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ABSTRACT
We consider prime fields of large characteristic, typically fit-
ting on k machine words, where k is a power of 2. When
the characteristic of these fields is restricted to a subclass of
the generalized Fermat numbers, we show that arithmetic
operations in such fields offer attractive performance both
in terms of algebraic complexity and parallelism. In partic-
ular, these operations can be vectorized, leading to efficient
implementation of fast Fourier transforms on graphics pro-
cessing units.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms, Analysis of algorithms

General Terms
Algorithms, Experimentation

Keywords
Fast Fourier transforms; Finite fields; Generalized Fermat
numbers; Graphics processing units; CUDA

1. INTRODUCTION
Prime field arithmetic plays a central role in computer

algebra and supports computation in Galois fields which are
essential to coding theory and cryptography algorithms.

The prime fields that are used in computer algebra sys-
tems, in particular in the implementation of modular meth-
ods, are often of small characteristic, that is, based on prime
numbers that fit in a machine word. Increasing precision
beyond the machine word size can be done via the Chinese
Remainder Theorem (CRT) or Hensel Lemma.

However, using machine-word size, thus small, prime num-
bers has also serious inconveniences in certain modular meth-
ods, in particular for solving systems of non-linear equations.
Indeed, in such circumstances, the so-called unlucky primes
are to be avoided, see for instance [2, 8].

In this paper, we consider prime fields of large charac-
teristic, typically fitting on k machine words, where k is a
power of 2. When the characteristic of these fields is re-
stricted to a subclass of the generalized Fermat numbers,
we show that arithmetic operations in such fields offer at-
tractive performance both in terms of algebraic complexity
and parallelism. In particular, these operations can be vec-
torized, leading to efficient implementation of fast Fourier
transforms on graphics processing units.

We present algorithms for arithmetic operations in a “big”
prime field Z/pZ, where p is a generalized Fermat number
of the form p = rk + 1 where r fits a machine-word and k
is a power of 2. We report on a GPU (Graphics Processing
Units) implementation of those algorithms as well as a GPU
implementation of a Fast Fourier Transform (FFT) over such
big prime field. Our experimental results show that

1. computing an FFT of size N , over a big prime field for
p fitting on k 64-bit machine-words, and

2. computing 2k FFTs of size N , over a small prime field
(that is, where the prime fits a 32-bit half-machine-
word) followed by a combination (i.e. CRT-like) of
those FFTs

are two competitive approaches in terms of running time.
Since the former approach has the advantage of reducing the
occurrence of unlucky primes when applying modular meth-
ods (in particular in the area of polynomial system solving),
we view this experimental observation as a promising result.

The reasons for a GPU implementation are as follows.
First, the model of computations and the hardware perfor-
mance provide interesting opportunities to implement big
prime field arithmetic, in particular in terms of vectoriza-
tion of the program code. Secondly, highly optimized FFTs
over small prime fields have been implemented on GPUs by
Wei Pan [18, 19] in the CUMODP library www.cumodp.org

we use them in our experimental comparison.
Section 7 reports on various comparative experimenta-

tions. First, a comparison of the above two approaches im-
plemented on GPU, exhibiting an advantage for the FFT
over a big prime field. Second, a comparison between the
two same approaches implemented on a single-core CPU,
exhibiting an advantage for the CRT-based FFT over small
prime fields. Third, from the two previous comparisons, one
deduces a comparison of the FFT over a big prime field
(resp. the CRT-based FFT over small prime fields) imple-
mented on GPU and CPU, exhibiting a clear advantage for
the GPU implementations. Overall, the big prime field FFT
on the GPU is the best approach.

A discrete Fourier transform (DFT) over Z/pZ, when p
is a generalized Fermat prime, can be seen as a general-
ization of the FNT (Fermat number transform), which is
a specific case of the NTT (number theoretic transform).
However, the computation of a DFT over Z/pZ implies ad-
ditional considerations, which are not taken into account in
the literature describing the computation of a NTT, or a
FNT [1, 9].

www.cumodp.org


The computation of a NTT can be done via various meth-
ods used for a DFT, among them is the radix-2 Cooley-
Tukey, for example. However, the final complexity depends
on the way a given DFT is computed. It appears that, in
the context of generalized Fermat primes, there is a better
choice than the radix-2 Cooley-Tukey. The method used in
the present paper is related to the article [7], which is de-
rived from Fürer’s algorithm [11] for the multiplication of
large integers. The practicality of this latter algorithm is an
open question. And, in fact, the work reported in our paper
is a practical contribution responding to this open question.

The paper [1] discusses the idea of using Fermat number
transform for computing convolutions, thus working mod-
ulo numbers of the form F = 2b + 1, where b is a power of
2. This is an effective way to avoid round-off error caused
by twiddle factor multiplication in computing DFT over the
field of complex numbers. The paper [9] considers general-
ized Fermat Mersenne (GFM) prime numbers that prime of
the form (qpn − 1)/(q − 1) where, typically, q is 2 and both
p and n are small. These numbers are different from the
primes used in our paper, which have the form rk + 1 where
r is typically a machine-word long and k is a power of 2 so
that r is a 2k-th primitive root of unity, see Section 3.

