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COMPUTING THE MONODROMY AND POLE ORDER
FILTRATION ON MILNOR FIBER COHOMOLOGY OF PLANE

CURVES

ALEXANDRU DIMCA AND GABRIEL STICLARU

Abstract. We describe an algorithm computing the monodromy and the pole
order filtration on the Milnor fiber cohomology of any reduced projective plane
curve C. The relation to the zero set of Bernstein-Sato polynomial of the defining
homogeneous polynomial for C is also discussed. When C has some non weighted
homogeneous singularities, then we have to assume that a conjecture holds in order
to get some of our results. In all the examples computed so far this conjecture holds.

1. Introduction

Let C : f = 0 be a reduced plane curve of degree d ≥ 3 in the complex projective
plane P2, defined by a homogeneous polynomial f ∈ S = C[x, y, z]. Consider the
corresponding complement U = P2 \ C, and the global Milnor fiber F defined by
f(x, y, z) = 1 in C3 with monodromy action h : F → F ,

h(x, y, z) = exp(2πi/d) · (x, y, z).

To determine the eigenvalues of the monodromy operators

(1.1) hm : Hm(F,C)→ Hm(F,C)

for m = 1, 2 starting from C or f is a rather difficult problem, going back to O.
Zariski and attracting an extensive literature, see for instance [1, 3, 8, 9, 16, 22, 25,
26, 28, 11, 37, 13]. When the curve C : f = 0 is either free or nearly free, we have
presented in [20] an efficient algorithm for listing the eigenvalues of the monodromy
operator h1, which determines completely the corresponding Alexander polynomial
∆C(t), see Remark 4.4 below for its definition.

In this paper we explain an approach working in the general case. This time the
results of our computation give not only the dimensions of the eigenspaces Hm(F,C)λ
of the monodromy, but also the dimensions of the graded pieces GrpPH

m(F,C)λ,
where P denotes the pole order filtration on Hm(F,C), see section 2 below for the
definition. More precisely, the algorithm described here gives the following.

(1) the dimensions of the eigenspaces Hm(F,C)λ for m = 1, 2 for any reduced
curve C : f = 0, see Remark 4.4.

(2) the dimensions of the graded pieces GrpPH
1(F,C)λ, for any reduced curve

C : f = 0. Note that the P p filtration coincides to the Hodge filtration F p

on H1(F,C), see [21, Proposition 2.2].
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(3) the dimensions of the graded pieces GrpPH
2(F,C)λ, for a reduced curve C :

f = 0 having only weighted homogeneous singularities. To achieve this effi-
ciently one has to use the recent result by M. Saito stated below in Theorem
1.1.

(4) the dimensions of the graded pieces GrpPH
2(F,C)λ, for any reduced curve

C : f = 0 under the assumption that a basic fact, stated as Conjecture 2.6,
holds. This conjecture holds in all the examples we have computed so far,
see Remark 6.2.

The new information on the pole order filtration P can be applied to describe
the set of roots of bf (−s), where bf (s) is the Bernstein-Sato polynomial of f , see for
details [31], [34]. In fact, using [31, Theorem 2], this comes down to checking whether
GrpPH

2(F,C)λ 6= 0, see Theorem 7.2 for a precise statement and our applications
described in Corollaries 7.3, 7.4, 7.5.

Here is in short how we proceed. Let Ωj denote the graded S-module of (polyno-
mial) differential j-forms on C3, for 0 ≤ j ≤ 3. The complex K∗f = (Ω∗, d f∧) is just
the Koszul complex in S of the partial derivatives fx, fy and fz of the polynomial
f . The general theory says that there is a spectral sequence E∗(f), whose first term
E1(f) is computable from the cohomology of the Koszul complex K∗f and whose
limit E∞(f) gives us the action of monodromy operator on the graded pieces of the
reduced cohomology H̃∗(F,C) of F with respect to the pole order filtration P , see
[12], [13, Chapter 6], [18].

Our approach takes a simpler form when C is assumed to have only weighted
homogeneous singularities, e.g. when C is a line arrangement A. This comes from
the following result due to M. Saito [35], see for a more precise statement Theorem
2.1 below.

Theorem 1.1. If the reduced plane curve C : f = 0 has only weighted homogeneous
singularities, then the spectral sequence E∗(f) degenerates at the E2-term.

This result has been conjectured already in [12] and has been checked in many
cases using a computer program in [20]. The converse implication is known to hold,
see [18, Theorem 5.2]. The algorithm described in [20] for free and nearly free curves
actually computes the E2-term of this spectral sequence.

In this paper we modify the algorithm in [20] such that it applies to any reduced
curve. First we compute (a large part) of the E2−term in Section 4, which is (more
than) enough when C has only weighted homogeneous singularities, see Remark 4.3,
or when we are interested only in the Alexander polynomial ∆C(t). Then in Section
5 we compute the relevant part of the E3-term of the above spectral sequence. Con-
jecture 2.6 tells us that essentially E3 = E∞ and that we have missed no information
on the P -filtration on H2(F,C) by looking only at some of the terms in the E2 and
E3 pages.

The computations in this note were made using the computer algebra system
Singular [10]. The corresponding codes are available at
http://math.unice.fr/~dimca/singular.html

http://math.unice.fr/~dimca/singular.html
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We thank Morihiko Saito for his remarks that greatly improved the clarity of the
presentation. In particular, Conjecture 2.6 and Proposition 6.1 were suggested by
him, and they provide an efficient method to certify all the results given by our
algorithm. For an alternative approach, see Morihiko Saito’s paper [36].

We would also like to thank the referees for their very careful reading of our
manuscript and their useful suggestions.

2. Gauss-Manin complexes, Koszul complexes, and Milnor fiber
cohomology

Let S be the polynomial ring C[x, y, z] with the usual grading and consider a
reduced homogeneous polynomial f ∈ S of degree d. The graded Gauss-Manin
complex C∗f associated to f is defined by taking Cj

f = Ωj[∂t], i.e. formal polynomials

in ∂t with coefficients in the space of differential forms Ωj, where deg ∂t = −d and
the differential d : Cj

f → Cj+1
f is C-linear and given by

(2.1) d(ω∂qt ) = (dω)∂qt − (d f ∧ ω)∂q+1
t ,

see for more details [18, Section 4]. The complex C∗f has a natural increasing filtration
P ′∗ defined by

(2.2) P ′qC
j
f = ⊕i≤q+jΩj∂it.

If we set P ′q = P ′−q in order to get a decreasing filtration, then one has

(2.3) GrqP ′C
∗
f = σ≥q(K

∗
f ((3− q)d)),

the truncation of a shifted version of the Koszul complex K∗f , where σ denotes the
stupid filtration, see for instance [14, Remark 1.1.15]. Moreover, this yields a de-
creasing filtration P ′ on the cohomology groups Hj(C∗f ) and a spectral sequence

(2.4) Eq,j−q
1 (f)⇒ Hj(C∗f ).

