Tight Kernels for Covering with Points and Polynomials

Abstract : The Point Hyperplane Cover problem in $R d$ takes as input a set of $n$ points in $R d$ and a positive integer $k$. The objective is to cover all the given points with a set of at most $k$ hyperplanes. The D-Polynomial Points Cover problem in $R d$ takes as input a family $F$ of D-degree polynomials from a vector space $R$ in $R d$ , and determines whether there is a set of at most $k$ points in $R d$ that hit all the polynomials in $F$. Here, a point p is said to hit a polynomial $f$ if $f (p) = 0$. For both problems, we exhibit tight kernels where $k$ is the parameter. We also exhibit a tight kernel for the Projective Point Hyperplane Cover problem, where the hyperplanes that are allowed to cover the points must all contain a fixed point, and the fixed point cannot be included in the solution set of points.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

Contributeur : Kunal Dutta <>
Soumis le : jeudi 4 mai 2017 - 20:20:58
Dernière modification le : samedi 27 janvier 2018 - 01:31:38
Document(s) archivé(s) le : samedi 5 août 2017 - 13:57:14


Fichiers produits par l'(les) auteur(s)




Jean-Daniel Boissonnat, Kunal Dutta, Arijit Ghosh, Sudeshna Kolay. Tight Kernels for Covering with Points and Polynomials. 2017. 〈hal-01518562〉



Consultations de la notice


Téléchargements de fichiers