G. T. Ankley, D. C. Bencic, M. S. Breen, T. W. Collette, R. B. Conolly et al., Endocrine disrupting chemicals in fish: Developing exposure indicators and predictive models of effects based on mechanism of action, Aquatic Toxicology, vol.92, issue.3, pp.168-178, 2009.
DOI : 10.1016/j.aquatox.2009.01.013

T. Colborn, F. S. Vom-saal, and A. M. Soto, Developmental effects of endocrine-disrupting chemicals in wildlife and humans, Environmental Health Perspectives, vol.101, issue.5, pp.378-384, 1993.
DOI : 10.1289/ehp.93101378

A. K. Hotchkiss, C. V. Rider, C. R. Blystone, V. S. Wilson, P. C. Hartig et al., Fifteen years after " Wingspread " ?Environmental endocrine disrupters and human and wildlife health: Where we are today and where we need to goDanio rerio) as a model organism for investigating endocrine disruption, Ait-Aissa, S. Selective activation of zebrafish estrogen receptor subtypes by chemicals by using stable reporter gene assay developed in a zebrafish liver cell line, pp.235-259, 2008.

F. Brion, Y. Le-page, B. Piccini, O. Cardoso, S. K. Tong et al., Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos, PLoS ONE, vol.21, issue.5, p.36069, 2012.
DOI : 10.1371/journal.pone.0036069.t002

URL : https://hal.archives-ouvertes.fr/hal-00877371

M. N. Jacobs, S. C. Laws, K. Willett, P. Schmieder, J. Odum et al., In vitro metabolism and bioavailability tests for endocrine active substances: What is needed next for regulatory purposes? ALTEX 2013, pp.331-351

L. Fol, V. Ait-aissa, S. Cabaton, N. Dolo, L. Grimaldi et al., Cell-specific biotransformation of benzophenone-2 and bisphenol-S in zebrafish and human in vitro models used for toxicity and estrogenicity screening Characterization of novel ligands of ER ?, ER ?, and PPAR ?: The case of halogenated bisphenol A and their conjugated metabolites, Environ. Sci. Technol. 2015 Toxicol. Sci, vol.49, issue.122, pp.3860-3868, 2011.

D. Zalko, A. M. Soto, L. Dolo, C. Dorio, E. Rathahao et al., Biotransformations of Bisphenol A in a Mammalian Model: Answers and New Questions Raised by Low-Dose Metabolic Fate Studies in Pregnant CD1 Mice, Environmental Health Perspectives, vol.111, issue.3, pp.309-319, 2003.
DOI : 10.1289/ehp.5603

A. Cosnefroy, F. Brion, B. Guillet, N. Laville, J. M. Porcher et al., A stable fish reporter cell line to study estrogen receptor transactivation by environmental (xeno)estrogens, Toxicology in Vitro, vol.23, issue.8, pp.1450-1454, 2009.
DOI : 10.1016/j.tiv.2009.07.003

URL : https://hal.archives-ouvertes.fr/hal-00453656

C. J. Weisbrod, P. Y. Kunz, A. K. Zenker, and K. Fent, Effects of the UV filter benzophenone-2 on reproduction in fish, Toxicology and Applied Pharmacology, vol.225, issue.3, pp.255-266, 2007.
DOI : 10.1016/j.taap.2007.08.004

M. H. Hsieh, E. C. Grantham, B. Liu, R. Macapagal, E. Willingham et al., In Utero Exposure to Benzophenone-2 Causes Hypospadias Through an Estrogen Receptor Dependent Mechanism, The Journal of Urology, vol.178, issue.4, pp.1637-1642, 2007.
DOI : 10.1016/j.juro.2007.03.190

J. M. Molina-molina, A. Escande, A. Pillon, E. Gomez, F. Pakdel et al., Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays, Toxicology and Applied Pharmacology, vol.232, issue.3, pp.384-395, 2008.
DOI : 10.1016/j.taap.2008.07.017

URL : https://hal.archives-ouvertes.fr/inserm-00319498

K. Ji, S. Hong, Y. Kho, and K. Choi, Effects of Bisphenol S Exposure on Endocrine Functions and Reproduction of Zebrafish, Environmental Science & Technology, vol.47, issue.15, pp.8793-8800, 2013.
DOI : 10.1021/es400329t