On the other hand, the reduced cohomology H̃j(F,C) of the Milnor fiber F :
f(x, y, z) = 1 associated to f has a pole order decreasing filtration P , see [18, Section
3], such that there is a natural identification for any integers q, j and k ∈ [1, d]

(2.5) P ′q+1Hj+1(C∗f )k = P qH̃j(F,C)λ,

where λ = exp(−2πik/d). Since the Milnor fiber F is a smooth affine variety, its
cohomology groups Hm(F,C) have a decreasing Hodge filtration F coming from the
mixed Hodge structure constructed by Deligne, see [29]. The two filtrations P and
F are related by the inclusion

(2.6) F sHm(F,C) ⊂ P sHm(F,C),

for any integers s,m, see formula (4.4.8) in [18]. Note also that

(2.7) F 0Hm(F,C) = Hm(F,C) and Pm+1Hm(F,C) = 0,

for any integer m, where the first equality comes from the general properties of the
Hodge filtration, see [29], while the second equality follows from the definition of the
filtration P .
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The E1-term of the spectral sequence (2.4) is completely determined by the mor-
phism of graded C-vector spaces

(2.8) d′ : H2(K∗f )→ H3(K∗f ),

induced by the exterior differentiation of forms, i.e. d′ : [ω] 7→ [d(ω)]. Note that this

morphism d′ coincides with the morphism d(1) : N → M considered in [18], up-to
some shifts in gradings. More precisely, if we set for k ∈ [1, d],

(2.9) Es,t
1 (f)k = Hs+t+1(K∗f )td+k and d1 : Es,t

1 (f)k → Es+1,t
1 (f)k, d1 : [ω] 7→ [d(ω)],

we get a new form of (a homogeneous component of) the spectral sequence (2.4),
where Es,t

1 (f)k = 0 for s+ t /∈ {1, 2}. Hence, with the above notation, one has

(2.10) Es,t
∞ (f)k = GrsP H̃

s+t(F,C)λ.

The case k = d is also discussed in [19], see also [36]. The second differential

(2.11) d2 : Es,t
2 (f)k → Es+2,t−1

2 (f)k,

for s + t = 1 can be described as follows. If [ω] ∈ Es,t
2 (f)k, then d1([ω]) = 0, which

means that d f ∧ω = 0 and there is a 2-form α ∈ Ω2 such that d(ω) = d f ∧α. Then
one has

d2([ω]) = [dα].

d1

d1

d1

d2

d2

E−1,2
1 (f)k E0,2

1 (f)k

E0,1
1 (f)k E1,1

1 (f)k

E1,0
1 (f)k E2,0

1 (f)k

Figure 1. The E1-term of the spectral sequence E∗(f)k and the d2 differentials.

One has the following key result due to M. Saito [35].

Theorem 2.1. The spectral sequences (2.9) degenerate at the E2-term when the
reduced plane curve C : f = 0 has only weighted homogeneous singularities.

We need the following result, see [18, Theorem 5.3]. Let αpi,j with j = 1, ..., µ(C, pi)
be the spectral numbers of the plane curve singularity (C, pi), where each spectral
number is repeated as many times as its multiplicity in the spectrum of (C, pi).
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Theorem 2.2. Assume that the plane curve C : f = 0 in P2 has only weighted
homogeneous singularities and consider

E1−t,t
2 (f)k = ker

{
d′ : H2(K∗f )td+k → H3(K∗f )td+k

}
.

Then dimE1−t,t
2 (f)k ≤ N(C, t, k), where N(C, t, k) is the number of spectral numbers

αpi,j equal to td+k
d

, when pi ranges over all the singularities of the curve C and
j = 1, ..., µ(C, pi).

Theorem 2.2 also implies the following weaker form of Theorem 2.1, see also [18,
Corollary 5.5].

Corollary 2.3. If the degree d reduced plane curve C has only weighted homogeneous
singularities, then E1,0

2 (f)k = 0 for k < α(C)d, where α(C) is the minimum of the
spectral numbers of the singularities of C. Moreover, the spectral sequences (2.9)
degenerate at the E3-term and the only possibly non-zero differentials in the E2-terms
are the differentials

d2 : E0,1
2 (f)k → E2,0

2 (f)k

for k = 1, ..., (1− α(C))d, i.e. one has E1−t,t
2 (f)k = 0 for q = td+ k > (2− α(C))d.

Corollary 2.4. Let C : f = 0 be a reduced plane curve of degree d having only
weighted homogeneous singularities. Then dimGr1

PH
1(F,C)λ = 0 for k < α(C)d

and dimGr0
PH

1(F,C)λ = 0 for k > (1− α(C))d.

Corollary 2.3 implies that the following three related conjectures hold when all the
singularities of C are weighted homogeneous.

Conjecture 2.5. The spectral sequences (2.9) degenerates at the E3-term for any
reduced plane curve C : f = 0.

We have no idea how to prove this conjecture, not even how to check that it holds
on a specific example. For our practical purposes, we need only the following weaker
version of this conjecture. This version can also be checked on a given example using
the algorithm described below, see Proposition 6.1.

Conjecture 2.6. In the spectral sequences (2.9) of any reduced plane curve C : f =
0, the following equalities hold

dimE2−t,t
3 (f)k = dimE2−t,t

∞ (f)k,

for any integer k ∈ [1, d] and any t = 0, 1, 2.

To speed up the computations, the following more precise form of the above claims
would be very useful.

Conjecture 2.7. For any reduced plane curve C : f = 0, there is a positive integer
q0 ≤ 3d+ 1, such that

dimE1−t,t
2 (f)k = µ(C)− τ(C) and E1−t,t

3 (f)k = 0

for any q = td + k ≥ q0, where µ(C) is the total Milnor number of C, that is the
sum of all the Milnor numbers of the singular points of C. Similarly, τ(C) is the
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total Tjurina number of C, that is the sum of all the Tjurina numbers of the singular
points of C. The minimal positive integer q0 satisfying the above property, if it exists,
is denoted by q0(f).

It is clear that Conjecture 2.7 implies Conjecture 2.6, but again we have no idea
how to prove Conjecture 2.7, not even how to check that it holds on a specific
example.

Remark 2.8. Corollary 2.3 implies that when all the singularities of C are weighted
homogeneous, one has q0(f) ≤ (2− α(C))d+ 1. Note that by the semicontinuity of
the spectrum, one has α(C) ≥ 2/d and hence the vanishing E1−t,t

2 (f)k = 0 holds in
particular for q = td+ k ≥ 2d− 1.