2. COMPLEXITY ANALYSIS
Consider a prime field Z/pZ and N , a power of 2, dividing

p − 1. Then, the finite field Z/pZ admits an N -th primitive
root of unity1; We denote by ω such an element. Let f ∈
Z/pZ[x] be a polynomial of degree at most N − 1. Then,
computing the DFT of f at ω via an FFT amounts to:

1. N log(N) additions in Z/pZ,
2. (N/2) log(N) multiplications by a power of ω in Z/pZ.

If the bit-size of p is k machine words, then
1. each addition in Z/pZ costs O(k) machine-word oper-

ations,
2. each multiplication by a power of ω costs O(M(k))

machine-word operations,
where nz→M(n) is a multiplication time as defined in [23].
Therefore, multiplication by a power of ω becomes a bot-
tleneck as k grows. To overcome this difficulty, we consider
the following trick proposed by Martin Fürer in [11, 12]. We
assume that N = Ke holds for some “small” K, say K = 32
and an integer e ≥ 2. Further, we define η = ωN/K , with
J =Ke−1 and assume that multiplying an arbitrary element
of Z/pZ by ηi, for any i = 0, . . . ,K − 1, can be done within
O(k) machine-word operations. Consequently, every arith-
metic operation (addition, multiplication) involved in a DFT
of size K, using η as a primitive root, amounts to O(k)
machine-word operations. Therefore, such DFT of size K
can be performed with O(K log(K)k) machine-word oper-
ations. As we shall see in Section 3, this latter result holds
whenever p is a so called generalized Fermat number.

Returning to the DFT of size N at ω and using the fac-
torization formula of Cooley and Tukey, we have

DFTJK = (DFTJ ⊗ IK)DJ,K(IJ ⊗DFTK)LJK
J , (1)

see Section 4. Hence, the DFT of f at ω is essentially per-
formed by:

1. Ke−1 DFT’s of size K (that is, DFT’s on polynomials
of degree at most K − 1),

1See Section 4 for this notion.

2. N multiplications by a power of ω (coming from the
diagonal matrix DJ,K) and

3. K DFT’s of size Ke−1.
Unrolling Formula (1) so as to replace DFTJ by DFTK and
the other linear operators involved (the diagonal matrix D
and the permutation matrix L) one can deduce that a DFT
of size N =Ke reduces to:

1. eKe−1 DFT’s of size K, and
2. (e − 1)N multiplication by a power of ω.

Recall that the assumption on the cost of a multiplication
by ηi, for 0 ≤ i < K, makes the cost for one DFT of size
K to O(K log2(K)k) machine-word operations. Hence, all
the DFT’s of size K together amount to O(eN log2(K)k)
machine-word operations, that is, O(N log2(N)k) machine-
word operations. Meanwhile, the total cost of the multipli-
cation by a power of ω is O(eNM(k)) machine-word op-
erations, that is, O(N logK(N)M(k)) machine-word oper-
ations. Indeed, multiplying an arbitrary element of Z/pZ
by an arbitrary power of ω requires O(M(k)) machine-word
operations. Therefore, under our assumption, a DFT of size
N at ω amounts to

O(N log2(N)k + N logK(N)M(k)) (2)

machine-word operations. When using generalized Fermat
primes, we have K = 2k and the above estimate becomes

O(N log2(N)k + N logk(N)M(k)) (3)

The second term in the big-O notation dominates the first
one. However, we keep both terms for reasons that will
appear shortly.

Without our assumption, as discussed earlier, the same
DFT would run in O(N log2(N)M(k)) machine-word oper-
ations. Therefore, using generalized Fermat primes brings a
speedup factor of log(K) w.r.t. the direct approach using
arbitrary prime numbers.

At this point, it is natural to ask what would be the cost of
a comparable computation using small primes and the CRT.
To be precise, let us consider the following problem. Let
p1, . . . , pk pairwise different prime numbers of machine-word
size and let m be their product. Assume that N divides each
of p1 −1, . . . , pk −1 such that each of fields Z/p1Z, . . . ,Z/pkZ
admits an N -th primitive roots of unity, ω1, . . . , ωk. Then,
ω = (ω1, . . . , ωk) is an N -th primitive root of Z/mZ. Indeed,
the ring Z/p1Z⊗⋯⊗Z/pkZ is a direct product of fields. Let
f ∈ Z/mZ[x] be a polynomial of degree N − 1. One can
compute the DFT of f at ω in three steps:

1. Compute the images f1 ∈ Z/p1Z[x], . . . , fk ∈ Z/pkZ[x]
of f .

2. Compute the DFT of fi at ωi in Z/piZ[x], for i =
1, . . . , k,

3. Combine the results using CRT so as to obtain a DFT
of f at ω.

The first and the third above steps will run within O(N ×
M(k) log2(k)) machine-word operations meanwhile the sec-
ond one amount to O(k ×N log(N)) machine-word opera-
tions, yielding a total of

O(N log2(N)k + NM(k) log2(k)) (4)

These estimates yield a running-time ratio between the
two approaches of log(N)/ log2

2(k), which suggests that for
k large enough the big prime field approach may outperform
the CRT-based approach. We believe that this analysis is



part of the explanation for the observation that the two ap-
proaches are, in fact, competitive in practice, as we shall see
in Section 7.

3. SPARSE RADIX GENERALIZED FERMAT
NUMBERS

The n-th Fermat number, denoted by Fn, is given by

Fn = 22n + 1. This sequence plays an important role in
number theory and, as mentioned in the introduction, in
the development of asymptotically fast algorithms for inte-
ger multiplication [21, 12].

Arithmetic operations modulo a Fermat number are sim-
pler than modulo an arbitrary positive integer. In particular
2 is a 2n+1-th primitive root of unity modulo Fn. Unfortu-
nately, F4 is the largest Fermat number which is known to
be prime. Hence, when computations require the coefficient
ring be a field, Fermat numbers are no longer interesting.
This motivates the introduction of other family of Fermat-
like numbers, see, for instance, Chapter 2 in the text book
Guide to elliptic curve cryptography [13].