J. M. Molina-molina, E. Amaya, M. Grimaldi, J. M. Saenz, M. Real et al., In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors, Toxicology and Applied Pharmacology, vol.272, issue.1, pp.127-136, 2013.
DOI : 10.1016/j.taap.2013.05.015

M. Naderi, M. Y. Wong, and F. Gholami, Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults, Aquatic Toxicology, vol.148, pp.195-203, 2014.
DOI : 10.1016/j.aquatox.2014.01.009

M. R. Embry, S. E. Belanger, T. A. Braunbeck, M. Galay-burgos, M. Halder et al., The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research, Aquatic Toxicology, vol.97, issue.2, pp.79-87, 2010.
DOI : 10.1016/j.aquatox.2009.12.008

U. Strahle, S. Scholz, R. Geisler, P. Greiner, H. Hollert et al., Zebrafish embryos as an alternative to animal experiments???A commentary on the definition of the onset of protected life stages in animal welfare regulations, Reproductive Toxicology, vol.33, issue.2, pp.128-132, 2012.
DOI : 10.1016/j.reprotox.2011.06.121

J. A. Arnot, D. Mackay, T. E. Parkerton, and M. Bonnell, A DATABASE OF FISH BIOTRANSFORMATION RATES FOR ORGANIC CHEMICALS, Environmental Toxicology and Chemistry, vol.27, issue.11, pp.2263-2270, 2008.
DOI : 10.1897/08-058.S1

J. P. Cravedi, Role of biotransformation in the fate and toxicity of chemicals: Consequences for the assessment of residues in fish, Rev. Med. Vet, vol.153, pp.419-424, 2002.

J. Braunig, S. Schiwy, O. Broedel, Y. Muller, M. Frohme et al., Time-dependent expression and activity of cytochrome P450 1s in early life-stages of the zebrafish (Danio rerio), Environmental Science and Pollution Research, vol.103, issue.21, pp.16319-16328, 2015.
DOI : 10.1007/s11356-015-4673-6

J. V. Goldstone, A. G. Mcarthur, A. Kubota, J. Zanette, T. Parente et al., Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish, BMC Genomics, vol.11, issue.1, p.643, 2010.
DOI : 10.1186/1471-2164-11-643

M. Saad, K. Cavanaugh, E. Verbueken, C. Pype, C. Casteleyn et al., Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3, The Journal of Toxicological Sciences, vol.41, issue.1, pp.1-11, 2016.
DOI : 10.2131/jts.41.1

E. Verbueken, D. Alsop, M. A. Saad, C. Pype, E. M. Van-peer et al., In Vitro Biotransformation of Two Human CYP3A Probe Substrates and Their Inhibition during Early Zebrafish Development, International Journal of Molecular Sciences, vol.2, issue.1, pp.2017-217
DOI : 10.1016/j.jfda.2015.04.009

S. Brox, B. Seiwert, N. Haase, E. Kuster, and T. Reemtsma, Metabolism of clofibric acid in zebrafish embryos (Danio rerio) as determined by liquid chromatography???high resolution???mass spectrometry, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol.185, issue.186, pp.185-186
DOI : 10.1016/j.cbpc.2016.02.007

S. Brox, B. Seiwert, E. Kuster, and T. Reemtsma, ): Influence of Physicochemical Properties and of Biological Processes, Environmental Science & Technology, vol.50, issue.18, pp.10264-10272, 2016.
DOI : 10.1021/acs.est.6b04325

A. N. Ng, T. A. De-jong-curtain, D. J. Mawdsley, S. J. White, J. Shin et al., Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis, Developmental Biology, vol.286, issue.1, pp.114-135, 2005.
DOI : 10.1016/j.ydbio.2005.07.013

H. Diekmann and A. Hill, ADMETox in zebrafish, Drug Discovery Today: Disease Models, vol.10, issue.1, pp.31-35, 2013.
DOI : 10.1016/j.ddmod.2012.02.005

