ≥ 1.

Let ψ̃k ∈ C∞0 (R) satisfy ψ̃k ≥ 0, ψ̃k = 1 on the support of ψk, and supp ψ̃k ⊂ [2k−3, 2k+1]. For

k ∈ N let Sk(t) and Φk be defined by

Ŝk(t)u(ξ) = ψk(|ξ|) Ŝ(t)u(ξ) = eitξ
3

ψk(|ξ|) û(ξ),

Φ̂kej(ξ) = ψ̃k(|ξ|) Φ̂ej(ξ), j ∈ N.

Then Sk(t)Φ = Sk(t)Φk, k ∈ N and S(t)Φ =
∑

k≥0 Sk(t)Φk. We prove that for every k ∈ N
and ε ∈ (0, 1),

E
(∫

R
sup
t∈[0,T ]

∣∣∣ ∫ t

0

Sk(t− s)ΦkdW (s)
∣∣∣4 dx) ≤ C (T + T 4) 2εk

(∑
j∈N

‖Φkej‖2
H

1+ ε
2

x

)2
. (2.20)

Suppose that (2.20) holds. Then using the Minkowski and Cauchy-Schwarz inequalities, we

deduce that {
E
(∫

R
sup
t∈[0,T ]

∣∣∣ ∫ t

0

S(t− s)ΦdW (s)
∣∣∣4 dx)} 1

4

=
{
E
(∫

R
sup
t∈[0,T ]

∣∣∣∑
k∈N

∫ t

0

Sk(t− s)ΦkdW (s)
∣∣∣4 dx)} 1

4

≤
∑
k∈N

{
E
(∫

R
sup
t∈[0,T ]

∣∣∣ ∫ t

0

Sk(t− s)ΦkdW (s)
∣∣∣4 dx)} 1

4

≤ C (T + T 4)
1
4

∑
k∈N

2
εk
4

(∑
j∈N

‖Φkej‖2
H

1+ ε
2

x

) 1
2

≤ C (T + T 4)
1
4

(∑
k∈N

2−
εk
2

) 1
2
(∑
k∈N

2εk
{∑
j∈N

‖Φkej‖2
H

1+ ε
2

x

}) 1
2

≤ C (T + T 4)
1
2‖Φk‖L0,1+ε

2
;

the last inequality is obtained from the upper estimate
∑

k∈N 2εk‖Φkϕ‖2
H

1+ ε
2

x

≤ C ‖Φkϕ‖2H1+ε
x

for every ϕ ∈ L2
x.
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We next prove (2.20). Let α > 0 to be chosen later, and p ≥ 4 such that αp > 1. The

Sobolev embedding implies that Wα,p
t ⊂ L∞t ; hence, using Fubini’s theorem we obtain

E
(∫

R
sup
t∈[0,T ]

∣∣∣ ∫ t

0

Sk(t− s)ΦkdW (s)
∣∣∣4 dx) ≤ C(I1 + I2), (2.21)

where

I1 =

∫
R
E
({∫ T

0

∫ T

0

∣∣ ∫ t
0
Sk(t− s)ΦkdW (s)−

∫ t′
0
Sk(t

′ − s)ΦkdW (s)
∣∣p

|t− t′|1+αp
dt dt′

} 4
p
)
dx,

I2 =

∫
R
E
({∫ T

0

∣∣∣ ∫ t

0

Sk(t− s)ΦkdW (s)
∣∣∣pdt} 4

p
)
dx.

To upper estimate I2, we use Hölder’s inequality with respect to the expected value, Fubini’s

theorem, moments of Gaussian variables and Minkowski’s inequality with respect to dt and

dx; this yields

I2 ≤
∫
R

{
E
(∫ T

0

∣∣∣ ∫ t

0

Sk(t− s)ΦkdW (s)
∣∣∣pdt)} 4

p
dx

≤ Cp

∫
R

{∫ T

0

∣∣∣∑
j∈N

∫ t

0

∣∣Sk(t− s)Φkej
∣∣2ds∣∣∣ p2dt} 4

p
dx

≤ Cp

∫
R

{∑
j∈N

[ ∫ T

0

∣∣∣ ∫ T

0

∣∣Sk(s)Φkej
∣∣2ds∣∣∣ p2dt] 2

p
}2

dx

≤ CpT
4
p

∫
R

{∑
j∈N

∣∣∣ ∫ T

0

∣∣Sk(s)Φkej
∣∣2ds}2

dx

≤ CpT
2+ 4

p

{∑
j∈N

sup
s∈[0,T ]

‖|Sk(s)Φkej|2‖L2
x

}2

≤ CpT
2+ 4

p

{∑
j∈N

sup
s∈[0,T ]

‖Sk(s)Φkej‖2L4
x

}2

≤ CT 2+ 4
p

{∑
j∈N

sup
s∈[0,T ]

‖Sk(s)Φkej‖2Hσ
x

}2

,

where the last inequality can be deduced from the inclusion Hσ
x ⊂ L4

x for σ > 1
4

to be chosen

later.