Numbers of the form a2
n

+b2
n

where a > 1, b ≥ 0 and n ≥ 0
are called generalized Fermat numbers. An odd prime p is a
generalized Fermat number if and only if p is congruent to
1 modulo 4. The case b = 1 is of particular interest and, by
analogy with the ordinary Fermat numbers, it is common

to denote the generalized Fermat number a2
n

+ 1 by Fn(a).
So 3 is F0(2). We call a the radix of Fn(a). Note that,
Landau’s fourth problem asks if there are infinitely many
generalized Fermat primes Fn(a) with n > 0.

In the finite ring Z/Fn(a)Z, the element a is a 2n+1-th
primitive root of unity. However, when using binary repre-
sentation for integers on a computer, arithmetic operations
in Z/Fn(a)Z may not be as easy to perform as in Z/FnZ.
This motivates the following.

Definition 1. We call sparse radix generalized Fermat
number, any integer of the form Fn(r) where r is either
2w + 2u or 2w − 2u, for some integers w > u ≥ 0. In the
former case, we denote Fn(r) by F +n (w,u) and in the latter
by F −n (w,u).

Table 1 lists sparse radix generalized Fermat numbers
(SRGFNs) that are prime. For each such number p, we give
the largest power of 2 dividing p − 1, that is, the maximum
length N of a vector to which a radix-K FFT algorithm
where K is an appropriate power of 2.

Table 1: SRGFNs of practical interest.

p max{2e s.t. 2e ∣ p − 1}

(263 + 253)2 + 1 2106

(264 − 250)4 + 1 2200

(263 + 234)8 + 1 2272

(262 + 236)16 + 1 2576

(262 + 256)32 + 1 21792

(263 − 240)64 + 1 22560

(264 − 228)128 + 1 23584

Notation 1. In the sequel, we consider p = Fn(r), a fixed
SRGFN. We denote by 2e the largest power of 2 dividing p−1
and we define k = 2n, so that p = rk + 1 holds.

As we shall see in the sequel of this section, for any pos-
itive integer N which is a power of 2 such that N divides
p− 1, one can find an N -th primitive root of unity ω ∈ Z/pZ
such that multiplying an element x ∈ Z/pZ by ωi(N/2k) for
0 ≤ i < 2k can be done in linear time w.r.t. the bit size of
x. Combining this observation with an appropriate factor-
ization of the DFT transform on N points over Z/pZ, we
obtain an efficient FFT algorithm over Z/pZ.

3.1 Representation of Z/pZ
We represent each element x ∈ Z/pZ as a vector x⃗ =

(xk−1, xk−2, . . . , x0) of length k and with non-negative in-
teger coefficients such that we have

x ≡ xk−1 r
k−1 + xk−2 rk−2 +⋯ + x0 mod p. (5)

This representation is made unique by imposing the follow-
ing constraints

1. either xk−1 = r and xk−2 = ⋯ = x1 = 0,
2. or 0 ≤ xi < r for all i = 0, . . . , (k − 1).

We also map x to a univariate integer polynomial fx ∈ Z[T ]
defined by fx = ∑k−1

i=0 xit
i such that x ≡ fx(r) mod p.

Now, given a non-negative integer x < p, we explain how
the representation x⃗ can be computed. The case x = rk

is trivially handled, hence we assume x < rk. For a non-

negative integer z such that z < r2
i

holds for some positive
integer i ≤ n = log2(k), we denote by vec(z, i) the unique
sequence of 2i non-negative integers (z2i−1, . . . , z0) such that

we have 0 ≤ zj < r and z = z2i−1r2
i
−1 +⋯+ z0. The sequence

vec(z, i) is obtained as follows:
1. if i = 1, we have vec(z, i) = (q, s),
2. if i > 1, then vec(z, i) is the concatenation of vec(q, i−

1) followed by vec(s, i − 1),
where q and s are the quotient and the remainder in the

Euclidean division of z by r2
i−1

. Clearly, vec(x,n) = x⃗ holds.
We observe that the sparse binary representation of r fa-

cilitates the Euclidean division of a non-negative integer z
by r, when performed on a computer. Referring to the no-
tations in Definition 1, let us assume that r is 2w + 2u, for
some integers w > u ≥ 0. (The case 2w−2u would be handled
in a similar way.) Let zhigh and zlow be the quotient and the
remainder in the Euclidean division of z by 2w. Then, we
have

z = 2w zhigh + zlow = r zhigh + zlow − 2uzhigh. (6)

Let s = zlow − 2uzhigh and q = zhigh. Three cases arise:
(S1) if 0 ≤ s < r, then q and s are the quotient and remainder

of z by r,
(S2) if r ≤ s, then we perform the Euclidean division of s

by r and deduce the desired quotient and remainder,
(S3) if s < 0, then (q, s) is replaced by (q + 1, s + r) and we

go back to Step (S1).
Since the binary representations of r2 can still be regarded
as sparse, a similar procedure can be done for the Euclidean
division of a non-negative integer z by r2. For higher powers
of r, we believe that Montgomery algorithm is the way to
go, though this remains to be explored.

3.2 Finding primitive roots of unity in Z/pZ

Notation 2. Let N be a power of 2, say 2`, dividing p−1
and let g ∈ Z/pZ be an N-th primitive root of unity.



Recall that such an N -th primitive root of unity can be
obtained by a simple probabilistic procedure. Write p =
qN + 1. Pick a random α ∈ Z/pZ and let ω = αq. Little

Fermat theorem implies that either ωN/2 = 1 or ωN/2 = −1
holds. In the latter case, ω is an N -th primitive root of
unity. In the former, another random α ∈ Z/pZ should be
considered. In our various software implementation of finite
field arithmetic [16, 3, 14], this procedure finds an N -th
primitive root of unity after a few tries and has never been
a performance bottleneck.

