R. Biologiques and M. Truncatula, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes 1334) for M. truncatula A17 seeds; Sandra Bensmihen and Violaine Herrbach (Laboratoire des Interactions Plantes-Microorganismes, France) for providing DR5-GUS M. truncatula seeds

M. Zhang, Chinese Academy of Science, China) for the O. sativa ssp. 'Japonica' ZH11 lines overexpressing miR393; and Pieter B.F. Ouwerkerk (Leiden University) for the O. sativa ssp

B. Bago, P. Pfeffer, J. Abubaker, J. Jun, J. Allen et al., Carbon Export from Arbuscular Mycorrhizal Roots Involves the Translocation of Carbohydrate as well as Lipid, PLANT PHYSIOLOGY, vol.131, issue.3, pp.1496-1507, 2003.
DOI : 10.1104/pp.102.007765

C. Balzergue, V. Puech-pagès, G. Bécard, and S. Rochange, The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events, Journal of Experimental Botany, vol.62, issue.3, pp.1049-1060, 2011.
DOI : 10.1093/jxb/erq335

A. Boisson-dernier, M. Chabaud, F. Garcia, G. Bécard, C. Rosenberg et al., for the Study of Nitrogen-Fixing and Endomycorrhizal Symbiotic Associations, Molecular Plant-Microbe Interactions, vol.14, issue.6, pp.695-700, 2001.
DOI : 10.1094/MPMI.2001.14.6.695

F. Brandizzi and G. Wasteneys, Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules, The Plant Journal, vol.249, issue.Suppl 2, pp.339-349, 2013.
DOI : 10.1111/tpj.12227

J. Campanella, S. Smith, D. Leibu, S. Wexler, and J. Ludwig-müller, The Auxin Conjugate Hydrolase Family of Medicago truncatula and Their Expression During the Interaction with Two Symbionts, Journal of Plant Growth Regulation, vol.67, issue.4, pp.26-38, 2007.
DOI : 10.1007/s00344-007-9027-2

S. Chaabouni, B. Jones, C. Delalande, H. Wang, Z. Li et al., Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth, Journal of Experimental Botany, vol.60, issue.4, pp.1349-1362, 2008.
DOI : 10.1093/jxb/erp009

J. Combier, F. De-billy, P. Gamas, A. Niebel, and S. Rivas, Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development, Genes & Development, vol.22, issue.11, pp.1549-1559, 2008.
DOI : 10.1101/gad.461808

X. Dai and P. Zhao, psRNATarget: a plant small RNA target analysis server, Nucleic Acids Research, vol.39, issue.suppl, pp.155-159, 2011.
DOI : 10.1093/nar/gkr319

P. Delaux, N. Séjalon-delmas, G. Bécard, and J. Ané, Evolution of the plant???microbe symbiotic ???toolkit???, Trends in Plant Science, vol.18, issue.6, pp.298-304, 2013.
DOI : 10.1016/j.tplants.2013.01.008

N. Dharmasiri, S. Dharmasiri, and E. M. , The F-box protein TIR1 is an auxin receptor, Nature, vol.60, issue.7041, pp.441-445, 2005.
DOI : 10.1146/ANNUREV.BIOCHEM.70.1.503

N. Diagne, J. Escoute, M. Lartaud, J. Verdeil, C. Franche et al., Uvitex2B: a rapid and efficient stain for detection of arbuscular mycorrhizal fungi within plant roots, Mycorrhiza, vol.99, issue.4, pp.315-321, 2011.
DOI : 10.1007/s00572-010-0357-8

N. Feddermann, R. Muni, T. Zeier, J. Stuurman, F. Ercolin et al., The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN, The Plant Journal, vol.47, issue.3, pp.470-481, 2010.
DOI : 10.1111/j.1365-313X.2010.04341.x

J. Felten, A. Kohler, E. Morin, R. Bhalerao, K. Palme et al., The Ectomycorrhizal Fungus Laccaria bicolor Stimulates Lateral Root Formation in Poplar and Arabidopsis through Auxin Transport and Signaling, PLANT PHYSIOLOGY, vol.151, issue.4, pp.1991-2005, 2009.
DOI : 10.1104/pp.109.147231