However, there are curves for which q0(f) > 2d− 1, see Example 8.3.

Remark 2.9. The two filtrations F and P coincide on H1(F,C)λ always, see [21,
Proposition 2.2]. On the other hand, the two filtrations F and P do not coincide on
H2(F,C)λ even in very simple cases, e.g. C : f = (x2− y2)(x2− z2)(y2− z2) = 0 and
λ = −1. A computation of the Hodge filtration on H2(F,C) in this case can be found
in [5, 16]. Note also that the mixed Hodge structure on H2(F,C)6=1 is not pure in
general. For a line arrangement, one can use the formulas for the spectrum given in
[7] to study the interplay between monodromy and Hodge filtration on H2(F,C)6=1,
see [21, Remark 2.5].

3. Jacobian syzygies of plane curves

Consider the graded S−submodule AR(f) ⊂ S3 of all relations involving the
derivatives of f , namely

ρ = (a, b, c) ∈ AR(f)q
if and only if afx + bfy + cfz = 0 and a, b, c are in Sq, the space of homogeneous
polynomials of degree q. Let d1 = mdr(f) be the minimal degree of a relation in
AR(f). We assume in the sequel that d1 > 0, which is equivalent to saying that C
is not the union of d lines passing through one point, a case easy to handle directly.

To each syzygy ρ = (a, b, c) ∈ AR(f)q we associate a differential 2-form

(3.1) ω(ρ) = a d y ∧ d z − b dx ∧ d z + c dx ∧ d y ∈ Ω2
q+2

such that the relation afx + bfy + cfz = 0 becomes d f ∧ ω(ρ) = 0. A relation
ρ = (a, b, c) is called a Koszul relation if the associated differential form ω(ρ) is of
the form d f ∧ α, for some α ∈ Ω1. The set KR(f) of these Koszul relations forms a
graded S-submodule in AR(f).

Hence, up to a shift in degrees, for any polynomial f there is an identification

AR(f)(−2) = Syz(f) := ker{d f∧ : Ω2 → Ω3},
such that the Koszul relations KR(f) inside AR(f) correspond to the submodule
d f ∧ Ω1 in Syz(f). Since C : f = 0 has only isolated singularities, it follows that
H1(K∗f ) = 0, i.e. the following sequence, where the morphisms are the wedge product
by d f , is exact for any j

0→ Ω0
j−2d → Ω1

j−d → (d f ∧ Ω1)j → 0.



MONODROMY AND POLE ORDER FILTRATION ON MILNOR FIBER 7

In particular, one has

(3.2) dim(d f ∧ Ω1)j = 0 for j ≤ d,

(3.3) dim(d f ∧ Ω1)j = 3

(
j − d+ 1

2

)
for d < j < 2d.

and

(3.4) dim(d f ∧ Ω1)j = 3

(
j − d+ 1

2

)
−
(
j − 2d+ 2

2

)
for j ≥ 2d.

Remark 3.1. Let Jf be the Jacobian ideal spanned by fx, fy, fz in S, and denote
by M(f) = S/Jf the corresponding Jacobian (or Milnor) algebra of f . Let m(f)j =
dimM(f)j for j ≥ 0 and recall the formulas

(3.5) dimH2(K∗f )j = m(f)j+d−3 −m(fs)j+d−3 for 2 ≤ j ≤ 2d− 3,

and dimH2(K∗f )j = τ(C) for j ≥ 2d− 2, where Cs : fs = 0 denotes a smooth curve

of degree d, see [15]. Since H2(K∗f )j = Syz(f)j/(d f ∧ Ω1)j, the combination of
the formulas (3.2), (3.3), (3.4) and (3.5) above gives us formulas for the dimensions
syz(f)j = dimSyz(f)j for any j ≥ 3. Note that Syz(f)j = AR(f)j−2 = 0 for any
j < 3 by our assumption d1 = mdr(f) > 0.

Definition 3.2. For a reduced plane curve C : f = 0 of degree d, we recall the
following invariants.
(i) the coincidence threshold

ct(f) = max{q : m(f)k = m(fs)k for all k ≤ q},
with fs a homogeneous polynomial in S of the same degree d as f and such that
Cs : fs = 0 is a smooth curve in P2.
(ii) the stability threshold st(f) = min{q : m(f)k = τ(C) for all k ≥ q}.

4. The first cycle in the algorithm: computing Es,t
2 (f)k

4.1. The computation of Es,t
2 (f)k for s + t = 1, 0 ≤ t ≤ 3. For 3 ≤ q ≤ 4d, we

set q1 = q − d and consider the linear mapping

(4.1) φ′q : Ω2
q × Ω2

q1
→ Ω3

q+d × Ω3
q,

given by
(ω, α) 7→ (d f ∧ ω, dω − d f ∧ α).

This map puts together the differential in the Koszul complex K∗f and d1 from the

spectral sequence (2.9). Indeed, if ω ∈ Ω2 (resp. α ∈ Ω2) is given by the formula
(3.1) starting with the triple (a, b, c) ∈ S3

q−2 (resp. the triple (u, v, w) ∈ S3
q1−2), one

sees that essentially we get a map

(4.2) φ′q : S3
q−2 × S3

q1−2 → Sq−3+d × Sq−3,

given by

((a, b, c), (u, v, w)) 7→ (afx + bfy + cfz, ax + by + cz − ufx − vfy − wfz).
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Since Sj = 0 for j < 0, this map has a simpler form for q < d + 2. The following
claims are straightforward.

i) One has ((a, b, c), (u, v, w)) ∈ K ′q := kerφ′q if and only if d f ∧ ω = 0 and
dω = d f ∧ α.

ii) Note that if ω = d f ∧ η, one can take α = − d η and the corresponding pair
(ω, α) gives rise to an element in K ′q.

iii) Consider the projection Bq ⊂ S3
q−2 of K ′q on the first component and note

that Bq/(d f ∧Ω1)q can be identified to E1,0
2 (f)q, for 3 ≤ q ≤ d, to E0,1

2 (f)q−d,

for d+ 1 ≤ q ≤ 2d, to E−1,2
2 (f)q−2d, for 2d+ 1 ≤ q ≤ 3d, and respectively to

E−2,3
2 (f)q−3d, for 3d+ 1 ≤ q ≤ 4d.

iv) The kernel of the projection K ′q → Bq can be identified to the set of forms

α′ ∈ Ω2 such that d f ∧ α′ = 0.

