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The Sine-Gordon regime of the Landau-Lifshitz equation with a
strong easy-plane anisotropy

André de Laire! and Philippe Gravejat?

May 11, 2017

Abstract

It is well-known that the dynamics of biaxial ferromagnets with a strong easy-plane
anisotropy is essentially governed by the Sine-Gordon equation. In this paper, we provide
a rigorous justification to this observation. More precisely, we show the convergence of the
solutions to the Landau-Lifshitz equation for biaxial ferromagnets towards the solutions to
the Sine-Gordon equation in the regime of a strong easy-plane anisotropy. Moreover, we
establish the sharpness of our convergence result.

This result holds for solutions to the Landau-Lifshitz equation in high order Sobolev
spaces. We first provide an alternative proof for local well-posedness in this setting by
introducing high order energy quantities with better symmetrization properties. We then
derive the convergence from the consistency of the Landau-Lifshitz equation with the Sine-
Gordon equation by using well-tailored energy estimates. As a by-product, we also obtain a
further derivation of the free wave regime of the Landau-Lifshitz equation.
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1 Introduction

The Landau-Lifshitz equation
dm+m x (Am — J(m)) =0, (LL)

was introduced by Landau and Lifshitz [20] as a model for the magnetization m : RN x R — S?
in a ferromagnetic material. The matrix J := diag(Ji, Jo, J3) gives account of the anisotropy of
the material (see e.g. [19]). The equation describes the Hamiltonian dynamics corresponding to
the Landau-Lifshitz energy

1
Er(m) = 5/ (IVm|* + Ami + Azm3).
RN
The two values of the characteristic numbers \; := Jo — J; and A3 := Jo — J3 are non-zero for

biaxial ferromagnets, while Ay is chosen to be equal to 0 in the case of uniaxial ferromagnets.
When A3 < 0, uniaxial ferromagnets own an easy-axis anisotropy along the vector e = (0,0, 1),
whereas the anisotropy is easy-plane along the plane x3 = 0 when A3 > 0. The material
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is isotropic when A1 = A3 = 0, and the Landau-Lifshitz equation reduces to the well-known
Schrodinger map equation (see e.g. [10] B30} 6, 1] and the references therein).

In the sequel, we are interested in the dynamics of biaxial ferromagnets in a regime of strong easy-
plane anisotropy. The characteristic numbers \; and A3 satisfy the inequalities 0 < A\; < 1 < A3.
More precisely, we assume that
1
A1 :=o0¢, and A3:= - (1)

As usual, the parameter ¢ is a small positive number, whereas o is a fixed positive constant. In
this regime, the Landau-Lifshitz equation recasts as

Orm +m X (Am —eomiel — m363) =0,
€

with e; := (1,0,0). In [29], Sklyanin observed that the solutions of this equation are governed
by the Sine-Gordon equation in the limit ¢ — 0 (see also [I2]). In the physical literature, this
approximation is widely used for understanding the properties of the experimentally measurable
quantities in ferromagnets (see e.g. [24]). In order to clarify this approximation, it is useful to
introduce the hydrodynamical formulation of the Landau-Lifshitz equation.

Assume that the map m := mj + imgy corresponding to a solution m to (LI)) does not vanish. In
this case, it can be written as

m=(1- mg)%(sin((b) + icos(¢)).

The introduction of the phase function ¢ is reminiscent from the use of the Madelung trans-
form [2I] in the context of nonlinear Schrodinger equations (see e.g. [9] for more details). This
transform leads to a hydrodynamical version of the Landau-Lifshitz equation in terms of the
variables u := mg and ¢, which is given by the system

Oru = div ((1 — u?)Ve) — 3 (1 — u?)sin(2¢),

2 (HLL)
Opp = —div <1YZ2> + ug ey — ul Vol + “(’\3 M Sin2(¢))'

Under the scaling in (IJ), this hydrodynamical system is related to the Sine-Gordon equation in
the long-wave regime corresponding to the rescaled variables (U., ®.) given by the identities

u(z,t) = ele (\/gzc,t), and  ¢(z,1) = P (Vew,t).
The pair (Ue, ®.) indeed satisfies

O U: = div ((1 — e2U2)V®.) — $(1 — e2U2) sin(2®.),

2 52 2 7 VU, drr VU 2 2 (HLL)
(325(1)5 = U€(1 — £70 SIn (q)e)) — g2 div <17€2(EJ§) +e UEW — & U€|V<I>€| .
As e — 0, the limit system is formally given by
oU = Ad — §sin(29),
0P =U e
1@ = U.
Therefore, the limit function ® is a solution to the Sine-Gordon equation
Ou® — AD + %sin(2<1>) = 0. (SG)

Our main goal in the sequel is to provide a rigorous justification for this Sine-Gordon regime of
the Landau-Lifshitz equation.