D. Fitze, A. Wiepning, M. Kaldorf, and J. Ludwig-müller, Auxins in the development of an arbuscular mycorrhizal symbiosis in maize, Journal of Plant Physiology, vol.162, issue.11, pp.1210-1219, 2005.
DOI : 10.1016/j.jplph.2005.01.014

D. Floss, J. Levy, V. Lévesque-tremblay, N. Pumplin, and M. Harrison, DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis, Proceedings of the National Academy of Sciences, vol.229, issue.1, pp.5025-5034, 2013.
DOI : 10.1007/s00425-008-0830-1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870710

E. Foo, J. Ross, W. Jones, and J. Reid, Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins, Annals of Botany, vol.111, issue.5, pp.769-779, 2013.
DOI : 10.1093/aob/mct041

X. Fu and N. Harberd, Auxin promotes Arabidopsis root growth by modulating gibberellin response, Nature, vol.13, issue.6924, pp.740-743, 2003.
DOI : 10.1038/nature01387

A. Genre and P. Bonfante, Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots, New Phytologist, vol.140, issue.4, pp.745-752, 1998.
DOI : 10.1046/j.1469-8137.1998.00314.x

A. Genre, M. Chabaud, C. Balzergue, V. Puech-pagès, M. Novero et al., roots and their production is enhanced by strigolactone, New Phytologist, vol.144, issue.1, pp.190-202, 2013.
DOI : 10.1111/nph.12146

A. Genre, M. Chabaud, A. Faccio, D. Barker, and P. Bonfante, Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago truncatula and Daucus carota, THE PLANT CELL ONLINE, vol.20, issue.5, pp.1407-1420, 2008.
DOI : 10.1105/tpc.108.059014

C. Gutjahr, M. Banba, V. Croset, K. An, A. Miyao et al., Arbuscular Mycorrhiza-Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway, THE PLANT CELL ONLINE, vol.20, issue.11, pp.2989-3005, 2008.
DOI : 10.1105/tpc.108.062414

C. Gutjahr, L. Casieri, and U. Paszkowski, induces changes in root system architecture of rice independently of common symbiosis signaling, New Phytologist, vol.6, issue.4, pp.829-837, 2009.
DOI : 10.1111/j.1469-8137.2009.02839.x

C. Gutjahr and M. Parniske, Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis, Annual Review of Cell and Developmental Biology, vol.29, issue.1, pp.593-617, 2013.
DOI : 10.1146/annurev-cellbio-101512-122413

M. Hanlon and C. Coenen, Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation, New Phytologist, vol.52, issue.3, pp.701-709, 2011.
DOI : 10.1111/j.1469-8137.2010.03567.x

M. Harrison, Cellular programs for arbuscular mycorrhizal symbiosis, Current Opinion in Plant Biology, vol.15, issue.6, pp.691-698, 2012.
DOI : 10.1016/j.pbi.2012.08.010

M. Harrison, G. Dewbre, and J. Liu, A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi, THE PLANT CELL ONLINE, vol.14, issue.10, pp.2413-2429, 2002.
DOI : 10.1105/tpc.004861

B. Hause, C. Mrosk, S. Isayenkov, and D. Strack, Jasmonates in arbuscular mycorrhizal interactions, Phytochemistry, vol.68, issue.1, pp.101-110, 2007.
DOI : 10.1016/j.phytochem.2006.09.025

K. Hayashi, The Interaction and Integration of Auxin Signaling Components, Plant and Cell Physiology, vol.53, issue.6, pp.965-975, 2012.
DOI : 10.1093/pcp/pcs035

V. Herrbach, C. Rembliere, C. Gough, and S. Bensmihen, Lateral root formation and patterning in Medicago truncatula, Journal of Plant Physiology, vol.171, issue.3-4, pp.301-310, 2014.
DOI : 10.1016/j.jplph.2013.09.006