Remark 2.7. This is the place where the significant difference with the stochastic KdV case

in [4] arises. Indeed, to deal with the higher power of nonlinearity, the functional space here

is L4
x(L

∞
t ) instead of L2

x(L
∞
t ).
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Using Theorem 2.7 in [10], we first consider the homogeneous part of the Hσ
x -norm (denoted

by Ḣσ
x ). For τ > 3

4
, if σ = τ − 1

2
, we obtain{∑

j∈N

sup
s∈[0,T ]

‖Sk(s)Φkej‖2Ḣσ
x

}2

≤ C
{∑
j∈N

‖Dσ
xΦkej‖2Hτ

x

}2

≤ C‖Φk‖4L0,σ+τ
2

. (2.22)

The L2
x part of the Hσ

x -norm obviously satisfies the same final upper bound.

To upper estimate I1, we use Hölder’s inequality with respect to the expected value and

Fubini’s theorem,

I1 ≤
∫
R

{∫ T

0

∫ T

0

E
(∣∣ ∫ t

0
Sk(t− s)ΦkdW (s)−

∫ t′
0
Sk(t

′ − s)ΦkdW (s)
∣∣p)

|t− t′|1+αp
dt dt′

} 4
p
dx .

Since the stochastic integral is Gaussian, for t ≤ t′ we have

E
(∣∣∣ ∫ t

0

Sk(t− s)ΦkdW (s)−
∫ t′

0

Sk(t
′ − s)ΦkdW (s)

∣∣∣p)
= Cp

∣∣∣∑
j∈N

∫ t

0

∣∣Sk(t− s)Φkej − Sk(t′ − s)Φkej|2ds
∣∣∣ p2 + Cp

∣∣∣ ∫ t′

t

∑
j∈N

∣∣Sk(t′ − s)Φkej|2ds
∣∣∣ p2 .

In the double time integral we first consider the case |t−t′|2γk ≤ 1 for γ > 0 to be chosen later

on. Using parts of the proof of Proposition 3.1 pages 228-229 in [4] based on computations

from [10], we deduce that for k, j ∈ N and 0 ≤ t ≤ t′ ≤ T , we obtain∫ t

0

∣∣Sk(t− s)Φkej − Sk(t′ − s)Φkej|2ds ≤ C
(
|t− t′|23k + |t− t′|225k

)2(
HT
k ∗ |Φkej|

)2
,∫ t′

t

∣∣Sk(t′ − s)Φkej|2ds ≤ C|t′ − t|
(
HT
k ∗ |Φkej|

)2
,

where for k ≥ 1 (resp. k = 0) we let

HT
k (x) = 2k−1 for |x| ≤ C1(T + 1), HT

k (x) =
2
k−1
2

|x| 12
for C1(T + 1) < |x| ≤ C2(T + 1)22(k−1),

HT
k (x) =

1

1 + x2
for |x| > C2(T + 1)22(k−1),

HT
0 (x) = 1 for |x| ≤ C1(T + 1), HT

0 (x) =
1

1 + x2
for |x| > C1(T + 1).

Hence, we deduce that for k ∈ N and 0 ≤ t ≤ t′ ≤ T , we get

Jk(t, t
′) := E

(∣∣∣ ∫ t

0

Sk(t− s)ΦkdW (s)−
∫ t′

0

Sk(t
′ − s)ΦkdW (s)

∣∣∣2)
≤ C

(
|t− t′|+ |t− t′|226k + |t− t′|4210k

) ∑
j∈N

(
HT
k ∗ |Φkej|

)2
.
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Fix ε ∈ (0, 1); choose γ > 9
2

and α < 1
8

such that αγ < ε
8
. Note that for ε ∈ (0, 1) we have

α < 1
36

; thus, p > 36. Then for |t− t′|2γk ≤ 1, we obtain

Jk(t, t
′) ≤ C |t− t′|4α2(−3+4αγ)k

(
2k(−γ+3) + 2k(−2γ+9) + 2k(−4γ+13)

) ∑
j∈N

(
HT
k ∗ |Φkej|

)2
≤ C |t− t′|4α 2(−3+ ε

2
)k
∑
j∈N

(
HT
k ∗ |Φkej|

)2
.

A direct computation shows that for k, j ∈ N and 0 ≤ t ≤ t′ ≤ T such that |t− t′| 2γk > 1, we

get

Jk(t, t
′) ≤ 2

∑
j∈N

[ ∫ t

0

∣∣Sk(t− s)Φkej|2ds+

∫ t′

0

∣∣Sk(t′ − s)Φkej|2ds
]

≤ 4|t− t′|4α 2
ε
2
k
∑
j∈N

∫ T

0

∣∣Sk(s)Φkej|2ds.

The above upper estimates and Minkowski’s inequality with respect to dx imply

I1 ≤ C 2εk 2−6k
∫
R

{∫ T

0

∫ T

0

1{|t−t′|2γk≤1}
1

|t− t′|1−αp
dt dt′

} 4
p
(∑
j∈N

(
HT
k ∗ |Φkej|

)2)2
dx

+ C 2εk
∫
R

{∫ T

0

∫ T

0

1{|t−t′|2γk>1}
1

|t− t′|1−αp
dt dt′

} 4
p
(∑
j∈N

∫ T

0

∣∣Sk(s)Φkej|2ds
)2
dx

≤ C 2εk
[
2−6k T

(∑
j∈N

∥∥HT
k ∗ |Φkej|

∥∥2
L4
x

)2
+ T 2

(∑
j∈N

sup
s∈[0,T ]

∥∥Sk(s)Φkej
∥∥2
L4
x

)2]
.