1.1 Main results

In order to analyze rigorously this regime, we introduce a functional setting in which we can
legitimate the use of the hydrodynamical framework. This condition is at least checked when
the inequality |m3| < 1 holds on R"™. In terms of the hydrodynamical pair (u, ), this writes as

lul <1 on RY, (2)

Under this condition, it is natural to work in the Hamiltonian framework in which the solutions
m have finite Landau-Lifshitz energy. In the hydrodynamical formulation, the Landau-Lifshitz
energy is given by

1 Vul? .
Bunung) =5 [ (1 + (=Tl + M =) s’ (o) + dai). (3
RN — U

As a consequence of this formula, it is natural to work with the non-vanishing set
NYRY) := {(u,p) € H'RY) x Hy,(RY) : [u| < 1 on RV}
In this definition, we have set

Hy (RY) := {v e L, (RY) : Vv € L*(R") and sin(v) € L*(R"Y)}.

sin

The set HX

L (RY) is an additive group. It is naturally endowed with the pseudometric distance

1
dL, (v1,v9) = <H sin(v; — vg)HiQ + ||Vor — V02H;> ’

which vanishes if and only if v1 —v9 € wZ. This quantity is not a distance on the group Hslin(RN ),
but it is on the quotient group HL (RY)/7Z. In the sequel, we identify the set HL (RY) with
this quotient group when necessary, in particular when a metric structure is required. This
identification is not a difficulty as far as we deal with the hydrodynamical form of the Landau-
Lifshitz equation and with the Sine-Gordon equation. Both the equations are indeed left invariant
by adding a constant number in 77 to the phase functions ¢, respectively, ®. This property is
one of the motivations for introducing the pseudometric distance d. . We refer to Appendix [Al
(RY).

Our derivation of the Sine-Gordon equation also requires to control the non-vanishing condition
in (2)) along the flow of the Landau-Lifshitz equation. In dimension one, it follows from the
Sobolev embedding theorem that the function u is uniformly controlled in the non-vanishing set
NV(R). This property does not remain in higher dimensions. In the sequel, we by-pass this
difficulty by restricting our analysis to solutions (u, ) with additional regularity. There might
be other ways to handle this problem. Requiring additional smoothness is also useful for our
rigorous derivation of the Sine-Gordon regime.

for more details concerning this distance, as well as the set Hslin

Given an integer k > 1, we set

NVFRN) == {(u, p) € H¥®RY) x HE (RY) : [u| <1 on RV}, (4)
Here, the additive group HX (RY) is defined as
HE RY) = {ve LL (RY): Vv e H*Y(RY) and sin(v) € L*(RY)}.

As before, we identify this group, when necessary, with the quotient group H% (RY)/nZ, and

Sin
then we endow it with the distance

1
on(01,2) 1= ([sintor — o232 + [ Vo1 = Teaffucs) o)

With this notation at hand, the vanishing set NV(RY) identifies with N'VI(RY).

We are now in position to state our main result.



Theorem 1. Let N > 1 and k € N, with k > N/2+ 1, and 0 < ¢ < 1. Consider an initial
condition (U2, ®2) € NVF+2(RN) and set

Ke 1= [ U2]| g + el VU2 i + (1992 i + ([ sin(@2)]] -

Consider similarly an initial condition (U°,®%) € L2(RYN) x HL (RYN), and denote by (U, ®) €

s

COR, L2(RN) x HL (RN)) the unique corresponding solution to (SGS). Then, there exists a

sin

positive number Cy, depending only on o, k and N, such that, if the initial data satisfy the
condition

C,ek? <1, (6)
we have the following statements.
(1) There exists a positive number
1
T.>——— 7
SeATSIE g

such that there exists a unique solution (U, ®.) € C°([0, T:], NVF*H(RN)) to (HLLI) with initial
datum (U, ®Y).
(i3) If 2 — @0 € L2(RYN), then we have

|90 8) = @ 1) o < Cu ([J02 = @[ o+ U2 = U°)] o + 22K (14 K2)°) 50, (8)
forany 0 <t <T,.
(13i) If N > 2, or N =1 and k > N/2 + 2, then we have

HUE(at) - U(at)HLQ + qu)e(at) - V‘I)(,t)HLQ + H Sin(q)e('at) - (I)(,t))HL2
< €. (08— 00 + |90 — T + im0 — 89 + 2 K2 (14 K2)")
forany 0 <t <T,.
(iv) Take (U, ®°) € H*(RN) x HXFYRN) and set
re = K2 + [T g + [ V20 s + [ sin(@°)|

There exists a positive number A, depending only on o, k and N, such that the solution (U, ®)
lies in CO([0, T], HF(RN) x H¥YRN)Y) for a positive number

sin

. > 17 > (10)

Moreover, when k > N/2 + 3, we have
|U=(t) = U0 gos + [|[VR( ) = VO, ) || jas + || sin(@e () — (- 8))| s
< A, AR (11)
X ([02 = U s + [ VOL = Ty + || sin(@2 = ) | oy + €22 (1 + 52)%),
for any 0 <t < T7.

In arbitrary dimension, Theorem [ provides a quantified convergence of the Landau-Lifshitz
equation towards the Sine-Gordon equation in the regime of strong easy-plane anisotropy. Three
types of convergence are proved depending on the dimension, and the levels of regularity of the
solutions. This trichotomy is related to the analysis of the Cauchy problems for the Landau-
Lifshitz and Sine-Gordon equations.



In its natural Hamiltonian framework, the Sine-Gordon equation is globally well-posed. Its
Hamiltonian is the Sine-Gordon energy

Bsc(0)i= 5 [ (00 + [TOP + sine)?). (12)

Given an initial condition (®°, ®!) € HL (RY) x L%(RY), there exists a unique corresponding
solution ® € CO(R, HL (RY)) to (SG)), with 8,® € CO(R, L*(RY)). Moreover, the Sine-Gordon
equation is locally well-posed in the spaces HX (RY) x H*=1(RY), when k > N/2 + 1. In other
words, the solution ® remains in C°([0,7], HE_(RY)), with 9,® € C°([0,T], H*"1(RY)), at least
locally in time, when (®° ®!) € HE (RN) x H*L(RY). We refer to Subsection below for

more details regarding these two results and their proofs.