M. Herrera-medina, S. Steinkellner, H. Vierheilig, O. Bote, J. et al., Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza, New Phytologist, vol.91, issue.3, pp.554-564, 2007.
DOI : 10.1111/j.1365-3040.1988.tb01158.x

C. Holweg, C. Süsslin, and P. Nick, Capturing in vivo Dynamics of the Actin Cytoskeleton Stimulated by Auxin or Light, Plant and Cell Physiology, vol.45, issue.7, pp.855-863, 2004.
DOI : 10.1093/pcp/pch102

S. Ivanov, E. Fedorova, E. Limpens, D. Mita, S. Genre et al., Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation, Proceedings of the National Academy of Sciences, vol.16, issue.4, pp.8316-8321, 2012.
DOI : 10.1105/tpc.017749

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361388

K. Jentschel, D. Thiel, F. Rehn, and J. Ludwig-müller, Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization, Physiologia Plantarum, vol.156, issue.2, pp.320-333, 2007.
DOI : 10.1111/j.1399-3054.2006.00812.x

M. Kaldorf and J. Ludwig-müller, AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis, Physiologia Plantarum, vol.139, issue.1, pp.58-67, 2000.
DOI : 10.1007/s005720050140

S. Kepinski and O. Leyser, The Arabidopsis F-box protein TIR1 is an auxin receptor, Nature, vol.99, issue.7041, pp.446-451, 2005.
DOI : 10.1101/gr.980303

Y. Kobae and S. Hata, Dynamics of Periarbuscular Membranes Visualized with a Fluorescent Phosphate Transporter in Arbuscular Mycorrhizal Roots of Rice, Plant and Cell Physiology, vol.51, issue.3, pp.341-353, 2010.
DOI : 10.1093/pcp/pcq013

E. Kramer, Auxin-regulated cell polarity: an inside job?, Trends in Plant Science, vol.14, issue.5, pp.242-247, 2009.
DOI : 10.1016/j.tplants.2009.02.005

S. Lau, G. Jürgens, D. Smet, and I. , The Evolving Complexity of the Auxin Pathway, THE PLANT CELL ONLINE, vol.20, issue.7, pp.1738-1746, 2008.
DOI : 10.1105/tpc.108.060418

D. Lin, Y. Yang, R. Khalil, Z. Xian, G. Hu et al., SlmiR393 controls the auxin receptor homologous genes expression, and regulates sensitivity to auxin in tomato root growth, Scientia Horticulturae, vol.162, pp.90-99, 2013.
DOI : 10.1016/j.scienta.2013.07.028

J. Ludwig-müller and M. Güther, Auxins as Signals in Arbuscular Mycorrhiza Formation, Plant Signaling & Behavior, vol.25, issue.3, pp.194-196, 2007.
DOI : 10.1104/pp.006007

J. Ludwig-müller, M. Kaldorf, E. Sutter, and E. Epstein, Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices, Plant Science, vol.125, issue.2, pp.153-162, 1997.
DOI : 10.1016/S0168-9452(97)00064-2

F. Maillet, V. Poinsot, O. André, V. Puech-pagès, A. Haouy et al., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, vol.64, issue.7328, pp.58-63, 2011.
DOI : 10.1038/nature09622

URL : https://hal.archives-ouvertes.fr/hal-00577122

G. Mao, M. Turner, O. Yu, and S. Subramanian, miR393 and miR164 influence indeterminate but not determinate nodule development, Plant Signaling & Behavior, vol.8, issue.10, p.26753, 2013.
DOI : 10.1071/FP13123

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091107

A. Mathelier and A. Carbone, MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data, Bioinformatics, vol.26, issue.18, pp.2226-2234, 2010.
DOI : 10.1093/bioinformatics/btq329

C. Meixner, J. Ludwig-müller, O. Miersch, P. Gresshoff, C. Staehelin et al., Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007, Planta, vol.139, issue.4, pp.709-715, 2005.
DOI : 10.1007/s00425-005-0003-4