In the following, we consider the problem of finding an N -
th primitive root of unity ω such that ωN/2k = r holds. The
intention is to speed up the portion of FFT computation
that requires to multiply elements of Z/pZ by powers of ω.

Proposition 1. In Z/pZ, the element r is a 2k-th prim-
itive root of unity. Moreover, the following algorithm com-
putes an N-th primitive root of unity ω ∈ Z/pZ such that we

have ωN/2k = r in Z/pZ.

Algorithm 1 Primitive N -th root ω ∈ Z/pZ s.t. ωN/2k = r
procedure PrimitiveRootAsRootOf(N,r, k, g)

α ∶= gN/2k
β ∶= α
j ∶= 1
while β ≠ r do

β ∶= αβ
j ∶= j + 1

end while
ω ∶= gj
return (ω)

end procedure

Proof Since gN/2k is a 2k-th root of unity, it is equal to ri0

(modulo p) for some 0 ≤ i0 < 2k where i0 is odd. Let j be a
non-negative integer. Observe that we have

gj2
`
/2k = (gi g2k q)2

`
/2k = gi2

`
/2k = ri i0 , (7)

where q and i are quotient and the remainder of j in the
Euclidean division by 2k. By definition of g, the powers

gi2
`
/2k, for 0 ≤ i < 2k, are pairwise different. It follows from

Formula (7) that the elements ri i0 are pairwise different as
well, for 0 ≤ i < 2k. Therefore, one of those latter elements
is r itself. Hence, we have j1 with 0 ≤ j1 < 2k such that
gj1N/2k = r. Then, ω = gj1 is as desired and Algorithm 1
computes it. ◻

3.3 Addition and subtraction in Z/pZ
Let x, y ∈ Z/pZ represented by x⃗, y⃗, see Section 3.1 for this

latter notation. Algorithm 2 computes the representationÐÐ→
x + y of the element (x + y) mod p.
Proof At Step (1), x⃗ and y⃗, regarded as vectors over Z,
are added component-wise. At Steps (2) and (3), the carry,
if any, is propagated. At Step (4), there is no carry beyond
the leading digit zk−1, hence (zk−1, . . . , z0) represents x + y.
Step (5) handles the special case where x + y = p − 1 holds.
Step (6) is the overflow case which is handled by subtracting

1 mod p to (zk−1, . . . , z0), finally producing
ÐÐ→
x + y. ◻

A similar procedure computes the vector
ÐÐ→
x − y represent-

ing the element (x − y) ∈ Z/pZ. Recall that we explained

Algorithm 2 Computing x + y ∈ Z/pZ for x, y ∈ Z/pZ
procedure BigPrimeFieldAddition(x⃗, y⃗, r, k)

1: compute zi = xi + yi in Z, for i = 0, . . . , k − 1,
2: let zk = 0,
3: for i = 0, . . . , k − 1, compute the quotient qi and the

remainder si in the Euclidean division of zi by r, then
replace (zi+1, zi) by (zi+1 + qi, si),

4: if zk = 0 then return (zk−1, . . . , z0),
5: if zk = 1 and zk−1 = ⋯ = z0 = 0, then let zk−1 = r and

return (zk−1, . . . , z0),
6: let i0 be the smallest index, 0 ≤ i0 ≤ k, such that
zi0 ≠ 0, then let zi0 = zi0 − 1, let z0 = ⋯ = zi0−1 = r − 1
and return (zk−1, . . . , z0).

end procedure

in Section 3.1 how to perform the Euclidean divisions at
Step (S3) in a way that exploits the sparsity of the binary
representation of r.

In practice, the binary representation of the radix r fits a
machine word, see Table 1. Consequently, so does each of
the “digit” in the representation x⃗ of every element x ∈ Z/pZ.
This allows us to exploit machine arithmetic in a sharper
way. In particular, the Euclidean divisions at Step (S3) can
be further optimized.

3.4 Multiplication by a power of r in Z/pZ
Before considering the multiplication of two arbitrary el-

ements x, y ∈ Z/pZ, we assume that one of them, say y, is
a power of r, say y = ri for some 0 < i < 2k. Note that the
cases i = 0 = 2k are trivial. Indeed, recall that r is a 2k-th
primitive root of unity in Z/pZ. In particular, rk = −1 in
Z/pZ. Hence, for 0 < i < k, we have rk+i = −ri in Z/pZ.
Thus, let us consider first the case where 0 < i < k holds. We
also assume 0 ≤ x < rk holds in Z, since the case x = rk is
easy to handle. From Equation (5) we have:

xri ≡ (xk−1 rk−1+i +⋯ + x0 ri) mod p

≡
j=k−1

∑
j=0

xjr
j+i mod p

≡
h=k−1+i

∑
h=i

xh−ir
h mod p

≡ (
h=k−1

∑
h=i

xh−ir
h −

h=k−1+i

∑
h=k

xh−ir
h−k) mod p

The case k < i < 2k can be handled similarly. Also, in the
case i = k we have xri = −x in Z/pZ. It follows, that for
all 0 < i < 2k, computing the product xri simply reduces to
computing a subtraction. This fact, combined with Propo-
sition 1, motivates the development of FFT algorithms over
Z/pZ.

3.5 Multiplication in Z/pZ
Let again x, y ∈ Z/pZ represented by x⃗, y⃗ and consider the

univariate polynomials fx, fy ∈ Z[T ] associated with x, y;
see Section 3.1 for this notation. To compute the product
xy in Z/pZ, we proceed as follows.

For large values of k, fxfy mod T k + 1 in Z[T ] can be
computed by asymptotically fast algorithms (see the pa-
per [4, 7]). However, for small values of k (say k ≤ 8), using
plain multiplication is reasonable.