In contrast, the Cauchy problem for the Landau-Lifshitz equation at its Hamiltonian level is far
from being completely understood. Global weak and strong solutions are known to exist (see
e.g. |16, 1] and the references therein), but blow-up can occur (see [23]).

On the other hand, the Landau-Lifshitz equation is locally well-posed at the same level of high
regularity as the Sine-Gordon equation. In the hydrodynamical context, this reads as the exis-
tence of a maximal time T}, and a unique solution (U, ®) € C%([0, Tinax), NVF1(RY)) to (HLI)
corresponding to an initial condition (UY,®°%) € NV¥(RY), when k > N/2 + 1 (see Corollary [I]
in Subsection [[L3]). Note the loss of one derivative here. This loss explains why we take ini-
tial conditions (U2, ®2) in NVF+2(RY), though the quantity K? is already well-defined when
(U2, ®0) € NVFFL(RN).

In view of this local well-posedness result, we restrict our analysis of the Sine-Gordon regime
to the solutions (U, ®.) to the rescaled system (HLL.) with sufficient regularity. A further
difficulty then lies in the fact that their maximal times of existence possibly depend on the small
parameter €.

Statement (i) in Theorem [Il provides an explicit control on these maximal times. In view of (),
these maximal times are bounded from below by a positive number depending only on the choice
of the initial data (U2, ®?). Note that, in case a family of initial data (U?, ®Y) converges towards
a pair (U%, ®%) in H¥RY) x HE (RN) as e — 0, it is possible to find a positive number 7' such

that all the corresponding solutions (U, ®.) are well-defined on [0, 7). This property is necessary
in order to make possible a consistent analysis of the limit ¢ — 0.

Statement (i) only holds when the initial data (U2, ®?) satisfy the condition in (B). However,
this condition is not a restriction in the limit ¢ — 0. It is satisfied by any fixed pair (U°, ®°) €
NVFHL(RN) provided that € is small enough, so that it is also satisfied by a family of initial data
(U9, %), which converges towards a pair (U°, ®%) in H*(RN) x HE (RY) as ¢ — 0.

sin
Statements (i7) and (i7¢) in Theorem [l provide two estimates () and (@) between the previous
solutions (U., ®.) to (HLL.), and an arbitrary global solution (U, ®) to (SGS) at the Hamiltonian
level. The first one yields an L2-control on the difference ®, — ®, the second one, an energetic
control on the difference (U., ®.) — (U, ®). Due to the fact that the difference . — ® is not
necessarily in L2(RY), statement (i) is restricted to initial conditions such that this property is
satisfied.

Finally, statement (iv) bounds the difference between the solutions (Ug, ®.) and (U, ®) at the
same initial Sobolev level. In this case, we also have to control the maximal time of regularity
of the solutions (U, ®). This follows from the control from below in (I0), which is of the same
order as the one in ().

We then obtain the Sobolev estimate in (Il of the difference (Us, ®.) — (U, ®) with a loss of
three derivatives. Here, the choice of the Sobolev exponents k& > N/2+ 3 is tailored so as to gain



a uniform control on the functions U, — U, V@, — V® and sin(®. — ®) by the Sobolev embedding
theorem.

A loss of derivatives is natural in the context of long-wave regimes (see e.g. [3|[4] and the references
therein). It is related to the terms with first and second-order derivatives in the right-hand side
of (HLL.). This loss is the reason why the energetic estimate in statement (iii) requires an extra
derivative in dimension one, that is the condition k > N/2 + 2. Using the Sobolev bounds (30)
in Corollary [2 below, we can (partly) recover this loss by a standard interpolation argument, and
deduce an estimate in H*(RY) x Hf;ql(RN ) for any number ¢ < k. In this case, the error terms

are no more of order 2 as in the right-hand sides of (§), (@) and (II)). Our presentation of the
convergence results in Theorem [I] is motivated by the fact that a control of order 2 is sharp.

As a matter of fact, the system (SGS]) owns explicit travelling-wave solutions. Up to a suitable
scaling for which o = 1, and up to the geometric invariance by translation, they are given by the
kink and anti-kink functions

x—ct
cC _E—CL

+ + Tie
uy (x,t) =+ ——, and ¢ (v,t) = 2arctan (e Vi-* ), (13)
V1 — c%cosh (—\/ﬁ) ( >

for any speed ¢ € (—1,1). The hydrodynamical Landau-Lifshitz system (HLL.) similarly owns
explicit travelling-wave solutions (U, ®. ) with speed ¢, for which their exists a positive number
A, depending only on ¢, such that

Ve = ufll12 + VP = Vo [l + I sin(@ee — 1) 2~ Ac®,

Hence, the estimate by 2 in (8), (@) and (II) is indeed optimal. We refer to Appendix [C] for
more details about this topic, and more generally, about the travelling-wave solutions to the
Landau-Lifshitz equation.

As a by-product of our analysis, we can also analyze the wave regime for the Landau-Lifshitz
equation. This regime is obtained when the parameter o is allowed to vary so as to converge to
0. At least formally, a solution (Ue ,, ®. ) to (HLL.) indeed satisfies the free wave system

{BtU — AD, FW)

0P ="U,
when € — 0 and o — 0. In particular, the function @ is solution to the free wave equation
On® — AP =0.

The following result provides a rigorous justification for this asymptotic approximation.