Young’s inequality yields ∥∥HT
k ∗ |Φkej|

∥∥
L4
x
≤ C‖HT

k ‖
L

4
3
x

‖Φkej‖L2
x
.

Furthermore, using the explicit definition of HT
k , we deduce∥∥HT

k

∥∥ 4
3

L
4
3
x

≤ C (1 + T ) 2
4
3
k,

which implies (∑
j∈N

∥∥HT
k ∗ |Φkej|

∥∥2
L4
x

)2
≤ C

(
1 + T 3

)
24k‖Φk‖4L0,0

2
.

The upper estimate (2.22) implies that for τ > 3
4

and σ = τ − 1
2
> 1

4
, we have

I1 ≤ C 2εk
[
(T + T 4) 2−2k‖Φk‖4L0,0

2
+ T 2‖Φk‖4L0,σ+τ

2

]
≤ C (T + T 4) 2εk ‖Φk‖4L0,σ+τ

2
. (2.23)

Since p > 36, choosing σ and τ such that σ+ τ ≤ 1+ ε
2
, the inequalities (2.21)-(2.23) conclude

the proof of (2.20), and thus of the lemma. �
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In order to prove the existence of a local solution to (2.3), we first estimate moments of

functional norms ‖v‖XTk of the stochastic integral v(t) =
∫ t
0
S(t − s)ΦdW (s), k = 2, 3. Let

u ∈ XT
k ; following the notations in [10], we set

‖u‖XT2 = max
j=1,··· ,5

µTj (u) ( resp. ‖u‖XT3 = max
j=1,··· ,7

νTj (u)), (2.24)

where for some positive number ρ, we define

µT1 (u) = sup
t∈[0,T ]

‖D
1
4
x u(t)‖L2

x
, µT2 (u) = ‖Dxu‖

L20
x (L

5
2
t )
, µT3 (u) = ‖D

1
4
x u‖L5

x(L
10
t ),

µT4 (u) = ‖D
1
4
x ∂xu‖L∞x (L2

t )
, µT5 (u) = ‖u‖L4

x(L
∞
t ),

νT1 (u) = sup
t∈[0,T ]

‖u(t)‖
H

1
12
x

, νT2 (y) = (1 + T )−ρ‖u‖
L

42
13
x (L

21
4
t )
, νT3 (u) = ‖u‖

L
60
13
x (L15

t )
,

νT4 (u) = T−
1
6‖u‖

L
10
3
x (L

30
7
t )
, νT5 (u) = νT4 (D

1
12
x u),

νT6 (u) = ‖∂xu‖L∞x (L2
t )
, νT7 (u) = νT6 (D

1
12
x u).

The following proposition gathers the information from the previous lemmas.

Proposition 2.8. For t ∈ [0, T ] let v(t) =
∫ t
0
S(t− s) Φ dW (s).

(i) Suppose that Φ ∈ L0,1+ε
2 for some ε > 0. Then for some positive constant C, we have

E
(
‖v‖2

XT2

)
≤ C (

√
T + T 2) ‖Φ‖2

L0,1+ε
2

. (2.25)

(ii) Suppose that Φ ∈ L0, 5
12

2 . Then for some positive constant C, we obtain

E
(
‖v‖2

XT3

)
≤ C (T + T 2) ‖Φ‖2

L
0, 5

12
2

. (2.26)

Proof. (i) Consider k = 2 (mKdV).

Lemma 2.1 applied with q = 1 and σ = 1
4

implies that E
(∣∣µT1 (v)

∣∣2) ≤ C T ‖Φ‖2
L
0, 14
2

.

Using Lemma 2.3 with p = 5
2
< 20 = q and γ = 1, we obtain E

(∣∣µT2 (v)
∣∣20) ≤ C T 9 ‖Φ‖20

L
0, 19
2

.

Lemma 2.5 applied with γ = 1
4
, 2 < q = 5 < p = 10 yields E

(∣∣µT3 (v)
∣∣5) ≤ C T 3 ‖Φ‖5

L
0, 1120
2

.

Lemma 2.4 applied with σ = 9
20

and ε = 1
5

yields E
(∣∣µT4 (v)

∣∣2) ≤ C T 2 ‖Φ‖2
L
0, 9

20
2

.

Finally, Lemma 2.6 implies E
(∣∣µT5 (v)

∣∣4) ≤ C(T + T 4) ‖Φ‖2
L0,1+ε
2

for any ε > 0.

These estimates and Hölder’s inequality conclude the proof of (2.25).

(ii) Consider k = 3 (gKdV).