A. Mukherjee and J. Ané, Germinating Spore Exudates from Arbuscular Mycorrhizal Fungi: Molecular and Developmental Responses in Plants and Their Regulation by Ethylene, Molecular Plant-Microbe Interactions, vol.24, issue.2, pp.260-270, 2011.
DOI : 10.1094/MPMI-06-10-0146

R. Nagy, V. Karandashov, V. Chague, K. Kalinkevich, M. Tamasloukht et al., The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species, The Plant Journal, vol.1, issue.2, pp.236-250, 2005.
DOI : 10.1111/j.1365-313X.2005.02364.x

L. Navarro, P. Dunoyer, F. Jay, B. Arnold, N. Dharmasiri et al., A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling, Science, vol.123, issue.6, pp.436-439, 2006.
DOI : 10.1016/j.cell.2005.11.023

URL : https://hal.archives-ouvertes.fr/hal-00093086

L. Navarro, F. Jay, K. Nomura, S. He, and O. Voinnet, Suppression of the MicroRNA Pathway by Bacterial Effector Proteins, Science, vol.37, issue.4, pp.964-967, 2008.
DOI : 10.1080/07853890510037329

URL : https://hal.archives-ouvertes.fr/hal-00339296

P. Nick, M. Han, and G. An, Auxin Stimulates Its Own Transport by Shaping Actin Filaments, PLANT PHYSIOLOGY, vol.151, issue.1, pp.155-167, 2009.
DOI : 10.1104/pp.109.140111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736007

B. Oláh, C. Brière, G. Bécard, J. Dénarié, and C. Gough, Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway, The Plant Journal, vol.3, issue.Suppl., pp.195-207, 2005.
DOI : 10.1111/j.1365-313X.2005.02522.x

P. Overvoorde, H. Fukaki, and T. Beeckman, Auxin Control of Root Development, Cold Spring Harbor Perspectives in Biology, vol.2, issue.6, p.1537, 2010.
DOI : 10.1101/cshperspect.a001537

G. Parry, L. Calderon-villalobos, M. Prigge, B. Peret, S. Dharmasiri et al., Complex regulation of the TIR1/AFB family of auxin receptors, Proceedings of the National Academy of Sciences, vol.17, issue.8, pp.22540-22545, 2009.
DOI : 10.1093/bioinformatics/17.8.754

URL : https://hal.archives-ouvertes.fr/cea-00848580

U. Paszkowski, S. Kroken, C. Roux, and S. Briggs, Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis, Proceedings of the National Academy of Sciences, vol.94, issue.13, pp.13324-13329, 2002.
DOI : 10.1073/pnas.94.13.7098

N. Pumplin and M. Harrison, Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in Medicago truncatula Roots during Arbuscular Mycorrhizal Symbiosis, PLANT PHYSIOLOGY, vol.151, issue.2, pp.809-819, 2009.
DOI : 10.1104/pp.109.141879

N. Pumplin, S. Mondo, S. Topp, C. Starker, J. Gantt et al., Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis, The Plant Journal, vol.105, issue.3, pp.482-494, 2010.
DOI : 10.1111/j.1365-313X.2009.04072.x

G. Reineke, B. Heinze, J. Schirawski, H. Buettner, R. Kahmann et al., Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation, Molecular Plant Pathology, vol.8, issue.3, pp.339-355, 2008.
DOI : 10.1101/gad.1035402

A. Santner, L. Calderon-villalobos, and E. M. , Plant hormones are versatile chemical regulators of plant growth, Nature Chemical Biology, vol.103, issue.5, pp.301-307, 2009.
DOI : 10.1038/nchembio.165

M. Sauer, J. Balla, C. Luschnig, J. Wisniewska, V. Reinöhl et al., Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity, Genes & Development, vol.20, issue.20, pp.2902-2911, 2006.
DOI : 10.1101/gad.390806

M. Sauer and J. Kleine-vehn, AUXIN BINDING PROTEIN1: The Outsider, The Plant Cell, vol.23, issue.6, pp.2033-2043, 2011.
DOI : 10.1105/tpc.111.087064

E. Scarpella, S. Rueb, and A. Meijer, The RADICLELESS1 gene is required for vascular pattern formation in rice, Development, vol.130, issue.4, pp.645-658, 2003.
DOI : 10.1242/dev.00243