Algorithm 3 Computing xy ∈ Z/pZ for x, y ∈ Z/pZ
procedure BigPrimeFieldMultiplication(fx, fy, r, k)

1: We compute the polynomial product fu = fxfy in
Z[T ] modulo T k + 1.

2: Writing fu =
k−1

∑
i=0

uiT
i, we observe that for all 0 ≤ i ≤

k−1 we have 0 ≤ ui ≤ kr2 and compute a representa-
tion Ð→ui of ui in Z/pZ using the method explained in
Section 3.1.

3: We compute uir
i in Z/pZ using the method of Sec-

tion 3.4.

4: Finally, we compute the sum
k−1

∑
i=0

uir
i in Z/pZ using

Algorithm 2.
end procedure

4. FFT BASICS
We review the Discrete Fourier Transform over a finite

field, and its related concepts. See [12] for details.

Primitive and principal roots of unity. LetR be a commu-
tative ring with units. Let N > 1 be an integer. An element
ω ∈ R is a primitive N -th root of unity if for 1 < k ≤ N we
have ωk = 1 ⇐⇒ k = N . The element ω ∈ R is a principal
N -th root of unity if ωN = 1 and for all 1 ≤ k < N we have

N−1

∑
j=0

ωjk = 0. (8)

In particular, if N is a power of 2 and ωN/2 = −1, then ω
is a principal N -th root of unity. The two notions coin-
cide in fields of characteristic 0. For integral domains every
primitive root of unity is also a principal root of unity. For
non-integral domains, a principal N -th root of unity is also
a primitive N -th root of unity unless the characteristic of
the ring R is a divisor of N .

The discrete Fourier transform (DFT). Let ω ∈ R be a
principal N -th root of unity. The N-point DFT at ω is the
linear function, mapping the vector a⃗ = (a0, . . . , aN−1)T to

b⃗ = (b0, . . . , bN−1)T by b⃗ = Ωa⃗, where Ω = (ωjk)0≤j,k≤N−1. If
N is invertible in R, then the N -point DFT at ω has an
inverse which is 1/N times the N -point DFT at ω−1.

The fast Fourier transform. Let ω ∈ R be a principal N -th
root of unity. Assume that N can be factorized to JK with
J,K > 1. Recall Cooley-Tukey factorization formula [5]

DFTJK = (DFTJ ⊗ IK)DJ,K(IJ ⊗DFTK)LJK
J , (9)

where, for two matrices A,B over R with respective formats
m×n and q × s, we denote by A⊗B an mq ×ns matrix over
R called the tensor product of A by B and defined by

A⊗B = [ak`B]k,` with A = [ak`]k,`. (10)

In the above formula, DFTJK , DFTJ and DFTK are re-
spectively the N -point DFT at ω, the J-point DFT at ωK

and the K-point DFT at ωJ . The stride permutation matrix
LJK

J permutes an input vector x of length JK as follows

x[iJ + j] ↦ x[jJ + i], (11)

for all 0 ≤ j < J, 0 ≤ i < K. If x is viewed as a K × J
matrix, then LJK

J performs a transposition of this matrix.

The diagonal twiddle matrix DJ,K is defined as

DJ,K =
J−1

⊕
j=0

diag(1, ωj , . . . , ωj(K−1)), (12)

Formula (9) implies various divide-and-conquer algorithms
for computing DFTs efficiently, often referred to as fast
Fourier transforms (FFTs). See the seminal papers [20]
and [10] by the authors of the SPIRAL and FFTW projects,
respectively. This formula also implies that, if K divides J ,
then all involved multiplications are by powers of ωK .

5. BLOCKED FFT ON THE GPU
In the sequel of this section, let ω ∈ R be a principal N -th

root of unity. In the factorization of the matrix DFTJK ,
viewing the size K as a base case and assuming that J is
a power of K, Formula (9) translates into a recursive algo-
rithm.

This recursive formulation is, however not appropriate for
generating code targeting many-core GPU-like architectures
for which, formulating algorithms iteratively facilitates the
division of the work into kernel calls and thread-blocks. To
this end, we shall unroll Formula (9).

Notation 3. Assuming c = 0, that is, N =Ke, we define
the following linear operators, for i = 0, . . . , e − 1:

Ui(ω) = (IKi ⊗DFTK(ωKe−1
) ⊗ IKe−i−1) ⋅

(IKi ⊗DK,Ke−i−1(ωKi

)) ,

Vi(ω) = IKi ⊗LKe−i
K ,

Wi(ω) = IKi ⊗ (LKe−i
Ke−i−1 ⋅DK,Ke−i−1(ωKi

)) .

(13)

Remark 1. We recall two classical formulas for tensor
products of matrices. If A and B are square matrices over
R with respective orders a and b, then we have

A⊗B = Lab
a ⋅ (B ⊗A)Lab

b . (14)

If C and D are two other square matrices over R with re-
spective orders a and b, then we have

(A⊗B) ⋅ (C ⊗D) = (A ⋅C) ⊗ (B ⋅D). (15)

Our GPU implementation reported in Section 6 is based
on the following two results. We omit the proofs, which
can easily be derived from Remark 1 and the Cooley-Tukey
factorization formula; see [18].

Proposition 2. For i = 0, . . . , e − 1, we have

Ui(ω) = Vi(ω) (IKe−1 ⊗DFTK(ωKe−1
))Wi(ω) (16)

The following formula reduces the computation of a DFT
on Ke points to computing e DFT’s on K points.