Lemma 2.1 applied with q = 1 and σ = 1
12

implies that E
(∣∣νT1 (v)

∣∣2) ≤ C T ‖Φ‖2
L
0, 1

12
2

.
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Apply Lemma 2.5 to upper estimate moments of νTk (v) for k = 2, ..., 5. Take γ = 0, and

either 2 ≤ q = 42
13
< p = 21

4
for νT2 (v) or 2 ≤ q = 60

13
< p = 15 for νT3 (v). This yields

E
(∣∣νT2 (v)

∣∣ 4213 ) ≤ C (1 + T )−
42ρ
13 T

42
13

(
4
21

+ 1
2

)
‖Φ‖

42
13

L
0, 4

21
2

≤ C T
29
13 ‖Φ‖

42
13

L
0, 4

21
2

,

E
(∣∣νT3 (v)

∣∣ 6013 ) ≤ C T
34
13 ‖Φ‖

60
13

L
0, 1760
2

.

Take 2 ≤ q = 10
3
< p = 30

7
, and either γ = 0 for νT4 (v) or γ = 1

12
for νT5 (v). This yields

E
(∣∣νT4 (v)

∣∣ 103 ) ≤ C T
41
18 ‖Φ‖

10
3

L
0, 15
2

, E
(∣∣νT5 (v)

∣∣ 103 ) ≤ C T
41
18 ‖Φ‖

10
3

L
0, 1760
2

.

Furthermore, the inequality (2.11) from Lemma 2.4 gives exactly E
(∣∣νT6 (v)

∣∣2) ≤ C T 2 ‖Φ‖2
L
0, 25
2

.

Finally, the inequality (2.10) from Lemma 2.4 applied with σ = 5
12

and ε = 1
3

yields

E
(∣∣νT7 (v)

∣∣2) ≤ C T 2 ‖Φ‖2
L
0, 5

12
2

.

These bounds and Hölder’s inequality complete the proof of (2.26). �

3. Local well-posedness

In this section, we prove the existence of a unique local solution u ∈ X
T (ω)
k to (2.1) for some

random terminal time T (ω), which is positive for almost every ω.

Proposition 3.1. Let k = 2, u0 ∈ H
1
4
x a.s. and Φ ∈ L0,1+ε

2 for some positive ε (resp. k = 3,

u0 ∈ H
1
12
x a.s. and Φ ∈ L

0, 5
12

2 ). Almost surely there exists a positive random time T k(ω),

k = 2, 3 such that there exists a unique solution to (2.1) in X
Tk(ω)
k .

Proof. Set σ(2) = 1
4

and σ(3) = 1
12

. Suppose that a.s. u0 ∈ H
σ(k)
x for k = 2, 3. Using

the inequalities (3.6)-(3.7), (3.9), (3.11) and (3.35) (resp. (3.6)-(3.7), (3.48), (3.52)-(3.53)) in

[11], we obtain that for almost every ω, S(t)u0(ω) ∈ XT
k for u0(ω) ∈ H

σ(k)
x . Furthermore,

S(.)
(
u0(ω)

)
∈ C([0, T ];H

σ(k)
x ) and

‖S(.)u0(ω)‖XTk ≤ ck‖u0(ω)‖
H
σ(k)
x

for some constant ck, which does not depend on T or ω (see [11] pages 584 and 586).

Proposition 2.8 implies that, if the operator Φ is regular enough (that is, Φ ∈ L0,1+ε
2 for

some positive ε when k = 2 or Φ ∈ L0, 5
12

2 when k = 3), then the random process v, defined

by v(t) =
∫ t
0
S(t− s) Φ dW (s), belongs a.s. to XT

k . Furthermore, the map v(.) belongs a.s. to

C([0, T ];H
σ(k)
x ) for any T > 0. For k = 2, 3 and R > 0 set

Y
R,T
k :=

{
u ∈ C

(
[0, T ], Hσ(k)

x

)
∩ XT

k : ‖u‖XTk ≤ R
}
.

Let Fk denote the map defined by(
Fku

)
(t) = S(t)u0 + v(t)−

∫ t

0

S(t− s)
(
uk∂xu

)
(s)ds.
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Let k = 2; using inequalities proved in [11] page 584-585, we deduce that for u0 ∈ H
1
4
x a.s.

and Φ ∈ L0,1+ε
2 for some positive ε given u, u1, u2 ∈ XT

2 , we have

‖F2u‖XT2 ≤ c2‖D
1
4
x u0‖L2

x
+ ‖v‖XT2 + C̃2 T

1
2 ‖u‖3

XT2
,

‖F2u1 − F2u2‖XT2 ≤ C̄2 T
1
2

(
‖u1‖2XT2 + ‖u2‖2XT2

)
‖u1 − u2‖XT2 .

For almost every ω choose

R2(ω) = 2
(
c2‖u0(ω)‖

H
1
4
x

+ ‖v(ω)‖XT2
)
, (3.1)

and let T2(ω) > 0 satisfy

2 C̃2 T2(ω)
1
2 R2(ω)2 ≤ 1 and 4 C̄2T2(ω)

1
2 R2(ω)2 ≤ 1. (3.2)

In a similar way, when k = 3, the inequalities proved in [11] page 590 imply that for

u0 ∈ H
1
12
x a.s. and Φ ∈ L0, 5

12
2 , given u, u1, u2 ∈ XT

3 , we have for some ρ > 0

‖F3u‖XT3 ≤ c3‖D
1
12
x u0‖L2

x
+ ‖v‖XT3 + C̃3 T

1
18 (1 + T )ρ ‖u‖4

XT3
,

‖F3u1 − F3u2‖XT3 ≤ C̄3 T
1
18 (1 + T )ρ

[
‖u1‖3XT3 + ‖u2‖3XT3

]
‖u1 − u2‖XT3 .