It follows that if we set k′q = dimK ′q and

ε′q = k′q − syz(f)q1 − dim(d f ∧ Ω1)q,

we have ε′q = dimE1,0
2 (f)q for 3 ≤ q ≤ d, ε′q = dimE0,1

2 (f)q−d for d + 1 ≤ q ≤ 2d,

ε′q = dimE−1,2
2 (f)q−2d for 2d + 1 ≤ q ≤ 3d, and respectively ε′q = dimE−2,3

2 (f)q−3d

for 3d+ 1 ≤ q ≤ 4d
By convention, we set K ′j = 0 and k′j = ε′j = 0 for j = 0, 1, 2.

4.2. The computation of Es,t
2 (f)k for s + t = 2, 0 ≤ t ≤ 3. Recall that, setting

q = td+ k, we have 1 ≤ q ≤ 4d and

dimE2−t,t
1 (f)k = dimH3(K∗f )q = dimM(f)q−3 = m(f)q−3.

It follows that

θq := dimE2−t,t
2 (f)k = dimE2−t,t

1 (f)k − (dimE1−t,t
1 (f)k − dimE1−t,t

2 (f)k) =

= m(f)q−3 − syz(f)q + dim(d f ∧ Ω1)q + ε′q.

This can be rewritten as

θq = m(f)q−3 −m(f)q+d−3 +m(fs)q+d−3 + ε′q

for 2 ≤ q ≤ 2d− 3 and
θq = m(f)q−3 − τ(C) + ε′q

for 2d − 2 ≤ q ≤ 3d − 4, resp. θq = ε′q for 3d − 3 ≤ q ≤ 4d in view of Remark 3.1
above and since st(f) ≤ 3d− 6.

Remark 4.3. When the degree d reduced plane curve C has only weighted homo-
geneous singularities, we have

ε′q = 0

for any q > (2−α(C))d as implied by Corollary 2.3. Moreover, Theorem 1.1 implies
that in this case

Es,t
2 (f)k = Es,t

∞ (f)k

and hence to determine the monodromy action and the pole order filtration on Milnor
fiber cohomology in this case it is enough to compute the integers ε′q only for q ≤
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2d−2. Indeed, all the terms Es,t
2 (f)k = Es,t

∞ (f)k for s+t = 1 and q > 2d−2 are trivial,
as it follows from (2.10) and the properties of the pole order filtration P , see (2.6)
and (2.7). Therefore for a reduced plane curve C having only weighted homogeneous
singularities the algorithm stops at this stage. Note that when C is a line arrangement
one can compute only θq for q ≤ 2d, since P 1H2(F,C) = H2(F,C) as shown in
Corollary 6.3, but in general one may need some values θq for 2d < q ≤ st(f) + 2 as
shown by Corollary 6.5 and Example 8.1, where P 1H2(F,C) 6= H2(F,C).

Remark 4.4. One can consider the characteristic polynomials of the monodromy,
namely

(4.3) ∆j
C(t) = det(t · Id− hj|Hj(F,C)),

for j = 0, 1, 2. It is clear that, when the curve C is reduced, one has ∆0
C(t) = t− 1,

and moreover

(4.4) ∆0
C(t)∆1

C(t)−1∆2
C(t) = (td − 1)χ(U),

where χ(U) denotes the Euler characteristic of the complement U , see for instance
[25, 27] or [13, Proposition 4.1.21]. Since

χ(U) = (d− 1)(d− 2) + 1− µ(C)

it follows that the polynomial ∆C(t) = ∆1
C(t), also called the Alexander polynomial of

C, see [30], determines the remaining polynomial ∆2
C(t). Note that the computation

of the dimension of the term E1,0
2 (f)k, for k = 1, ..., d described in this section is

enough to determine the Alexander polynomial ∆C(t) for all reduced plane curves.
Indeed, the equality of the pole order filtration P p with the Hodge filtration F p on
H1(F,C), see [21, Proposition 2.2] and the obvious equality

dimH0,1(F,C)λ = dimH1,0(F,C)λ̄,

with λ̄ the complex conjugate of λ, imply that

dimH1,0(F,C)λ = dimE1,0
2 (f)k and dimH0,1(F,C)λ = dimE1,0

2 (f)d−k,

where λ = exp(−2πik/d).
Note that the results by H. Esnault in [22], A. Libgober in [25], F. Loeser and M.

Vaquié in [27], and E. Artal Bartolo in [1], can be used to compute the Alexander
polynomials in many cases. However these results do not seem to be easily imple-
mentable as algorithms to performed computer aided computations.

We also note that our results, reducing the computation of the Alexander polyno-
mial to linear algebra, imply in a clear way that this polynomial is not changed when
we apply an automorphism of C over Q to our defining polynomial f . In particular,
the Alexander polynomial cannot be used to distinguished Galois conjugate Zariski
pairs as noticed already in [2].

Remark 4.5. As explained in Remark 4.4, if we are interested only in the Alexander
polynomial ∆C(t), then it is enough to compute the dimensions of the terms E1,0

2 (f)k
for all k ∈ [1, d]. This justifies our approach above via the study of the kernels of
the differentials d1’s. On the other hand, if the main interest is in the study of
the polar filtration on the top cohomology group of the Milnor fiber, and this is
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often the case when we consider higher dimensional projective hypersurfaces, as in
[21, 35, 36], it turns out to be more efficient to look at the dimensions of the cokernels
of the differentials dj’s, for j = 1, 2. This passage from kernels to cokernels was first
suggested by Morihiko Saito.

Remark 4.6. In practice, the computation of ε′q = dimE−1,2
2 (f)q−2d for 2d+1 ≤ q ≤

4d takes a lot of time. A way to estimate in general the numerical invariant q0(f)
introduced in Conjecture 2.7 would be of a great help. All the examples computed
so far suggest that Conjecture 2.7 holds. Some of these examples are given in the
final section.

5. The second cycle in the algorithm: computing Es,t
3 (f)k

In this section we explain how the algorithm described in the previous section has
to be continued in the case of the presence of non weighted homogeneous singularities,
and if one wants to control the P -filtration on H2(F,C). The general construction is
described in the subsection 5.4, but for the clarity of exposition and the optimization
of the computer time we discuss several cases.

5.1. The case 3 ≤ q ≤ d+ 1. We consider the linear mapping

(5.1) φq : S3
q−2 → Sq−3+d × Sq−3,

given by

(a, b, c) 7→ (afx + bfy + cfz, ax + by + cz).