Proposition 3. The following factorization of DFTKe(ω)
holds:

DFTKe(ω) = U0(ω)⋯Ue−1(ω)Ve−1(ω)⋯V0(ω). (17)



6. IMPLEMENTATION
We have realized a GPU implementation in the CUDA

language of the algorithms presented in Sections 3 and 5.
We have used the third and the fourth Generalized Fermat
primes from Table 1, namely P3 ∶= (263 + 234)8 + 1 and P4 ∶=
(262 + 236)16 + 1. We have tested our code and collected the
experimental data on three different GPU cards.

In this section, we discuss implementation techniques. Our
experimental results are reported in Section 7.

Parallelization. Performing arithmetic operations on vec-
tors of elements of Z/pZ has inherent data parallelism, which
is ideal for implementation on GPUs. In our implementa-
tion, each arithmetic operation is computed by one thread.
An alternative would be to use multiple threads for comput-
ing one operation. However, it would not improve the per-
formance mostly due to overhead of handling propagation
of carry (in case of addition and subtraction), or increased
latency because of frequent accesses to global memory (in
case of twiddle factor multiplications).

Memory-bound kernels. Performance of our GPU kernels
are limited by frequent accesses to memory. Therefore, we
have considered solutions for minimizing memory latency,
maximizing occupancy (i.e. number of active warps on each
streaming multiprocessor) to hide latency, and maximizing
IPC (instructions per clock cycle).

Location of data. At execution time, each thread needs to
perform computation on at least one element of Z/pZ, mean-
ing that it will read/write at least k digits of machine-word
size. Often, in such a scenario, shared memory is utilized as
an auxiliary memory, but this approach has two shortcom-
ings. First, on a GPU, each streaming multiprocessor has a
limited amount of shared memory which might not be large
enough for allowing each thread to keep at least one element
of Z/pZ (which depending on the value of k, can be quite
large). Second, using a huge amount of shared memory will
reduce the occupancy. At the same time, there is no use for
texture memory and constant memory for computing over
Z/pZ. Conclusively, the only remaining solution is to keep
all data on global memory.

Maximizing global memory efficiency. Assume that for a
vector of N elements of Z/pZ, consecutive digits of each el-
ement are stored in adjacent memory addresses. Therefore,
such a vector can be considered as the row-major layout of
a matrix with N rows and k columns. In practice, this data
structure will hurt performance due to increased memory
overhead that is caused by non-coalesced accesses to global
memory. In this case, an effective solution is to apply a stride
permutation LkN

k on all input vectors (if data is stored in
a row-major layout, this permutation is equivalent to trans-
posing the input to a matrix of k rows and N columns).
Therefore, all kernels are written with the assumption that
consecutive digits of the same element are N steps away
from each other in the memory. As a result, accesses to
global memory will be coalesced, increasing memory load
and store efficiency, and lowering the memory overhead.

Decomposing computation into multiple kernels. Inside
a kernel, consuming too many registers per thread can lower
the occupancy, or even worse, can lead to register spilling.
In order to prevent register spilling, register intensive kernels
are broken into multiple smaller kernels.

Size of thread blocks. Our GPU kernels do not depend on
the size of a thread block. So, we choose a configuration

for a thread block that will maximize the percentage of oc-
cupancy, the value of IPC (instruction per clock cycle), and
bandwidth-related performance metrics such as the load and
store throughput. We have achieved the best experimental
results for thread blocks of 128 threads, or 256 threads.

Effect of GPU instructions on performance. Our cur-
rent implementation is optimized for the primes P3 ∶= (263 +
234)8 + 1 and P4 ∶= (262 + 236)16 + 1. Therefore, we rely on
64-bit instructions on GPUs. As it is explained in [6], even
though 64-bit integer instructions are supported on NVIDIA
GPUs, at compile time, all arithmetic and memory instruc-
tions will first be converted to a sequence of 32-bit equiv-
alents. This might have a negative impact on the overall
performance of our implementation. Specially, compared to
addition and subtraction, 64-bit multiplication is computed
through a longer sequence of 32-bit instructions. Finally,
using 32-bit arithmetic provides more opportunities for op-
timization such as instruction level parallelism.

7. EXPERIMENTATION
We compare our implementation of FFT over a big prime

field against a comparable approach based on FFTs over
small prime fields. To be precise, we implement the two
approaches discussed in Section 2. Recall that the first ap-
proach computes an FFT of size N over a big prime field of
the form Z/pZ where p is a SRGFN of size k machine words.
The second approach uses s = 2k half-machine word primes
p1, . . . , ps and proceeds as follows:

1. projection: compute the image fi of f in Z/p1Z[x], . . . ,
Z/pkZ[x], for i = 1, . . . , k,

2. images: compute the DFT of fi at ωi in Z/piZ[x], for
i = 1, . . . , k (using the CUMODP library [18]),

3. combination: combine the results using CRT so as to
obtain a DFT of f at ω.

We use half-machine word primes (instead of machine-word
primes as discussed in Section 2) because the small prime
field FFTs of the CUMODP library impose this choice. Ex-
perimental results are gathered in Section 7.1.

We also have implemented and tested a sequential, CPU
version of both approaches. For the small prime field ap-
proach, we use the NTL library [22], supporting FFT mod-
ulo machine-word size primes of 60 bits. However, for the big
prime field approach, we have implemented our own arith-
metic in a sequential C++ program. Experimental results
are gathered in Section 7.2.