Theorem 2. Let N > 1 and k € N, with k > N/2+ 1, and 0 < e,0 < 1. Consider an initial
condition (U2, ®? ) € NVF2(RN) and set

€,00
ICS,U = HUQUHH'C + 5HVU€O,0HH'€ + qu)g,oHHk + U%H Sin(q)g,o)HLT

Let m € N, with 0 < m < k — 2. Consider similarly an initial condition (U°,®%) € H™(RY) x
H™ Y (RYN), and denote by (U, ®) € CO(R, H™ 1 (RN) x H™RN)) the unique corresponding
solution to (EWI). Then, there exists a positive number Cy, depending only on k and N, such
that, if the initial datum satisfies the condition

Ciek?, <1, (14)

the following statements hold true.



(1) There exists a positive number

1
T: 6 > , (15)
77T Comax{e, o} (1 + K2, max{2 5}

such that there exists a unique solution (Us 5, ®c ) € CO([0, 1. 5], NVETLRY)) to ([HLLI) with
initial datum (U2, ®2 ).

£,00

(i) If @0, — @0 € H™(RY), then we have the estimate

HUe,a('7t) - U(Vt)HHmﬂ + cha,a('7t) - (I)('vt)HHm < C*(1 + t2) <HU60,U - UOHH’”*1

(16)
88 = 0+ max {0 F AL (14 K2,) "),
for any 0 <t <T.,. In addition, we also have
V) = OOl + et ) = 00 < Cola +0) (108 = lges

+[[80 — -+ max (<2, 0} K2 (1.4 K8,) ™),
forany1 < £ <m and any 0 <t <T.,.

The wave regime of the Landau-Lifshitz equation was first derived rigorously by Shatah and
Zeng [28], as a special case of the wave regimes for the Schrodinger map equations with values
into arbitrary Kéhler manifolds. The derivation in [28] relies on energy estimates, which are
similar in spirit to the ones we establish in the sequel, and a compactness argument. Getting rid
of this compactness argument provides the quantified version of the convergence in Theorem 21
This improvement is based on the arguments developed by Béthuel, Danchin and Smets [2]
in order to quantify the convergence of the Gross-Pitaevskii equation towards the free wave
equation in a similar long-wave regime. Similar arguments were also applied in [7] in order
to derive rigorously the (modified) Korteweg-de Vries and (modified) Kadomtsev-Petviashvili
regimes of the Landau-Lifshitz equation (see also [15]).

In the remaining part of this introduction, we detail the main ingredients in the proof of The-
orem [II We first clarify the analysis of the Cauchy problems for the Sine-Gordon and Landau-
Lifshitz equations.

1.2 The Cauchy problem for the Sine-Gordon equation

The Sine-Gordon equation is a semilinear wave equation with a Lipschitz nonlinearity. The
well-posedness analysis of the corresponding Cauchy problem is classical (see e.g [27, Chapter 6]
and [11, Chapter 12]). With the proof of Theorem [ in mind, we now provide some precisions
about this analysis in the context of the product sets HE (RV) x HF1(RN).

sin
In the Hamiltonian framework, it is natural to solve the equation for initial conditions ¢(-,0) =
¢ € HL (RY) and 9;¢(-,0) = ¢' € L*(RY), which guarantees the finiteness of the Sine-Gordon
energy in (IZ). Note that we do not assume that the function ¢ lies in L2(R"). This is motivated
by formula (I3) for the one-dimensional solitons ¢, which lie in H. (R), but not in L*(R). In

this Hamiltonian setting, the Cauchy problem for (SG)) is globally well-posed.

Theorem 3. Let 0 € R*. Given two functions (¢°,¢') € HL (RY) x L2(RY), there exists a
unique solution ¢ € CO(R, ¢°+ HY(RN)), with 8¢ € CO(R, L2(RY)), to the Sine-Gordon equation

with initial conditions (¢¥, ¢'). Moreover, this solution satisfies the following statements.



(1) For any positive number T, there exists a positive number A, depending only on o and T,
such that the flow map (¢°,¢') — (¢, 0;¢) satisfies

B (000,000) + [090,1) ~ 03,02 < A(hn(6,80) + 68— '],

foranyt € [T, T].~ Here, the function b is the unique solution to the Sine-Gordon equation with
initial conditions (¢°, ¢').
(ii) When ¢° € HZ (RN) and ¢* € HY(RY), the solution ¢ belongs to the space C°(R,¢° +

s

H2(RN)), with ;¢ € CO(R, HY(RN)) and 0y¢ € CO(R, L2(RV)).

(13i) The Sine-Gordon energy Esq is conserved along the flow.

The proof of Theorem [ relies on a classical fixed-point argument. The only difficulty consists
in working in the unusual functional setting provided by the set Hgln(RN ). This difficulty is
by-passed by applying the strategy developed by Buckingham and Miller in [5, Appendix B| (see
also [I3] for similar arguments in the context of the Gross-Pitaevskii equation). In dimension
N = 1, they fix a function f € C®(R), with (possibly different) limits ¢*7 at +oo, and with
a derivative f’ in the Schwartz class. Given a real number p > 1, they consider an initial
datum (¢° = f + ¢%, ¢!), with (¢°,¢') € LP(R)?, and they apply a fixed-point argument in
order to construct the unique corresponding solution ¢ = f + ¢ to the Sine-Gordon equation,
with ¢ € L*>([0,T], LP(R)) for some positive number T. This solution is global when ¢° lies in
WLP(R). In view of Lemmas [Al and [A3] below, this result includes all the functions ¢° in the

space HL. (R) for p = 2.

s

Our proof of Theorem Bl extends this strategy to arbitrary dimensions. We fix a smooth function
f € HX(RY) = ng>1HE (RY), and we apply a fixed-point argument in order to solve the

sin sin

Cauchy problem for initial conditions ¢* € f + H'(R™) and ¢' € L?(R"™). We finally check the
local Lipschitz continuity in H} (R™) x L2(R¥) of the corresponding flow.

