Robust adaptive sampling for Monte-Carlo-based rendering
Anthony Pajot, Loïc Barthe, Mathias Paulin

To cite this version:

HAL Id: hal-01518537
https://hal.archives-ouvertes.fr/hal-01518537
Submitted on 4 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Robust Adaptive Sampling for Monte-Carlo-based rendering

Anthony Pajot, Loïc Barthe, Mathias Paulin

IRIT - University of Toulouse - France

Monte-Carlo rendering
- Value of each pixel defined as the expected value of a random variable \(X \)
 \[I = E[X] \]
- Estimated using samples of \(X \)
 \[< I > = \frac{1}{N} \sum_{i=1}^{N} x_i \]

Our goals
- Focus processing power where convergence is harder to reach during Monte-Carlo based rendering
- Make the error over the pixels uniform at any moment for progressive or time-constrained rendering

Relative error and robustness to outliers

For each pixel, relative error:
\[e_r(I) = \frac{V(x_1, \ldots, x_n)}{V(x_1, \ldots, x_n)} \]

Standard estimation:
\[e_s(I) = \frac{e_r(I)}{< I >} \]

Not robust to outliers: underestimation

Goal: focus on bright spots

Previous work and their limitations
- Adaptive sampling based on the statistical nature of the estimation [Purgathofer 1987]
 Not a relative error: does not take into account dynamic reduction during tonemapping
- Adaptive sampling based on information-theoretic approaches and entropy measures [Xu et al 2007]
 Does not make the error uniform during rendering, thus less adapted for progressive or time-constrained rendering

Both approaches can lead to poor sampling due to low-samples error estimations which underestimate the actual error

Alternative: avoid poor low-samples error estimation

Adaptive sampling based on error measure, poor error estimate → poor sampling

Our proposal: alternate adaptive and uniform sampling

Complete adaptive sampling algorithm

Uniform sampling → Update error and pixel probabilities → Adaptive sampling → Uniform sampling

Comparison with Tsallis entropy [Xu, Sbert, Xinh and Zhan 2007]

Test scene → Noise measure for uniform sampling → Noise measure for Tsallis entropy → Noise measure for our method