For almost every ω choose

R3(ω) = 2
(
c3‖u0(ω)‖

H
1
12
x

+ ‖v(ω)‖XT3
)
, (3.3)

and let T3(ω) > 0 be such that

2 C̃3 T3(ω)
1
18

(
1 + T3(ω)

)ρ
R3(ω)3 ≤ 1 and 4 C̄3 T3(ω)

1
18

(
1 + T3(ω)

)ρ
R3(ω)2 ≤ 1. (3.4)

These choices imply that for k = 2, 3, Fk maps Y
Rk(ω),Tk(ω)
k into itself. Furthermore, since

‖Fku1 − Fku2‖XTk ≤
1
2
‖u1 − u2‖XTk for u1, u2 ∈ Y

Rk(ω),Tk(ω)
k , the map Fk is a strict contraction

on that set. Hence, Fk has a unique fixed point in Y
Rk(ω),Tk(ω)
k , which is the unique solution to

(2.1) in X
Tk(ω)
k , k = 2, 3, thus, concluding the proof. �

4. Global well-posedness

We now prove global existence when the initial condition u0 is in H1
x a.s. The argument

relies on a regularization of u0 and Φ and on the following conservation laws. When k = 2, 3

and zk is the (deterministic) solution to the gKdV equation

∂tzk(t) +
(
∂3xzk(t) + zk(t)

k∂xzk(t)
)

= 0, zk(0) = z0 ∈ H1
x,

then the following quantities are time-invariant

the mass: ‖zk(t)‖2L2
x
, (4.1)

the Hamiltonian: Hk(zk(t)) =
1

2

∫
R
|Dxzk(t)|2dx−

1

(k + 1)(k + 2)

∫
R
zk(t)

k+2dx. (4.2)

We now prove Theorem 1.1.
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Proof. We suppose that u0 ∈ L2
ω(H1

x) ∩ L2q
ω (L2

x) for some q ∈ [2,∞) to be chosen later.

The proof is based on approximations of Φ and u0 and contains several steps. Indeed, we

want to obtain moments of the H1
x-norm of un uniformly in t. The mild formulation does

not allow us to use martingale estimates for the stochastic integral appearing when the Itô

formula is applied to the mass and to the Hamiltonian. Thus, we have to use a sequence of

strong solutions {un} of (2.1), where Φn is a “smoother” Hilbert-Schmidt operator and u0,n
is a “smoother” initial condition. Let Φn ∈ L0,4

2 and u0,n ∈ H3
x be such that

Φn → Φ in L0,1+ε
2 , ε > 0 (resp. in L0,1

2 ) for k = 2 (resp. k = 3), (4.3)

u0,n → u0 in L2
ω(H1

x) ∩ L2q
ω (L2

x) and in H1
x a.s. (4.4)

Step 1. Proposition 2.8 proves that the sequence vn(t) :=
∫ t
0
S(t − s)ΦndW (s) converges

to the stochastic integral v in L2
ω(XT

k ). Hence, there exists a subsequence, still denoted {vn},
which converges to v a.s. Furthermore, for any integer n and k = 2, 3, there exists a unique

solution un to

∂tun(t) +
(
∂3xun(t) + un(t)k∂xun(t)

)
dt = 0, un(0) = u0,n,

and un belongs a.s. to L∞t (H3
x). Indeed, following the argument in [4], Lemma 3.2, if we set

vn(t) =
∫ t
0
S(t− s)ΦndW (s) and let zn = un − vn, then zn has to solve a.s. the deterministic

equation

∂tzn(t) +
[
∂3xzn(t) +

(
zn(t) + vn(t)

)k
∂x
(
zn(t) + vn(t)

)]
dt = 0, zn(0) = u0,n.

To ease notations we do not specify the value of k = 2, 3 when dealing with the solution un.

Standard arguments such as the parabolic regularization described in [14] yield that the above

equation has a unique local solution. Finally, an argument similar to that in [7] proves that

the invariant quantities in (4.1) and (4.2) allow us to extend this solution to any time interval

[0, T ]. Note that un ∈ L∞t (H3
x) ∩ XT

k a.s.

Step 2. We next prove that the sequence (un) is bounded in L2q
ω (L∞t (L2

x)). The proof is

based on Itô’s formula for the mass and conservation of the mass (L2
x-norm) of the solutions

to the deterministic gKdV equation.

Using the conservation of mass for the solutions to the deterministic gKdV equation, we

get ∫ t

0

(
un(s), ∂3xun(s) + un(s)k∂xun(s)

)
ds = 0.