Sln
With the proof of Theorem [ in mind, we also extend this analysis to the initial conditions
¥ € HE (RV) and ¢! € HF1(RY), with k € N*. When the integer k is large enough, we obtain

sin
the following local well-posedness result.

Theorem 4. Let 0 € R* and k € N, with k > N/2 + 1. Given two functions (¢°,¢') €
HE (RN)x HFY(RN), there exist a positive number T, and a unique solution ¢ € C°([0,Tk,.),

Sin maxi ’ T max

o + HFRN)), with 6;¢ € C°([0,TE,.), HF"YRN)), to the Sine-Gordon equation with initial

) - max
conditions (¢°, ¢'). Moreover, this solution satisfies the following statements.

(i) The mazimal time of existence TF, . is characterized by the condition

lim d&, (¢(-,1),0) =00 if T, < oo

max
k
t— Tm ax

(ii) Let 0 < T < Tk .. There exist two positive numbers R and A, depending only on T,

d® (#°,0) and ||¢|| gr-1, such that the flow map (¢°,d1) — (¢, 0r) is well-defined from the ball
B((¢° ¢'). R) = {(¢", ') € HE,(RY) x H* '(RY) : d§,,(¢°,6°) + [|¢! — ¢l g1 < R},
to CO([0,T], HE (RN)) x HE=Y(RN)), and satisfies

dfln(QS( ) QS + Hat¢ (925(;5 HHk 1 S A(dfln(QSO,gEO) + H¢1 - §Z~51HH;€_1),

for any t € [0,T]. Here, the function & is the unique solution to the Sine-Gordon equation with
initial conditions (¢°, ¢').



(iii) When ¢° € HEY(RN) and ¢! € HF(RY), the function ¢ is in CO([0, T ), ¢+ HFHL(RY)),
with 0y € CO([0, Tk ), H¥(RN)) and 0y ¢ € CO([0,TE,), H* "X (RN)). In particular, the mazi-
mal time of evistence TEE) satisfies

k+1 _ pk
Tmax - Tmax'

(iv) When 1 < N < 3, the solution ¢ is global in time. Moreover, when N € {2,3}, the flow
remains continuous for k = 2.

Theorem [ follows from a fixed-point argument similar to the one of Theorem Bl The control on
the nonlinear terms is derived from a uniform bound on the gradient of the solutions. This is
the origin of the condition k > N/2 + 1 for which the Sobolev embedding theorem guarantees a
uniform control on the gradient. This condition is natural in the context of the spaces HX_ (R™).
Indeed, a function f € HE (R™) is not controlled uniformly (see Remark [A-2] and the discussion
in Appendix [A]). At least in principle, the classical condition k > N/2 is not sufficient to handle

the nonlinear terms of the Sine-Gordon equation.

o 10 statement (i) can be estimated by performing standard
energy estimates. When 1 < N < 3, this leads to the global well-posedness of the Sine-Gordon
equation in the space HE (RN) x HF=L(RY) for k > N/2 + 1. Actually, it is possible to extend
this global well-posedness result to dimensions 4 < N < 9. This extension relies on the Strichartz
estimates for the free wave equation (see e.g. [I8]), and the use of fractional Sobolev spaces. A
blow-up in finite time is possible when N > 10. For the sake of simplicity, and since this is
not our main goal, we do not address this question any further. We refer to [31] for a detailed

discussion on this topic, and for the construction of blowing-up solutions to related semilinear

The maximal time of existence T*

wave systems.

When 1 < N < 3, the fixed-point arguments in the proofs of Theorems [l and @ provide the
continuity of the flow with values in C°([0,7], HE_(RY) x H*=1(RY)) for any positive number
T, except if k =2 and 2 < N < 3. We fill this gap by performing standard energy estimates. We
conclude that the Sine-Gordon equation is globally well-posed in the spaces HE (RY) x H*(RY)

sin
forany 1 < N <3 and any k > 1.

Note finally that the previous well-posedness analysis of the Sine-Gordon equation translates
immediately into the Sine-Gordon system (SGS)) by setting u = 9;¢.

1.3 The Cauchy problem for the Landau-Lifshitz equation

The Landau-Lifshitz equation is an anisotropic perturbation of the Schrodinger map equation.
Solving the Cauchy problem for this further equation is known to be intrinsically involved due to
the geometric nature of the equation (see e.g. [I]). The situation is similar for the Landau-Lifshitz
equation, but one has also to handle the anisotropy of the equation.

The natural functional setting for solving the Landau-Lifshitz equation is given by the energy
set

ERN) == {ve L (RY,$?) : Vo € L*(RY) and (v1,v3) € L*(RY)?}.

We endow this set with the metric structure provided by the norm

N

lollz2 = (lloiliFp + llvzllZee + [IVv2lI72 + llvsllF) 2,
of the vector space

Z'RY) == {v e Li, (RN, R?) : Vo € L*(RY),v5 € L®(R") and (vi,v3) € L*(RY)?}.



With this structure at hand, the Landau-Lifshitz energy is well-defined and continuous. The
uniform control on the second component v, in the Z!-norm is not necessary to guarantee these
properties, but it is in order to ensure the map || - |[z1 to be a norm. This uniform control is
not the only possible choice. Our choice is motivated by the boundedness of the functions v in
E(RM).