B. Kais, K. E. Schneider, S. Keiter, K. Henn, C. Ackermann et al., DMSO modifies the permeability of the zebrafish (Danio rerio) chorion-Implications for the fish embryo test (FET), Aquatic Toxicology, vol.140, issue.141, pp.140-141
DOI : 10.1016/j.aquatox.2013.05.022

C. Schlecht, H. Klammer, H. Frauendorf, W. Wuttke, and H. Jarry, Pharmacokinetics and metabolism of benzophenone 2 in the rat, Toxicology, vol.245, issue.1-2, pp.11-17, 2008.
DOI : 10.1016/j.tox.2007.12.015

W. Alderton, S. Berghmans, P. Butler, H. Chassaing, A. Fleming et al., Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae, Xenobiotica, vol.109, issue.1, pp.547-557, 2010.
DOI : 10.1016/j.bbrc.2006.11.129

Y. Wang, H. Huang, and Q. Wu, Characterization of the Zebrafish Ugt Repertoire Reveals a New Class of Drug-Metabolizing UDP Glucuronosyltransferases, Molecular Pharmacology, vol.86, issue.1, pp.62-75
DOI : 10.1124/mol.113.091462

K. Kurogi, T. A. Liu, Y. Sakakibara, M. Suiko, and M. C. Liu, The use of zebrafish as a model system for investigating the role of the SULTs in the metabolism of endogenous compounds and xenobiotics, Drug Metabolism Reviews, vol.81, issue.4, pp.431-440, 2013.
DOI : 10.1897/1551-5028(2000)019<1925:EOBAOT>2.3.CO;2

T. A. Liu, S. Bhuiyan, M. Y. Liu, T. Sugahara, Y. Sakakibara et al., Zebrafish as a Model for the Study of the Phase II Cytosolic Sulfotransferases, Current Drug Metabolism, vol.11, issue.6, pp.538-546, 2010.
DOI : 10.2174/138920010791636158

S. Yasuda, A. P. Kumar, M. Y. Liu, Y. Sakakibara, M. Suiko et al., Identification of a novel thyroid hormone-sulfating cytosolic sulfotransferase, SULT1???ST5, from zebrafish, FEBS Journal, vol.62, issue.15, pp.3828-3837, 2005.
DOI : 10.1111/j.1742-4658.2005.04791.x

S. Yasuda, M. Y. Liu, Y. S. Yang, R. Snow, S. Takahashi et al., Identification of novel hydroxysteroid-sulfating cytosolic SULTs, SULT2 ST2 and SULT2 ST3, from zebrafish: Cloning, expression, characterization, and developmental expression, Archives of Biochemistry and Biophysics, vol.455, issue.1, pp.1-9, 2006.
DOI : 10.1016/j.abb.2006.09.004

T. Yasuda, S. Yasuda, F. E. Williams, M. Y. Liu, Y. Sakakibara et al., Characterization and ontogenic study of novel steroid-sulfating SULT3 sulfotransferases from zebrafish, Molecular and Cellular Endocrinology, vol.294, issue.1-2, pp.29-36, 2008.
DOI : 10.1016/j.mce.2008.06.014

F. Busquet, R. Strecker, J. M. Rawlings, S. E. Belanger, T. Braunbeck et al., OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing, Regulatory Toxicology and Pharmacology, vol.69, issue.3, pp.496-511, 2014.
DOI : 10.1016/j.yrtph.2014.05.018

R. Massei, C. Vogs, P. Renner, R. Altenburger, and S. Scholz, Differential sensitivity in embryonic stages of the zebrafish (Danio rerio): The role of toxicokinetics for stage-specific susceptibility for azinphos-methyl lethal effects, Aquatic Toxicology, vol.166, pp.36-41, 2015.
DOI : 10.1016/j.aquatox.2015.06.011

L. Fol, V. Sonavane, M. Ait-aissa, S. Piccini, B. Maillot-marechal et al., An integrated in vitro and in vivo approach to assess the estrogenic activity of bisphenol A, bisphenol S and bisphenol F in zebrafish, Ecotoxicol. Environ. Saf, 2017.

A. Cosnefroy, In Vitro and In Vivo Integrated Assessment of Estrogenic Effects of Environmental Substances in Zebrafish, Histoire Naturelle, p.155, 2010.