Note that this requires un(s) ∈ H3
x a.s., which holds by Step 1, and un(s) ∈ L2(k+1)

x a.s., which is

true, since H1
x ⊂ L

2(k+1)
x . Itô’s formula applied to ‖un(t)‖2L2

x
and the identity

∑
j≥0 ‖Φnej‖2L2

x
=

‖Φ‖2
L0,0
2

yield

‖un(t)‖2L2
x

= ‖u0,n‖2L2
x

+ 2

∫ t

0

(
un(s),ΦndW (s)

)
+ t‖Φn‖2L0,0

2
.
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Using once more Itô’s formula with the map y 7→ yq, q ∈ [2,∞), and the process ‖un(t)‖2L2
x
,

we obtain

‖un(t)‖2qL2
x

= ‖u0,n‖2qL2
x

+ 2q

∫ t

0

‖un(t)‖2(q−1)L2
x

(
un(s),ΦndW (s)

)
+R(t), (4.5)

where

R(t) =q

∫ t

0

‖un(s)‖2(q−1)L2
x
‖Φn‖2L0,0

2
ds+ 2q(q − 1)

∫ t

0

‖un(s)‖2(q−2)L2
x

∑
j∈N

(
un(s),Φnej

)2
ds.

The Cauchy-Schwarz inequality applied to the last term gives

|R(t)| ≤ ‖Φn‖2L0,0
2

∫ t

0

(2q2 − q)‖un(s)‖2(q−1)L2
x

ds ≤ 1

4
sup
s∈[0,T ]

‖un(s)‖2qL2
x

+ C(T )‖Φn‖2qL0,0
2

, (4.6)

for some C(T ) > 0 which is an increasing function of T , where the last inequality is obtained

using Young’s inequality with the conjugate exponents q and q
q−1 . Furthermore, the Davies

inequality for stochastic integrals, the Cauchy-Schwarz and then the Young inequality applied

with the conjugate exponents 2q and 2q
2q−1 imply

E
(

sup
t∈[0,T ]

∫ t

0

‖un(s)‖2(q−1)L2
x

(
un(s),ΦndW (s)

)
≤ 3E

({∫ T

0

‖un(s)‖4(q−1)L2
x

∑
j≥0

(
un(s),Φnej

)2
ds
} 1

2
)

≤ 3E
({∫ T

0

‖un(s)‖4q−2L2
x
‖Φn‖2L0,0

2
ds
} 1

2
)
≤ 3E

(
sup
s∈[0,T ]

‖un(s)‖2q−1L2
x

√
T ‖Φn‖L0,0

2

)
≤ 1

4
E
(

sup
s∈[0,T ]

‖un(s)‖2qL2
x

)
+ C(T ) ‖Φn‖2qL0,0

2

, (4.7)

for some C(T ) > 0, which is an increasing function of T . The inequalities (4.5)-(4.7) yield the

existence of a constant C(T ) > 0 such that

E
(

sup
s∈[0,T ]

‖un(s)‖2qL2
x

)
≤ 2E

(
‖u0,n‖2qL2

x

)
+ C(T )‖Φn‖2qL0,0

2

. (4.8)

Step 3. We now prove that (un) is bounded in L2
ω(L∞t (H1

x)).

To upper estimate the H1
x norm of un, we use the Hamiltonian Hk defined in (4.2). The time

invariance of the Hamiltonian, aka conservation of energy, for the solution to the deterministic

gKdV equation yields ∫ t

0

H′k(un(s))
[
∂3xun(s) + un(s)k∂xun(s)

]
ds = 0,

where for ϕ, ψ ∈ H3
x, we have

H′k(ϕ)(ψ) =

∫
R
DxϕDxψdx−

1

k + 1

∫
R
ϕk+1ψdx = −

∫
R

[
D2
xϕ+

1

k + 1
ϕk+1

]
ψdx.

Note that this integral makes sense for un(s). Indeed, the Gagliardo-Nirenberg inequality

implies H1
x ⊂ Lqx for any q ∈ [2,∞) and, since un ∈ H3

x a.s., we have un(s) ∈ Lpx for any

p ∈ [2,∞). Hence, un(s)k+1 ∈ L2
x a.s.
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Integration by parts implies that for ϕ ∈ H3
x, the bilinear form H′′k(ϕ) can be written as

H′′k(ϕ)(v1, v2) =
(
∂xv1 , ∂xv2

)
−
∫
R
ϕk v1 v2dx, v1, v2 ∈ H3

x. (4.9)

Since Φn ∈ L0,4
2 , the vectors Φnej ∈ H3

x. Thus, the Itô formula applied to Hk(un) yields

Hk(un(t)) =Hk(u0)−
∫ t

0

[(
∂2xun(s),ΦndW (s)

)
+

1

k + 1

(
un(s)k+1,ΦndW (s)

)]
+

1

2

∫ t

0

∑
j≥0

H′′k(un(s))(Φnej,Φnej)ds. (4.10)

Using the explicit form of (4.9), we obtain

∑
j≥0

H′′k(un(s))(Φnej,Φnej) =
∑
j∈N

∫
R

[
|∂x(Φnej)|2 − |un(s)|k

(
Φnej

)2]
dx

≤‖Φn‖2L0,1
2

+
∑
j∈N

∫
R
‖Φnej‖2L∞x |un(s)|kdx

≤‖Φn‖2L0,1
2

+ C ‖Φn‖2L0,1
2
‖un(s)‖kLkx ,

where we used the Sobolev embedding H1
x ⊂ L∞x to obtain the last upper estimate.