To our knowledge, establishing the global well-posedness of the Landau-Lifshitz equation for
general initial data in the energy set £(R™) remains an open question. We do not address this
question any further in the sequel. However, it is possible to construct global weak solutions by
adapting the construction by Sulem, Sulem and Bardos [30)] in the case of the Schrodinger map
equation. Due to the requirement of additional smoothness in order to handle the Sine-Gordon
regime, we instead focus on the local well-posedness of smooth solutions.

Given an integer k > 1, we introduce the set
EFRN) = {v e ERY) : Vv € HFY(RY)},

which we endow with the metric structure provided by the norm

NI

[0l 20 := (Hvlllipe +lvalZee + I Vo2lfpas + lluslFp) 2,
of the vector space
ZFRN) = {v e LL (RN, R?) : (v1,v3) € L*(RM)?, 05 € L®(RY) and Vv € HF"1(RY)}. (18)

Observe that the energy space £(RY) identifies with £1(RY).

When £ is large enough, we show the local well-posedness of the Landau-Lifshitz equation in the
set EF(RN).

Theorem 5. Let Ay and A3 be non-negative numbers, and k € N, with k > N/2 + 1. Given
any function m® € EFRN), there erists a positive number Tnax and a unique solution m :
RN x [0, Trax) — S? to the Landau-Lifshitz equation with initial datum m°, which satisfies the
following statements.

(i) The solution m is in the space L>°([0,T],EF(RN)), while its time derivative Oym is in
L>([0,T), HE=2(RY)), for any number 0 < T < Tiax.

(7i) If the mazimal time of existence Tyax 15 finite, then
Tmax
[ 1vme 0 di = . (19)
0

(iii) The flow map m® — m is well-defined and locally Lipschitz continuous from EF(RN) to

C([0, T], EF~LRN)) for any number 0 < T < Tipax.

(iv) When m® € EXRN), with £ > k, the solution m lies in L>=([0,T],E4RN)), with Oym €
L>([0,T), H2(RN)) for any number 0 < T < Tipax.

(v) The Landau-Lifshitz energy is conserved along the flow.

Theorem [B] provides the existence and uniqueness of a local continuous flow corresponding to
smooth solutions of the Landau-Lifshitz equation. This kind of statement is standard in the
context of hyperbolic systems (see e.g. [32] Theorem 1.2|). The critical regularity for the equation
is given by the condition & = N/2, so that local well-posedness is expected when k > N/2 + 1.
As in the proof of Theorem [4], this assumption is used to control uniformly the gradient of the
solutions by the Sobolev embedding theorem.
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In the isotropic case of the Schrodinger map equation, local well-posedness at the same level
of regularity was established in [6] when N = 1 by using the Hasimoto transform, and in [22]
in arbitrary dimensions by using parallel transport (see also [34] B0, [I0] for the construction of
smooth solutions). Our proof of Theorem [ is based on a more direct strategy. We introduce
new quantities, which improve classical energy estimates. This approach applies to the isotropic
situation of the Schrédinger map equation, as well as to the anisotropic setting of the Landau-
Lifshitz equation.

In contrast with the proof of Theorem Ml we do not rely on a fixed-point argument, but on a
compactness argument. Due to this difference, the solutions m corresponding to initial data
m? € EF(RN) are not necessarily continuous with values in £¥(RY), but they remain bounded
with values in this set. Continuity is recovered with a loss of one derivative, that is in E¥~1(R),
and the flow map is then locally Lipschitz continuous. By standard interpolation, the solutions
are actually continuous with values in the fractional sets

ERY) = {ve ERN): Vo e HSHRY)S,

assoon as 1 < s < k.

More precisely, the construction of the solution m in Theorem [lis based on the strategy developed
by Sulem, Sulem and Bardos [30] in the context of the Schrédinger map equation. The first step
is to compute a priori energy estimates. Given a fixed positive number 7" and a smooth solution
m : RN x [0,7] — S? to the Landau-Lifshitz equation, we define an energy of order k > 2 as

1
EF (1) = 5 > / (\atagm\u |AZm|® + (M + A3) (IVOZmu | + [VO2ms|?)
jal=k—2"RY (20)
g ([0 2 4 |92 maf?) ) (z, 1) de,

for any ¢t € [0,7]. Here as in the sequel, we set 8% := 0% ...99% for any o € NV. We can
differentiate this quantity so as to obtain the following energy estimates.

Proposition 1. Let Ay and A3 be fized non-negative numbers, and k € N, with k > 1 +
N/2. Assume that m is a solution to (LI)), which lies in C°([0,T], EF2(RN)), with dym €
CO([0, 7], H*(RY)).

(1) The Landau-Lifshitz energy is well-defined and conserved along flow, that is
Ell,L(t) = FLL (m(’t)) = Ell,L(O)’
for any t €0, 7).

(ii) Given any integer 2 < £ < k, the energies Ef; are of class C' on [0,T], and there exists a
positive number Cy, depending only on k, such that their derivatives satisfy

/
[Ef]) (8) < Cu(1+ [ma( )70 + ma( )1 7o + V-, 6)[[ 700 ) Si,(8), (21)
for any t € [0,T). Here, we have set ¥f | := Z§:1 E{L.