7.1 Big prime vs small prime on the GPU
The output of the two approaches is the DFT of a vector of

size N over a ring R which is either a prime field or a direct
product of prime fields, and for which each element spans
k machine-words. Hence these two approaches are equiva-
lent building blocks in a modular method. For realizing the
benchmark, first, we perform the reduction step, followed by
computing s = 2k FFTs of size N over small prime fields. In
the small field case, we use the highly optimized implemen-
tation of the following FFT algorithms from the CUMODP
library (see [18, 19] and [14]): the Cooley-Tukey FFT al-
gorithm (CT), the Cooley-Tukey FFT algorithm with pre-
computed powers of the primitive root (CT-pow), and the
Stockham FFT algorithm. The above codes compute DFTs
for input vectors of 2n elements, where 20 ≤ n ≤ 26 is typical.

Our CUDA implementation of the big prime field ap-
proach computes DFT over Z/pZ, for P3 ∶= (263 + 234)8 + 1



and P4 ∶= (262 + 236)16 + 1, and input vectors of size N =Ke

where K = 16 for P3, and K = 32 for P4. Furthermore, for
P3, we have 2 ≤ e ≤ 5, while for P4 (due to the limited size
of global memory on a GPU card), we have 2 ≤ e ≤ 4.

The benchmark is computed on an NVIDIA Geforce GTX
760M (CC 3.0), an NVIDIA Tesla C2075 (CC 2.0), and an
NVIDIA Tesla M2050 (CC 2.0). The first card has effective
bandwidth of 48 GB/s, with 4 streaming multiprocessor, and
the total number of 768 CUDA cores.
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Figure 1: Speedup diagram for computing the benchmark
for a vector of size N =Ke (K = 16) for P3 ∶= (263+234)8+1.
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Figure 2: Speedup diagram for computing the benchmark
for a vector of size N =Ke (K = 32) for P4 ∶= (262+236)16+1.

Figures 1 and 2 show the speedup of the big prime field
FFT compared to the small prime field approach, measured
on the first GPU card. Moreover, Table 2 presents the run-
ning times of computing the benchmark on the mentioned
GPU cards. In each table, the first three columns present the
running time of computing the small prime field FFT based
on the Cooley-Tukey algorithm, the Cooley-Tukey FFT al-
gorithm with precomputed powers of the primitive root, and
the Stockham algorithm, respectively. Also, the last column
presents the running time of computing the big prime field
FFT.

As it is reported in [18], the FFT algorithms of the CU-
MODP library gain speedup factors for vectors of the size
216 and larger, therefore, the input vector should be large
enough to keep the GPU device busy, and thus, provide a
high percentage of occupancy. This explains the results dis-
played on Figures 1 and 2; for both primes P3 and P4, when
N =K2 and N =K3, our big prime field FFT approach sig-
nificantly outperforms the small prime field FFT approach.

More importantly, for both primes P3 and P4, and with
vectors of sizeN =K4, our experimental results demonstrate
that computing the big prime field FFT is competitive with
the small prime field approach in terms of running time. For
both primes P3 and P4, we can compute FFT for an input
vector of size N = K4, which is equivalent of 216 and 220

elements, respectively, and is large enough to cover most of
the practical applications.

Eventually, for P3, and for a vector of size N = K5, the
Cooley-Tukey (with precomputation) and Stockham FFT
codes are slightly faster than the big prime field FFT. Nev-
ertheless, for each of the tested big primes, there is a bit
size range of input vectors over which the big prime field
approach outperforms the small prime approach, which is
coherent with the analysis of Section 2. For P3 ∶= (263 +
234)8 +1, this range is [212,216] while P4 ∶= (262 +236)16 +1,
this range is [215,220]. Our GPU implementation of the big
prime field arithmetic is generic and thus can support larger
SRGFNs, see Table 1.

Table 2: Running time of computing the benchmark for N =
Ke on GPU (timings in milliseconds).

Computing the benchmark for N =Ke

for P3 ∶= (263 + 234)8 + 1 (K = 16)

Measured on a NVIDIA GTX-760M GPU

e CT CT-pow Stockham Big FFT

2 8.30 2.73 5.29 0.05

3 10.96 6.49 8.55 1.24

4 50.49 30.29 34.37 26.06

5 820.82 444.07 490.72 558.22

Measured on a NVIDIA Tesla C2075 GPU

e CT CT-pow Stockham Big FFT

2 9.44 2.93 5.16 0.03

3 11.72 6.27 7.54 0.89

4 31.85 15.57 19.07 17.71

5 418.58 191.57 205.13 371.48

Measured on a NVIDIA Tesla M2050 GPU

e CT CT-pow Stockham Big FFT

2 12.92 3.12 5.35 0.03

3 15.35 6.66 8.00 0.88

4 35.59 15.93 19.62 17.41

5 424.98 198.46 206.71 364.88

Computing the benchmark for N =Ke

for P4 ∶= (262 + 236)16 + 1 (K = 32)

Measured on NVIDIA GTX-760M GPU

e CT CT-pow Stockham Big FFT

2 18.30 9.33 12.26 0.37

3 62.98 39.74 46.72 20.40

4 1772.9 974.01 1042.62 971.28

Measured on NVIDIA Tesla C2075 GPU

e CT CT-pow Stockham Big FFT

2 19.82 9.56 11.56 0.27

3 44.50 23.39 27.98 15.16

4 891.35 437.29 464.69 695.02

Measured on NVIDIA Tesla M2050 GPU

e CT CT-pow Stockham Big FFT

2 27.22 9.91 11.62 0.27

3 51.81 23.93 28.60 14.80

4 902.35 449.53 465.51 678.34

Table 3: Running time of computing the benchmark for N =
Ke using NTL library on CPU (timings in milliseconds).