For k = 2 the last expression simplifies to

∑
j≥0

H′′2(un(s))(Φnej,Φnej) ≤ ‖Φn‖2L0,1
2

+ C ‖Φn‖2L0,1
2
‖un(s)‖2L2

x
(4.11)

for some constant C > 0.

For k = 3, the Gagliardo-Niremberg inequality implies ‖un‖L3
x
≤ C‖un‖αH1

x
‖un‖1−αL2

x
for

α = 1
2
− 1

3
= 1

6
. Therefore, using Young’s inequality with the conjugate exponents 4 and 4/3,

we get

∑
j≥0

H′′3(un(s))(Φnej,Φnej) ≤ ε‖un(s)‖2H1
x

+ C(ε) ‖Φn‖
8
3

L0,1
2

‖un(s)‖
10
3

L2
x

+ ‖Φn‖2L0,1
2
, (4.12)

for any small constant ε > 0 to be chosen later, and some positive constant C(ε).
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As in (4.7), using once more the Davies inequality for the stochastic integral, integration

by parts and the Cauchy-Schwarz inequality, we obtain

E
(

sup
t∈[0,T ]

∫ t

0

−
(
∂2xun(s) +

1

k + 1
un(s)k+1,ΦndW (s)

))
≤ 3E

({∫ T

0

∑
j≥0

(
∂2xun(s) +

1

k + 1
un(s)k+1 , Φnej

)2
ds
} 1

2
)

≤ 3
√

2E
({∫ T

0

[∑
j≥0

(
∂xun(s) , ∂xΦnej

)2
+
∑
j≥0

( 1

k + 1
un(s)k+1,Φnej

)2]
ds
} 1

2
)

≤ C
√
T‖Φn‖L0,1

2

[
E
(

sup
s∈[0,T ]

‖un(s)‖H1
x

)
+ E

(
sup
x∈[0,T ]

‖un(s)‖k+1

Lk+1
x

)]
,

where the last inequality follows from the Sobolev embedding H1
x ⊂ L∞x .

The Gagliardo-Nirenberg inequality implies ‖un‖Lk+1
x
≤ ‖un‖βH1

x
‖un‖1−βL2

x
, where β = 1

2
−

1
k+1

= k−1
2(k+1)

. Using Hölder’s and Young’s inequalities with the conjugate exponents 4
k−1 and

4
5−k , we obtain

E
(

sup
t∈[0,T ]

∫ t

0

−
[(
∂2xun,ΦndW (s)

)
+

1

k + 1

(
un(s)k+1,ΦndW (s)

)])
≤ ε

2
E
(

sup
s∈[0,T ]

‖un(s)‖2H1
x

)
+ C(ε)T ‖Φn‖2L0,1

2

+ C
√
T‖Φn‖L0,1

2
E
(

sup
s∈[0,T ]

‖un(s)‖
k−1
2

H1
x

sup
s∈[0,T ]

‖un(s)‖
k+3
2

L2
x

)
≤εE

(
sup
s∈[0,T ]

‖un(s)‖2H1
x

)
+ C(ε)T ‖Φn‖2L0,1

2
+ C(ε, T ) ‖Φn‖

4
5−k

L0,1
2

E
(

sup
s∈[0,T ]

‖un(s)‖
2(k+3)
5−k

L2
x

)
(4.13)

for some number C(ε, T ) > 0, which is again an increasing function of T for fixed ε > 0. Note

that for k = 2, k+3
5−k = 5

3
< 2, and for k = 3 we have k+3

5−k = 3.

Collecting the information from the estimates (4.10)-(4.13) and choosing ε = 1
16

, we obtain

for q(2) = 2 (resp. q(3) = 3) the existence of a positive constant C(T ) such that

E
(

sup
t∈[0,T ]

Hk(un(t))
)
≤E
(
Hk(u0,n)

)
+

1

8
E
(

sup
t∈[0,T ]

‖un(s)‖2H1
x

)
+ C T ‖Φn‖2L0,1

2

+ C(T )
(
1 + ‖Φn‖

8
3

L0,1
2

)[
1 + E

(
sup
s∈[0,T ]

‖un(s)‖2q(k)L2
x

)]
.

Finally, the Gagliardo-Nirenberg inequality implies that ‖ϕ‖Lk+2
x
≤ C‖ϕ‖γH1

x
‖ϕ |1−γL2

x
for γ =

1
2
− 1

k+2
= k

2(k+2)
. Thus, using Young’s inequality with the conjugate exponents 4

k
and 4

4−k , we

deduce

1

4
‖un(s)‖2H1

x
− C‖un(s)‖

2(k+4)
4−k

L2
x
≤ Hk(un(s)) ≤ 3

4
‖un(s)‖2H1

x
+ C‖un(s)‖

2(k+4)
4−k

L2
x
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for some constant C > 0. Let q̃(k) = (k+4)
4−k ; then q̃(2) = 3 > q(2), q̃(3) = 7 > q(3). For

u0 ∈ L2q̃(k)
ω (L2

x) we have for some positive constant C(T )

1

4
E
(

sup
t∈[0,T ]

‖un(s)‖2H1
x

)
≤ 1

8
E
(

sup
t∈[0,T ]

‖un(s)‖2H1
x

)
+

3

4
E
(
‖u0,n‖2H1

x

)
+ CE

(
‖u0,n‖2q̃(k)L2

x

)
+ C(T )

(
1 + ‖Φn‖

8
3

L0,1
2

)[
1 + E

(
sup
s∈[0,T ]

‖un(s)‖2q(k)L2
x

)]
+ CE

(
sup
s∈[0,T ]

‖un(s)‖2q̃(k)L2
x

)
.