This map is a simpler version of the map in (4.2), and in fact φq = φ′q in this range.
It follows that (a, b, c) is in the kernel Kq := kerφq if and only if the corresponding

form ω is in E1,0
2 (f)q for q = 3, ..., d or in E0,1

2 (f)1 for q = d + 1. Note that one

obviously has E1,0
2 (f)q = E1,0

∞ (f)q for q = 3, ..., d, and also E0,1
2 (f)1 = E0,1

∞ (f)1 as
explained in [20, Remark 2.4]. We set kq = dimKq and εq = kq − dim(d f ∧ Ω1)q.
Since the class [ω] of the form ω is determined up to an element of (d f ∧ Ω1)q, it
follows that

εq = dimE1,0
∞ (f)q = dimGr1

PH
1(F,C)λ

for q = 3, ..., d and εd+1 = dimE0,1
∞ (f)q = dimGr0

PH
1(F,C)λ, with λ = exp(−2πiq/d).

By convention, we set Kj = 0 and kj = εj = 0 for j = 0, 1, 2.

5.2. The case d+ 2 ≤ q ≤ d+ d1 + 1 where d1 = mdr(f). We set q1 = q − d and
we consider the linear mapping

(5.2) φq : S3
q−2 × S3

q1−2 → Sq−3+d × Sq−3 × Sq1−3,

given by

((a, b, c), (u, v, w)) 7→ (afx + bfy + cfz, ax + by + cz − ufx − vfy −wfz, ux + vy +wz).

This map can be regarded as an extension of the map (4.2) obtained by adding the
last component. Then it is clear that

((a, b, c), (u, v, w)) ∈ Kq = kerφq
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if and only if d f ∧ ω = 0, dω = d f ∧ α and dα = 0. Since q1 ≤ d1 + 1, it follows
that E1,0

1 (f)q1 = 0, and hence E2,0
2 (f)q1 = E2,0

1 (f)q1 = M(f)q1−3. Consider the
projection Aq ⊂ S3

q−2 of Kq on the first component and note that Aq/(d f ∧Ω1)q can

be identified to E0,1
3 (f)q1 . Moreover E0,1

3 (f)q1 = E0,1
∞ (f)q1 since q1 ≤ d. The kernel

of the projection Kq → Aq can be identified to the set of forms α′ ∈ Ω2 such that
d f ∧ α′ = 0 and dα′ = 0. Since q1 ≤ d1 + 1, the fist condition implies α′ = 0, and
hence kq = dimKq = dimAq in this case. It follows that if we set

εq = kq − dim(d f ∧ Ω1)q,

we have again

εq = dimE0,1
∞ (f)q1 = dimGr0

PH
1(F,C)λ.

5.3. The case d + d1 + 2 ≤ q ≤ 2d where d1 = mdr(f). We set again q1 = q − d
and we consider the linear mapping

(5.3) φq : S3
q−2 × S3

q1−2 × S3
q1−2 → Sq−3+d × S2

q−3 × Sq1−3,

given by

((a, b, c), (u, v, w), (u′, v′, w′)) 7→ (Φ1,Φ2,Φ3,Φ4),

where Φ1 = afx+bfy+cfz, Φ2 = ax+by+cz−ufx−vfy−wfz, Φ3 = u′fx+v′fy+w′fz
and Φ4 = ux + vy +wz − u′x− v′y −w′z. With the notation from the previous case, let

β ∈ Ω2 be the form associated to the triple (u′, v′, w′). Then it is clear that

((a, b, c), (u, v, w), (u′, v′, w′)) ∈ Kq = kerφq

if and only if d f ∧ ω = 0, dω = d f ∧ α, d f ∧ β = 0 and dα = d β. Since q1 ≤ d, it
follows that Φ4 = 0 has the same meaning in both Sq1−3 and in M(f)q1−3 = Sq1−3.

Consider the projection Aq ⊂ S3
q−2 of Kq on the first component and note that

Aq/(d f ∧ Ω1)q can be identified to E0,1
3 (f)q1 , which again, is clearly the same as

E0,1
∞ (f)q1 . The kernel of the projection Kq → Aq can be identified to the set of forms

α′, β′ ∈ Ω2 such that d f∧α′ = d f∧β′ = 0 and dα′ = d β′. By setting γ = α′−β′, we
see that this is the same as the set of forms α′, γ ∈ Ω2 such that d f ∧α′ = d f ∧γ = 0
and d γ = 0. This says exactly that α′ ∈ Syz(f)q1 and γ ∈ Kq1 = K ′q1 , where K ′q1
was introduced in the first cycle above. It follows that if we set

εq = kq − syz(f)q1 − k′q1 − dim(d f ∧ Ω1)q,

we have again

εq = dimE0,1
∞ (f)q1 = dimGr0

PH
1(F,C)λ.

Note that the value for syz(f)q1 is determined in Remark 3.1, the value for kq1 is
computed in the first step of our algorithm, and the value of dim(d f ∧Ω1)q is given
in the equations (3.2), (3.3), and (3.4).
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5.4. The case 2d+ 1 ≤ q ≤ 4d. We set q1 = q− d and q2 = q− 2d, and we consider
the linear mapping

(5.4) φq : S3
q−2 × S3

q1−2 × S3
q1−2 × S3

q2−2 → Sq−3+d × S2
q−3 × Sq1−3,

given by

((a, b, c), (u, v, w), (u′, v′, w′), (u′′, v′′, w′′)) 7→ (Φ1,Φ2,Φ3,Φ4),

where Φ1 = afx+bfy+cfz, Φ2 = ax+by+cz−ufx−vfy−wfz, Φ3 = u′fx+v′fy+w′fz
and Φ4 = ux + vy +wz − u′x− v′y −w′z − u′′fx− v′′fy −w′′fz. With the notation from

the previous case, let η ∈ Ω2 be the form associated to the triple (u′′, v′′, w′′). Then
it is clear that

((a, b, c), (u, v, w), (u′, v′, w′), (u′′, v′′, w′′)) ∈ Kq = kerφq

if and only if d f ∧ω = 0, dω = d f ∧α, d f ∧β = 0 and dα−d β = d f ∧η. As above,
one considers the projection Kq → Aq and note that the kernel of this projection
can be identified to the space K ′q1 , whose dimension k′q1 was determined in the first
cycle above. Hence

εq = kq − syz(f)q1 − k′q1 − dim(d f ∧ Ω1)q,

will give again dimE−1,2
3 (f)q2 for 2d + 1 ≤ q ≤ 3d, resp. dimE−2,3

3 (f)q−3d for
3d+ 1 ≤ q ≤ 4d

6. Computation of Es,t
∞ (f)k for s+ t = 2 under some assumptions

We start with the following very useful result.

Proposition 6.1. Conjecture 2.6 holds if and only if

dimE2,0
3 (f)k+dimE1,1

3 (f)k+dimE0,2
3 (f)k−dimE1,0

3 (f)k−dimE0,1
3 (f)k+δkd = χ(U),

for any integer k ∈ [1, d], where δkd = 0 if k 6= d and δdd = 1.