O. Shaul-keinan, V. Gadkar, I. Ginzberg, J. Grünzweig, C. I. Elad et al., Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices *, New Phytologist, vol.225, issue.2, pp.501-507, 2002.
DOI : 10.1073/pnas.93.19.10515

S. Smith and F. Smith, Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales, Annual Review of Plant Biology, vol.62, issue.1, pp.227-250, 2011.
DOI : 10.1146/annurev-arplant-042110-103846

Y. Song, Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide, Journal of Integrative Plant Biology, vol.60, issue.2, pp.106-113, 2014.
DOI : 10.1111/jipb.12131

T. Suzaki, K. Yano, M. Ito, Y. Umehara, N. Suganuma et al., Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response, Development, vol.139, issue.21, pp.3997-4006, 2012.
DOI : 10.1242/dev.084079

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecular Biology and Evolution, vol.28, issue.10, pp.2731-2739, 2011.
DOI : 10.1093/molbev/msr121

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203626

A. Torelli, A. Trotta, L. Acerbi, G. Arcidiacono, G. Berta et al., IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development, Plant Soil, vol.226, pp.29-35, 2000.
DOI : 10.1007/978-94-017-2858-4_7

H. Tranvan, Y. Habricot, J. E. Gay, G. Sotta, and B. , Dynamics of symbiotic establishment between an IAA-overproducing mutant of the ectomycorrhizal fungus Hebeloma cylindrosporum and Pinus pinaster, Tree Physiology, vol.20, issue.2, pp.123-129, 2000.
DOI : 10.1093/treephys/20.2.123

A. Trouvelot, J. Kough, V. Gianinazzi-pearson, P. Turner, M. Nizampatnam et al., Mesure du taux de mycorhization VA d'unsystème radiculaire Recherche de méthodes d'estimation ayant une signification fonctionnelle Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity , and inhibition of symbiotic nodule development in soybean, Plant Physiol, vol.162, pp.2042-2055, 1986.

T. Ulmasov, J. Murfett, G. Hagen, and T. Guilfoyle, Aux/IAA Proteins Repress Expression of Reporter Genes Containing Natural and Highly Active Synthetic Auxin Response Elements, THE PLANT CELL ONLINE, vol.9, issue.11, pp.1963-1971, 1997.
DOI : 10.1105/tpc.9.11.1963

E. Vidal, V. Araus, C. Lu, G. Parry, P. Green et al., Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana, Proceedings of the National Academy of Sciences, vol.29, issue.6, pp.4477-4482, 2010.
DOI : 10.1046/j.1365-313X.2002.01251.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840086

H. Vierheilig, A. Coughlan, U. Wyss, and Y. Piché, Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi, Appl Environ Microbiol, vol.64, pp.5004-5007, 1998.

O. Voinnet, Origin, Biogenesis, and Activity of Plant MicroRNAs, Cell, vol.136, issue.4, pp.669-687, 2009.
DOI : 10.1016/j.cell.2009.01.046

URL : https://hal.archives-ouvertes.fr/hal-00370025

K. Xia, R. Wang, X. Ou, Z. Fang, C. Tian et al., OsTIR1 and OsAFB2 Downregulation via OsmiR393 Overexpression Leads to More Tillers, Early Flowering and Less Tolerance to Salt and Drought in Rice, PLoS ONE, vol.83, issue.1, p.30039, 2012.
DOI : 10.1371/journal.pone.0030039.s002

T. Xu, S. Nagawa, and Z. Yang, Uniform auxin triggers the Rho GTPase-dependent formation of interdigitation patterns in pavement cells, Small GTPases, vol.101, issue.4, pp.227-232, 2011.
DOI : 10.4161/psb.3.1.4838

Q. Zhang, L. Blaylock, and M. Harrison, Two Medicago truncatula Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis, THE PLANT CELL ONLINE, vol.22, issue.5, pp.1483-1497, 2010.
DOI : 10.1105/tpc.110.074955