Furthermore, if u0 ∈ L
2q̃(k)
ω (L2

x), choosing the exponent q = q̃(k) ≥ 2 used for the approxi-

mation u0,n of u0, we deduce from (4.8) that ‖un‖L2
ω(L
∞
t (H1

x))
is bounded in terms of ‖Φn‖L0,1

2

and ‖u0,n‖L2q̃(k)
ω (L2

x)
. Since these norms are bounded by a constant independent of n, by virtue

of the convergence we have required in Step 1, we can now deduce that the sequence {un} is

bounded in L2
ω(L∞t (H1

x)).

Step 4. The bound of {un} proved in Step 3 implies the existence of a random variable

ũ ∈ L2
ω(L∞t (H1

x)) and of a subsequence (still denoted {un}) such that

un ⇀ ũ in L2
ω(L∞t (H1

x)) weak star.

Technically speaking, ũ ∈ Lω,w∗(L∞t (H1
x)), since we have used the weak star limit. Neverthe-

less, ũ ∈ L∞t (H1
x) a.s. Recall R2(ω) and R3(ω) from (3.1) and (3.3), respectively. Let R̃k(ω)

be defined by

R̃k(ω) := 2
[
ck(‖u0(ω)‖H1

x
+ ‖ũ(ω)‖L∞t (H1

x)

)
+ ‖v(ω)‖XTk

]
≥ Rk(ω), k = 2, 3,

where v(t) =
∫ t
0
S(t−s)ΦdW (s). Next recall T2(ω) and T3(ω) from (3.2) and (3.4), respectively.

Choose T̃k(ω) > 0, k = 2, 3, such that inequalities similar to (3.2) and (3.4) are satisfied with

T̃k(ω) and R̃k(ω) instead of Tk(ω) and Rk(ω), respectively. Note that T̃k(ω) ∈ (0, Tk(ω)]. Let

Fn,k, k = 2, 3, n ∈ N be defined on X
T̃k(ω)
k by

(Fk,nz)(t) = S(t)u0,n + vn(t) +

∫ t

0

S(t− s)z(s)k∂xz(s)ds,

where vn(t) =
∫ t
0
S(t− s)ΦndW (s).

From Step 1 we know that a.s. un(ω) ∈ X
T̃k(ω)
k , and that a.s. un(ω) is the unique fixed

point of the map Fk,n on the ball of radius R̃k(ω) of X
T̃k(ω)
k . Indeed, on that ball Fk,n is a

contraction, since by construction we know that ‖Fk,nz1−Fk,nz2‖
X
T̃k(ω)

k

≤ 1
2
‖z1−z2‖

X
T̃k(ω)

k

. The

convergences from (4.3) and (4.4) prove that ‖S(t)u0 − S(t)u0,n‖XTk and ‖v − vn‖XTk converge

to 0 as n→∞ for every T > 0. Furthermore, we have

‖Fk,nun − Fku‖
X
T̃k(ω)

k

≤ ‖u0,n − u0‖
X
T̃k(ω)

k

+ ‖vn − v‖
X
T̃k(ω)

k

+
1

2
‖un − u‖

X
T̃k(ω)

k

.

Hence, un converges to u a.s. in X
T̃k(ω)
k , where u is the unique fixed point of Fk on the ball of

radius R̃k(ω) of X
T̃k(ω)
k .

This implies that u(ω) = ũ(ω) a.s. on the time interval [0, T̃k(ω)]. Since ũ ∈ L∞t (H1
x) a.s.,

given α ∈ (0, 1), we may choose τk(ω) ∈ [αT̃k(ω), T̃k(ω)] such that ‖u(τk(ω))‖H1
x
≤ ‖ũ‖L∞t (H1

x)
.
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Replacing the initial condition u0 by u(τk(ω)), this enables us to define a solution on the time

interval
[
τk(ω),

(
τk(ω) + T̃k(ω)

)
∧ T
]
. Thus, we can inductively define a solution on any fixed

time interval [0, T ] a.s. Indeed, T̃k(ω) > 0 a.s. and at each step we increase the length of the

time interval by at least αT̃k(ω).

Finally, as in [11] we obtain that S(t)u0 is a.s. continuous from [0, T ] to H1
x. The stochastic

integral v(t) = S(t)
∫ t
0
S(−s)ΦdW (s) also belongs to C([0, T ], H1

x) a.s. Hence, as in the

deterministic framework of [11], we deduce that u ∈ C([0, T ], H1
x) a.s. This concludes the

proof. �
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