We next discretize the equation by using a finite-difference scheme. The a priori bounds remain
available in this discretized setting. We then apply standard weak compactness and local strong
compactness results in order to construct local weak solutions, which satisfy statement (i) in
Theorem Bl Applying the Gronwall lemma to the inequalities in (2I]) prevents a possible blow-up
when the condition in (I9)) is not satisfied.

Finally, we establish uniqueness, as well as continuity with respect to the initial datum, by
computing energy estimates for the difference of two solutions. More precisely, we show

11



Proposition 2. Let A\; and A3 be non-negative numbers, and k € N, with k > N/2 + 1. Con-
sider two solutions m and m to (LI), which lie in C°([0,T], EFFHL(RN)), with (Oym,dym) €
CO([0, T], H* Y (RM))2, and set v := m —m and v := (m +m)/2.

(1) The function

€0 (1) = %/RN (e, ) — ud(x) o d, (22)

is of class C' on [0,T], and there exists a positive number C such that

(€L (1) < U+ IV, )|z + IVmC, )] gz + @ (D) g2 + l[ma (- 0)]| 2
+ s )llze + Ima O)llze) (lu,t) = ugeallza + luC, Ol Ze + [Vul, 72 + [ Vud|z2),

(23)
for any t € [0, 7).
(i) The function
1
&l (t) = 5/ (|Vu|2 +|u x Vu+v x Vu|2)(x,t) dz,
RN
is of class C' on [0,T), and there exists a positive number C such that
[€iL] () < C(L+IVm(, Ol + IV Ol F) (lulB)lIFe + [Vul, 0)]72) % (24)

< (L [Vm( 1)z + V(s 8o + IVmC, )l + IV, )l
(13i) Let 2 < ¢ <k —1. The function

1
=3 Y [ (1000 + 18080 + (n + A (V2w + V0 )
|oo|=0—2

A (10 + 105 us ) ) (1) da
is of class C' on [0,T], and there exists a positive number Cy, depending only on k, such that
(€] (1) < Ci (14 [9m0,0)e + IV e+ [T Ol + [V 1) e

+ =2 (71 ()l 2 + ()l 2 + s (1) 2 + Hms(vt)Hm)) (SLL(t) + [[u(, t)l[Fe)-
(25)

Here, we have set &%} := Zf:o ¢l

When ¢ > 2, the quantities foL in Proposition [2] are anisotropic versions of the ones used in [30]
for similar purposes. Their explicit form is related to the linear part of the second-order equation
in [33). The quantity &), is tailored to close off the estimates.

The introduction of the quantity GiL is of a different nature. The functions Vu and u x Vv +
v X Vu in its definition appear as the good variables for performing hyperbolic estimates at an
H'level. They provide a better symmetrization corresponding to a further cancellation of the
higher order terms. Without any use of the Hasimoto transform, or of parallel transport, this
makes possible a direct proof of local well-posedness at an HF-level, with & > N/2 + 1 instead
of k> N/2 + 2. We refer to the proof of Proposition [2in Subsection B.3] for more details.

With the proof of Theorem [Ilin mind, we now translate the analysis of the Cauchy problem for
the Landau-Lifshitz equation into the hydrodynamical framework. We obtain the following local
well-posedness result, which makes possible the analysis of the Sine-Gordon regime in Theorem [1

12



Corollary 1. Let Ay and A3 be non-negative numbers, and k € N, with k > N/2 + 1. Given
any pair (u®, ) € NVE(RN), there exists a positive number Tpayx and a unique solution (u, @) :
RY X [0, Tmax) — (—=1,1) x R to (HLI) with initial datum (u®, ¢°), which satisfies the following
statements.

(i) The solution (u, @) is in the space L>=([0,T], NV¥(RN)), while its time derivative (Opu, 0s)
is in L>2([0, T], H*=2(R™)?2), for any number 0 < T < Tyax.

(7i) If the mazimal time of existence Tyax 15 finite, then

/Tmax : t
(e
(1 —wu(-t)?)2

7

oo+H(l—u(-,t)Q)%ng(-,t)‘r Jdi=co, or lim fu()fp~ =1L

L t—Tmax

(iii) The flow map (u®,¢°) — (u,¢) is well-defined, and locally Lipschitz continuous from
NVERN) to CO([0, T], NVE=LRN)) for any number 0 < T < Tiax.

(iv) When (u°,¢°) € NVERN), with £ > k, the solution (u,$) lies in L>=([0,T], NV!(RN)),
with (Opu, 0;¢) € L>¥([0,T], H*=2(RN)?) for any number 0 < T < Tiax.

(v) The Landau-Lifshitz energy in (3]) is conserved along the flow.

Remark 1. Here as in the sequel, the set L>([0,T], HE (RY)) is defined as

sin

L>([0,T7, HE (RY)) == {v € LL (RN x[0,T],R) : sup ||sin(v(-,t))||2+Vo(,t) || gr-1 < oo}7

sin
0<t<T

for any integer k > 1 and any positive number T'. This definition is consistent with the fact that
(R™) (identified with the quotient group H% (RN)/77Z)

sin

In particular, the set L>([0, 7], NVF(RY)) is

a family (v(-,t))o<i<7 of functions in HX
is then bounded with respect to the distance d*

given by .
L= ([0, T], NVF(RY)) := {(u, ¢) € Li (RN x [0,T],R?) : Ju| < 1 on RY x [0, 7]

and  sup |[u(-, )| gr—1 + [[sin(@(-, )|z + VO, )l e < OO}-
0<t<T

The proof of Corollary [Ilis complicated by the metric structure corresponding to the set H k (RN ).
Establishing the continuity of the flow map with respect to the pseudometric distance dsm is not
so immediate. We by-pass this difficulty by using some simple trigonometric identities. We refer

to Subsection below for more details.