Proof. Note that, using the properties of the filtrations F and P given in (2.6) and
(2.7), it follows that Es,t

∞ (f)k, with s + t = 2, can be nonzero only for t = 0, 1, 2.
Moreover, as explained above, one has

dimE1,0
3 (f)k + dimE0,1

3 (f)k = dimE1,0
∞ (f)k + dimE0,1

∞ (f)k = dimH1(F,C)λ,

where λ = exp(−2πik/d). On the other hand

dimE2,0
3 (f)k + dimE1,1

3 (f)k + dimE0,2
3 (f)k ≥

dimE2,0
∞ (f)k + dimE1,1

∞ (f)k + dimE0,2
∞ (f)k = dimH2(F,C)λ,

and the equality holds if and only if Conjectures 2.6 holds. This equality is easy to
check in practice as soon as we have the dimensions of the 3-terms E2,0

3 (f)k, E
1,1
3 (f)k

and E0,2
3 (f)k, since

dimH0(F,C)λ − dimH1(F,C)λ + dimH2(F,C)λ = χ(U)

for any λ, as follows from the formula (4.4). Note that dimH0(F,C)λ = δkd , which
completes our proof.

�
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Remark 6.2. Let C : f = 0 be a reduced plane curve of degree d. To compute χ(U),
it is enough to determine the Milnor number µ(C). This can be achieved in practice
as follows. We choose the coordinates x, y, z such that the line z = 0 contains no
singular point of C. It follows that µ(C) = µ(Ca), where Ca is the affine curve in C2

defined by g(x, y) = f(x, y, 1) = 0. Then one has

µ(Ca) = dim
C[x, y]

(gx, gy, g2)
.

Here we have added g2 to the Jacobian ideal (gx, gy) since we want to take the sum
of the Milnor numbers of the singularities of the polynomial g situated on the curve
g = 0. For such a singularity p, the Briançon–Skoda Theorem, see [6], shows that
the local Milnor number at p is not affected by the addition of the generator g2

p, since

g2
p ∈ (gp,x, gp,y). Here we denote by gp the analytic germ induced by the polynomial
g at the point p.

We assume mainly in this section that the curve C : f = 0 has some non weighted
homogeneous singularity, i.e. τ(f) = τ(C) < µ(C) = µ(f). However, the formulas
(6.1) and (6.2) hold for any reduced plane curves satisfying the stronger Conjecture
2.7, which explains why Corollaries 6.3 and 6.5 treat curves with weighted homoge-
neous singularities. We also assume that Conjecture 2.6 holds. When the stronger
Conjecture 2.7 holds, the algorithm is much faster, since instead of computing the
invariants till q = 4d we can stop practically at q = q0(f) ≤ 3d+ 1.

Note that for t = 0 and k = 1, ..., d we get the following

dimGr2
PH

2(F,C)λ = dimE2,0
∞ (f)k = dimE2,0

3 (f)k =

= dimE2,0
2 (f)k − dimE0,1

2 (f)k + εd+k = θk − ε′d+k + εd+k.

When the stronger Conjecture 2.7 holds, and t ≥ 1, one has also

dimGr2−t
P H2(F,C)λ = dimE2−t,t

∞ (f)k = dimE2−t,t
3 (f)k =

= dimE2−t,t
2 (f)k − µ(C) + dimE−t,t+1

2 (f)k = θq − ε′q+d,
for t = 1, 2 and k = 1, 2, ..., d, where we set ε′q = µ(C) − τ(C) for q > 3d. In
particular, for q ≥ q1(f) = max(2d− 2, q0(f)), we have

dimGr2−t
P H2(F,C)λ = m(f)q−3 − τ(C).

Note that, when t = 2, this implies

(6.1) dimGr0
PH

2(F,C)λ = m(f)2d+k−3 − τ(C) = 0

if q ≥ q2(f) = max(st(f) + 3, q1(f)) and

dimGr0
PH

2(F,C)λ = m(f)2d+k−3 − τ(C) 6= 0

if q = st(f) + 2 ≥ q1(f). Similarly, for t = 1 and k = d− 2 or k = d− 1 we get

(6.2) dimGr1
PH

2(F,C)λ = m(f)d+k−3 − τ(C) = 0,

if q = d+ k ≥ q2(f).

Corollary 6.3. Let A : f = 0 be an arrangement of d lines in P2 with Milnor fiber F .
Then P 1H2(F,C) = H2(F,C) and Gr1

PH
2(F,C)λ = 0 for λ = exp(−2πi(d− 1)/d).
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Proof. The first part of the claim is clearly equivalent to dimGr0
PH

2(F,C)λ = 0 for
any λ. Since st(f) ≤ 2d−4 for any line arrangement, see [17], the claim follows from
(6.1). The second part of the claim follows from (6.2). �

Corollary 6.4. Let C : f = 0 be a reduced plane curve which is either free or nearly
free, and for which Conjecture 2.7 hold, with q0(f) ≤ 2d+ 1. Then

P 1H2(F,C) = H2(F,C).

Proof. When C : f = 0 is a free (resp. nearly free) curve with exponents d1 ≤ d2, it
is known that st(f) = d2 + d − 3 ≤ 2d − 4 (resp. st(f) = d2 + d − 2 ≤ 2d − 3. We
conclude as above. �

Corollary 6.5. Let C : f = 0 be a reduced plane curve of degree d ≥ 5 having only
one singularity, which is a node. Then ∆1

C(t) = 1 and

dimGr0
PH

2(F,C)λ = m(f)2d+k−3 − τ(C) = m(f)d−k−3 − 1 =

(
d− k − 1

2

)
− 1 6= 0

for k = 1, 2, ..., d− 4.

Proof. For the first claim, see for instance [13, Theorem 6.4.17]. To prove the second
claim, note that for such a curve ct(f) = st(f) = 3d − 6, see [19]. This implies in
particular

m(f)2d+k−3 = m(fs)2d+k−3 = m(fs)d−k−3 = m(f)d−k−3,

where the equality in the middle follows from the Grothendieck duality of the Ar-
tinian Milnor algebra M(fs). �

Note that for this uninodal curve, the vanishing bound given in (6.1) is sharp. For
more on such uninodal curves, see Corollary 7.5 below.

