Tight Kernels for Covering with Points and Polynomials

Abstract : The Point Hyperplane Cover problem in $R d$ takes as input a set of $n$ points in $R d$ and a positive integer $k$. The objective is to cover all the given points with a set of at most $k$ hyperplanes. The D-Polynomial Points Cover problem in $R d$ takes as input a family $F$ of D-degree polynomials from a vector space $R$ in $R d$ , and determines whether there is a set of at most $k$ points in $R d$ that hit all the polynomials in $F$. Here, a point p is said to hit a polynomial $f$ if $f (p) = 0$. For both problems, we exhibit tight kernels where $k$ is the parameter. We also exhibit a tight kernel for the Projective Point Hyperplane Cover problem, where the hyperplanes that are allowed to cover the points must all contain a fixed point, and the fixed point cannot be included in the solution set of points.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01518562
Contributeur : Kunal Dutta <>
Soumis le : jeudi 4 mai 2017 - 20:20:58
Dernière modification le : jeudi 15 juin 2017 - 09:09:23

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Daniel Boissonnat, Kunal Dutta, Arijit Ghosh, Sudeshna Kolay. Tight Kernels for Covering with Points and Polynomials. 2017. <hal-01518562>

Partager

Métriques

Consultations de
la notice

108

Téléchargements du document

41