Measured on
Intel Xeon X5650 @ 2.67GHz CPU

Computing the benchmark for N =Ke

for P3 ∶= (263 + 234)8 + 1 (K = 16)
e NTL Small FFT NTL Big FFT
2 2.51 1.85
3 23.19 35.08
4 372.19 750.40

Measured on
AMD FX(tm)-8350 @ 2.40GHz CPU

Computing the benchmark for N =Ke

for P3 ∶= (263 + 234)8 + 1 (K = 16)
e NTL Small FFT NTL Big FFT
2 4.06 4.13
3 16.06 20.01
4 296.00 528.00

Measured on
Intel Core i7-4700HQ @ 2.40GHz CPU
Computing the benchmark for N =Ke

for P3 ∶= (263 + 234)8 + 1 (K = 16)
e NTL Small FFT NTL Big FFT
2 3.12 0.73
3 14.19 21.06
4 232.76 505.96

Computing the benchmark for N =Ke

for P4 ∶= (262 + 236)16 + 1 (K = 32)
e NTL Small FFT NTL Big FFT
2 14.94 12.91
3 384.10 692.16
4 11303.76 33351.29

Computing the benchmark for N =Ke

for P4 ∶= (262 + 236)16 + 1 (K = 32)
e NTL Small FFT NTL Big FFT
2 12.00 8.00
3 296.00 396.00
4 10128.00 22992.00

Computing the benchmark for N =Ke

for P4 ∶= (262 + 236)16 + 1 (K = 32)
e NTL Small FFT NTL Big FFT
2 12.48 9.79
3 233.26 496.03
4 7573.65 26089.53

Table 4: Speedup ratio ( TCPU
TGPU

) for computing the bench-

mark for N =Ke for P3 and P4 (timings in milliseconds).
Computing the benchmark for N =Ke for

P3 ∶= (263 + 234)8 + 1 (K = 16) (timings in milliseconds)

e SmallFFT CPU SmallFFT GPU Speed-up

2 2.51 - 4.06 2.73 - 12.92 0.19X - 1.48X

3 14.19 - 23.19 6.27 - 15.35 0.92X - 3.69X

4 232.76 - 372.19 15.57 - 50.49 4.61X - 23.90X

e BigFFT CPU BigFFT GPU Speed-up

2 0.73-4.13 0.03-0.05 14.6X - 137.6X

3 20.01-35.08 0.88-1.24 16.13X - 39.86X

4 505.96 - 750.40 17.41-26.06 19.41X - 43.10X

Computing the benchmark for N =Ke for

P4 ∶= (262 + 236)16 + 1 (K = 32) (timings in milliseconds)

e SmallFFT CPU SmallFFT GPU Speed-up

2 12.00 - 14.94 9.33 - 27.22 0.44X - 1.60X

3 233.26 - 384.10 23.39 - 62.98 3.70X - 16.42X

4 7573.65 - 11303.76 437.29 - 1772.92 4.27X - 25.84X

e BigFFT CPU BigFFT GPU Speed-up

2 8.00 - 12.91 0.27 - 0.37 21.62X - 47.81X

3 396.00 - 692.16 14.80 - 20.80 19.03X - 46.76X

4 22992.00 - 33351.29 695.02 - 971.28 23.67X - 479.62X

Figure 3 shows the percentage of time spent in each op-
eration in order to compute the big prime field FFT on a
randomly generated input vector of size N = K4 (measured



for both primes and on the first mentioned GPU card). As
it illustrated, for both primes, computation follows a similar
pattern, with multiplication by twiddle factors as the main
bottleneck. Finally, Table 5 presents the profiling data for
computing the base-case DFTK on a GTX 760M GPU.
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Figure 3: Running time of computing DFTN with N = K4

on a GTX 760M GPU.

Table 5: Profiling results for computing base-case DFTK on
a GTX 760M GPU (collected using NVIDIA nvprof).

Measured on a GTX760M GPU P3 = (263 + 234)8 (K = 16)

Metric Description Mult by r Add/Sub

Achieved Occupancy 74% 45%

Device Memory Read Throughput 22.0 GB/s 20.7 GB/s

Device Memory Write Throughput 22.0 GB/s 20.7 GB/s

Global Memory Replay Overhead 0.28 0.03

Executed IPC 0.72 2.41

Instruction Replay Overhead 0.47 0.13

Global Store Throughput 22.08 GB/s 20.74 GB/s

Global Load Throughput 24.57 GB/s 20.91 GB/s

Global Memory Load Efficiency 90.44% 43.60%

Global Memory Store Efficiency 94.95% 43.75%

P4 = (262 + 236)16 (K = 32)

Mult by r Add/Sub

62% 46%

22.50 GB/s 10.00 GB/s

23.19 GB/s 10.06 GB/s

0.25 0.01

0.78 4.56

0.53 0.028

44.42 GB/s 9.91 GB/s

46.39 GB/s 10.22 GB/s

48.70% 98.86%

49.35% 99.99%

7.2 CPU vs GPU implementations
Table 3 presents the sequential running time of comput-

ing the benchmark for both primes on three different CPUs
(measured in milliseconds). In addition, Table 4 shows the
speedup range for computing the small and the big prime
field approaches on CPU and GPU. For each prime, the
first and the second column show the lowest and the high-
est running time of the same approach on CPU and GPU,
respectively. Also, the last column contains the lowest and
the highest speedup ratio of computing the same approach
on CPU to its counterpart on GPU. .

8. CONCLUSION
Our results show the advantage of the big prime field ap-

proach. To be precise, for a size range of vectors, one can
find a suitable large prime modulo which FFTs outperform
the CRT-based approach. Our current implementation is
preliminary and much optimization is possible, in particular
for the multiplication in the big prime field. We anticipate
better performance on more recent GPU cards with larger
memory bandwidth and better support for 64-bit arithmetic.
The CUDA code presented with this article is part of the
CUMODP library freely available at www.cumodp.org.
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