7. Application to the study of Bernstein-Sato polynomials

Let (D, 0) : g = 0 be a complex analytic hypersurface germ at the origin of Cn and
denote by bg,0(s) the corresponding (local) Bernstein-Sato polynomial. If the analytic
germ g is given by a homogeneous polynomial, then one can define also the global
Bernstein-Sato polynomial bg(s) of g, and one has an equality bg(s) = bg,0(s), see for

more details [31], [34]. Let Rg,0 (resp. R̃g,0) be the set of roots of the polynomial
bg,0(−s) (resp. of the polynomial bg,0(−s)/(1− s)). Recall that one has

R̃g,0 ⊂ [α̃g,0, n− α̃g,0],

where α̃g,0 = min R̃g,0 > 0. Moreover, αg,0 = minRg,0 > 0 coincides with the log
canonical threshold lct(g) of the germ g, a.k.a. the log canonical threshold lct(Cn, D)
of the pair (Cn, D), see [24]. When g is a homogeneous polynomial, we use the simpler
notation Rg = Rg,0, R̃g = R̃g,0 and so on.

Example 7.1 (Cones over smooth projective hypersurfaces). Let g be a homoge-
neous polynomial of degree d in n variables such that the corresponding projective
hypersurface g = 0 is smooth. Using the relation between the zero set R̃g and the
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spectrum in the case of an isolated weighted homogeneous hypersurface singularity,
see for instance [32], one has

R̃g =

{
j

d
: n ≤ j ≤ n(d− 1)

}
.

In this section we consider mainly the case when n = 3 and g = f is the defining
equation of a reduced curve C in P2. Let D be the surface in C3 defined by f = 0
and note that at a point a ∈ D, a 6= 0, the germ (D, a) is analytically a product
between a plane curve singularity and a smooth 1-dimensional germ. It follows that

R̃f,a ⊂ [α̃f,a, 2− α̃f,a].
Recall M. Saito’s fundamental result [31, Theorem 2] quoted here in the case n = 3.

Theorem 7.2. Let C : f = 0 be a reduced curve in P2, let α > 0 be a rational
number and set λ = exp(−2πiα).

(1) If GrpPH
2(F,C)λ 6= 0, where p = b3− αc, then α ∈ Rf

(2) If the sets α + N and ∪a∈D,a6=0Rf,a are disjoints, then the converse of the
assertion (1) holds.

The following result is due to M. Saito in arbitrary dimension, see [33, Theorem
1]. We give a new, simple proof below to point out the relation with Corollary 6.3.

Corollary 7.3. Let A : f = 0 be an arrangement of d lines in P2 with Milnor fiber
F . Then

maxRf < 2− 1

d
.

Proof. We prove the result by discussing the possible cases for α. If α = 2, the result
is clear by Theorem 7.2, since

H2(F,C)1 = H2(U,C) = F 2H2(U,C) = F 2H2(F,C)1 ⊂ P 2H2(F,C)1

and hence H2(F,C)1 = P 2H2(F,C)1, which implies Gr1
PH

2(F,C)1 = 0. If α 6= 2,
then we know that dα ∈ N, and hence to prove the claim we have to consider the
case α′ = 1 + (d − 1)/d and the case α′′ = 2 + k/d for k = 1, ..., d − 1. Both cases
follow from Theorem 7.2 (2) and Corollary 6.3. To see this, the only point to explain
is why

α′ /∈
⋃

a∈D,a6=0

Rf,a.

Indeed, note that a singular point a ∈ D correspond to a point of multiplicity m ≥ 2
in the line arrangement. For such a point one has αf,a = 2/m, and this implies our
claim. �

The following result can be proved along the same lines using Corollary 6.4.

Corollary 7.4. Let C : f = 0 be a reduced plane curve which is either free or nearly
free, and for which Conjectures 2.5 and 2.7 hold. Then maxRf ≤ 2.

The next result shows that a nodal curve behaves quite differently from a line
arrangement with respect to the zero set Rf .
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Corollary 7.5. Let C : f = 0 be a reduced plane curve of degree d ≥ 5 having only
one singularity, which is a node. Then

Rf =

{
j

d
: 3 ≤ j ≤ 3d− 4

}
.

In particular

maxRf = 2 +
d− 4

d
.

Proof. Recall that for a uninodal plane curve C : f = 0 of degree d one has the follow-
ing: ct(f) = st(f) = 3d−6 and dimH2(K∗f )q = 0 for q < 2d−2 and dimH2(K∗f )q = 1
for q ≥ 2d− 2, see [19, Example 4.3 and Equation (2.17)]. Using this, the fact that
Rf contains the given set of rational numbers follows Theorem 2.1 and Theorem 7.2
(1). To show that α = (3d− 3)/d is not in Rf one uses Theorem 7.2 (2).

�

Remark 7.6. (1) Corollary 7.5 can be restated as

Rf = Rfs \
{
d− 3

d

}
,

where fs is a generic polynomial of degree d in x, y, z as in Example 7.1.
(2) In the case of a line arrangement A : f = 0 in P2, the zero set Rf is not

determined by the combinatorics, see Walther [38] and Saito [33]. In fact,
there is a pair of line arrangements A1 : f1 = 0 and A2 : f2 = 0 of degree
d = 9, going back to Ziegler [39], having the same combinatorics but different
sets Rf and different Hilbert functions for their Milnor algebras M(f1) and
M(f2).

(3) The zero set Rf is not determined by the Hilbert function for its Milnor
algebra M(f) for a reduced plane curve C : f = 0, see [34] and Example 8.4
below.

8. Examples

Example 8.1 (A torus curve of type (2, 4)). Consider the curve C : f = (x2 +
y2)4 + (y4 + z4)2 = 0. This curve has 8 weighted homogeneous singularities of type
A3 with local equation u2 + v4 = 0, and hence µ(C) = τ(C) = 8× 3 = 24. A direct
computation shows that ε′q = 0 for q ≥ q0(f) = 11 as in Conjecture 2.7. On the
other hand we have θq = 0 for q ≥ 18, which is exactly the bound predicted by (6.1)
which is in this case q ≥ q2(f) = st(f) + 3 = 15 + 3 = 18. To state the full result, we
consider the pole order spectrum defined by

(8.1) SpjP (f) =
∑
α>0

njP,f,αt
α

for j = 0, 1, where

njP,f,α = dimGrpPH
2−j(F,C)λ
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with p = [3−α] and λ = exp(−2πiα). With this notation, we have the following for
our torus curve of type (2, 4).

(8.2) Sp1
P (f) = t

14
8 + t

16
8 + t

18
8 .

(8.3) Sp0
P (f) = t

3
8 + 3t

4
8 + 6t

5
8 + 10t

6
8 + 12t

7
8 + 16t

8
8 + 18t

9
8 + 20t

10
8 +

+18t
11
8 + 16t

12
8 + 13t

13
8 + 10t

14
8 + 7t

15
8 + 3t

16
8 + t

17
8 .

Note in particular that, unlike the case of line arrangements treated in Corollary
6.3, here P 1H2(F,C) 6= H2(F,C).

Example 8.2 (A free curve with non weighted homogeneous singularities). Consider
the curve C : f = (y2z2 − x4)2y2 − x10, introduced in [4]. This curve is free with
exponents (4, 5), and hence st(f) = 12. Moreover, one has µ(C) = 70 and τ(C) = 61.
A direct computation shows that ε′q = µ(C) − τ(C) = 9 for 18 = q0(f) ≤ q ≤ 30.

Moreover, we have Gr1
PH

2(F,C)λ = 0 for q = d + k ≥ 15, which is stronger that
the bound predicted by (6.2) which is in this case q = d + k ≥ d + (d − 2) = 18 ≥
st(f) + 3 = 15. Moreover Conjecture 2.6 holds for this curve since the condition in
Proposition 6.1 is fulfilled. In this case we have

(8.4) Sp1
P (f) = t

16
10 + t

17
10 + t

18
10 + t

19
10 + t

20
10 + t

21
10 + t

22
10 + t

23
10 + t

24
10

and
(8.5)

Sp0
P (f) = t

3
10 +2t

4
10 +3t

5
10 +4t

6
10 +4t

7
10 +4t

8
10 +4t

9
10 +3t

10
10 +4t

11
10 +4t

12
10 +3t

13
10 +2t

14
10 .

Moreover, P 1H2(F,C) = H2(F,C) as predicted by Corollary 6.4.
The free curve C above has two irreducible components. To get a similar example

with an irreducible free curve, one may consider

C ′ : f ′ = x4y2 + y6 − 3xy4z + 3x2y2z2 − x3z3 = 0.

This curve has a simple cusp A2 at p = (1 : 0 : 0) and a cusp with multiplicity
sequence [33], and hence Milnor number µ(C, q) = 12 at q = (0 : 0 : 1). Moreover, C ′

occurs as a type C4 curve in Fenske’s classification, see [23, Corollary 1.5]. Then C ′

is free with exponents (2, 3) and one has µ(C ′) = 20, τ(C ′) = 19, q0(f) = 10. Our
algorithm gives

(8.6) Sp1
P (f ′) = t

11
6 + t

13
6

and, respectively,

(8.7) Sp0
P (f ′) = t

3
6 + t

4
6 + 2t

5
6 + 2t

7
6 + t

8
6 .

Example 8.3 (A curve with µ(C) 6= τ(C) and high q0(f) = 2d+ 2). Consider the
curve C : f = x4y4z4 + x12 + y12 = 0. This curve is far from being free, since
ct(f) + st(f)−T = 11, where T = 3(d− 2), and it has µ(C) = 73 and τ(C) = 64. A
direct computation shows that ε′q = µ(C)− τ(C) = 9 for q ≥ q0(f) = 26 = 2d+ 2 <
3d, as required in Conjecture 2.7. In fact, Conjecture 2.6 holds for this curve since the
condition in Proposition 6.1 is fulfilled. Note also that in this example the sequence
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ε′q contains the sequence ε′20 = 3, ε′21 = ε′22 = 2, ε′23 = 3, and hence it is not, as in

most other examples, an increasing sequence. Note that H1(F,C) = 0 in this case,
b2(F ) = 455 is large, and P 1H2(F,C) = H2(F,C).

Example 8.4 (Some examples considered by M. Saito in [34]). Consider the curves
C1 : f1 = x5 + y4z + x4y = 0 and C2 : f2 = x5 + y4z + x3y2 = 0. Then the
Milnor algebras M(f1) and M(f2) have the same Hilbert functions, and one has
µ(f1) = µ(f2) = 12 and τ(f1) = τ(f2) = 11. Our algorithm shows that in both cases
H1(F,C) = 0, q0(f1) = 9, q0(f2) = 8, while the spectrum on H2(F,C) is given by

(8.8) Sp0(f1) = t
3
5 + t

4
5 + t

6
5 + t

7
5 ,

and, respectively,

(8.9) Sp0(f2) = t
4
5 + t

6
5 + t

7
5 + t

8
5 ,

hence exactly the same formulas as in [34], equations (1.4.5). Using Theorem 7.2, it
follows that

8

5
∈ Rf2 \Rf1

as proved in [34]. Notice also that C1 : f1 = 0 and C2 : f2 = 0 are nearly free
with exponents (2, 3). Both curves have a unique unibranch singulary located at
p = (0 : 0 : 1), which is semi-weighted-homogeneous with weights (1/5, 1/4). In
particular, the singularities (C1, p) and (C2, p) are topologically equivalent.

In [34, Remark 2.5], M. Saito also considers the curves C3 : f3 = x5 +xy3z+ y4z+
xy4 = 0 and C4 : f4 = x5 + xy3z + y4z = 0. In this case one has µ(f3) = µ(f4) = 11,
τ(f3) = τ(f4) = 10. Our algorithm shows that again H1(F,C) = 0, q0(f3) = 10,
q0(f4) = 9, while the spectrum on H2(F,C) is given by

(8.10) Sp0(f3) = t
3
5 + 2t

4
5 + t+ 2t

6
5 + 2t

7
5 + t

8
5 ,

and, respectively,

(8.11) Sp0(f4) = t
3
5 + t

4
5 + t+ 2t

6
5 + 2t

7
5 + t

8
5 + t

9
5 .

Using Theorem 7.2, it follows that

9

5
∈ Rf4 \Rf3

as proved in [34]. Notice also that C3 : f3 = 0 and C4 : f4 = 0 are neither free nor
nearly free, they satisfy ct(fj) + st(fj)− T = 3 for j = 3, 4. In both cases, there are
independent syzygies of degree 2 and 3. Note that Conjecture 2.6 holds for all these
curves, since the condition in Proposition 6.1 is fulfilled. Both curves have a unique
two-branch singulary located at p = (0 : 0 : 1), which is semi-weighted-homogeneous
with weights (1/5, 4/15). Again, the singularities (C3, p) and (C4, p) are topologically
equivalent.
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329. 8.2
[24] J. Kollár, Singularities of pairs, Proc. Symp. Pure Math. A.M.S. 62, Part I (1997), 221-287. 7
[25] A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke

Math. J. 49 (1982), no. 4, 833–851. 1, 4.4



20 ALEXANDRU DIMCA AND GABRIEL STICLARU

[26] A. Libgober, Development of the theory of Alexander invariants in algebraic geometry. Topol-
ogy of algebraic varieties and singularities, 3–17, Contemp. Math., 538, Amer. Math. Soc.,
Providence, RI, 2011. 1

[27] F. Loeser, M. Vaquié, Le polynôme d’Alexander d’une courbe plane projective, Topology 29
(1990), 163–173. 4.4

[28] M. Oka, A survey on Alexander polynomials of plane curves. Singularités Franco-Japonaises,
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