Another difficulty lies in controlling the non-vanishing condition in (2). Due to the Sobolev
embedding theorem, this can be done at an H*-level, with k > N /2 + 1. However, this does not
prevent a possible break-up of this condition in finite time. Statement (ii) exactly expresses this
simple fact. In the hydrodynamical setting, blow-up can originate from either blow-up in the
original setting, or the break-up of the non-vanishing condition.

1.4 Sketch of the proof of Theorem [1]

When (U2, ®9) lies in NVEF2(RYN) we deduce from Corollary [labove the existence of a positive
number Tjax, and a unique solution (U, ®.) € C°([0, Tyax), NVFH(RY)) to (HLLY) with initial
datum (U2, ®Y). The maximal time of existence Tyay a priori depends on the scaling parameter
€. The number Ty ,x might become smaller and smaller in the limit ¢ — 0, so that analyzing
this limit would have no sense.
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As a consequence, our first task in the proof of Theorem [ is to provide a control on Tj.x. In
view of the conditions in statement (ii) of Corollary [Il this control can be derived from uniform
bounds on the functions U,, VU, and V®,.. Taking into account the Sobolev embedding theorem
and the fact that & > N/2 + 1, we are left with the computations of energy estimates for the
functions U. and ®., at least in the spaces H*(RY), respectively H: (RV).

sin
In this direction, we recall that the Landau-Lifshitz energy corresponding to the scaled hydro-
dynamical system (HLL.) writes as

E.(U.,®.) = l/ <52M + U2 + (1 = U2V + (1 — 2U2) sin’(® )).
e\Vey ¥e 9 RN 1 —€2U€2 5 € 3 € €

Hence, it is natural to define an energy of order k € N* according to the formula

1 Voru.> ., N
EFU., ®.) := 3 > /N (6Zﬁ + 100U |2 + (1 — 2U3)| Vo2 o, >
laj=k—1"R € (26)

+o(1 - 2U2) |0 sin(@e)P).

The factors 1 — £2U2 in this expression, as well as the non-quadratic term corresponding to the
function sin(®.), are of substantial importance. As for the energy E.(U.,®.), they provide a
better symmetrization of the energy estimates corresponding to the quantities Ef (Us, ®.) by
inducing cancellations in the higher order terms. More precisely, we have

Proposition 3. Let € be a fized positive number, and k € N, with k > N/2 + 1. Consider a
solution (U., ®.) to (ALLY), with (U.,®.) € C°([0,T], NV¥+3(RN)) for a fized positive number

T, and assume that

1
inf 1-2%U%>=. 2
RN1>I<1[O,T} eUz > 2 (27)

There exists a positive number C', depending only on k and N, such that

3 .
[£]'(1) < € max {102} (1+¢") (H sin(@ (-, )7 + U0 D)llFe + V(1) 7
VU )T + 1@ ()7 + %l U(, 1) 7

+ & [V@, D) (IVB( D3 + (VU DlF) ) SE (1),
(28)

for any t € [0,T) and any 2 < £ <k + 1. Here, we have set XF+! = Zfill EZ.

As a first consequence of Proposition [3] the maximal time Ty is at least of order 1/(||UY|| gx +
e VU2 g+ VRY| g +]| sin(@2) || 7+ )%, when the initial conditions (U2, ®?) satisfy the inequality
in (@). In particular, the dependence of Ti,ax on the small parameter ¢ only results from the
possible dependence of the pair (Ug, <I>2) on €. Choosing suitably these initial conditions, we can
assume without loss of generality that T, is uniformly bounded from below when ¢ tends to
0, so that analyzing this limit makes sense. More precisely, we deduce from Proposition Bl the
following results.

Corollary 2. Let € be a fized positive number, and k € N, with k > N/2 + 1. There exists
a positive number Cs, depending only on o, k and N, such that if an initial datum (U2, ®?) €
NVFZ(RN) satisfies

Cue (102 + VU s+ V9L e + || sin (@] e ) <1, (29)
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then there exists a positive time

1
T. > _ -
Co (10| g + el VU i + [V D2 i + || sin(D2) | )

such that the unique solution (U, ®.) to (HLLZ) with initial condition (U2, ®Y) satisfies the
uniform bound

1
5HU€('at)HLoo < ﬁ,
as well as the energy estimate

OGO s + el VU O] [V 2 )]+ ([ sin(@e )]

. (30)
< Cu (1021l s+ €IV T2 + V2] e+ || sin(@2) ).

forany 0 <t <T,.

Remark 2. In the one-dimensional case, the conservation of the energy provides a much direct
control on the quantity ¢||Uz| L. This claim follows from the inequality

62HU5H%00 < 262 /R \UL(2)] |Ue(x)| dx < 6/R (62U€/(3:)2 + Ue(az)2) dz.

When ¢||U?|z~ < 1, and the quantity eE.(0) is small enough, combining this inequality with
the conservation of the energy F. and performing a continuity argument give a uniform control
on the function €U, for any possible time.

As a further consequence of Proposition 8] Corollary [2] also provides the Sobolev control in (30])
on the solution (U, ®.), which is uniform with respect to . This control is crucial in the proof
of Theorem [Tl As a matter of fact, the key ingredient in this proof is the consistency of (HLL.)
with the Sine-Gordon system in the limit ¢ — 0. Indeed, we can rewrite (HLL.) as

U, = A®, — $sin(2®.) + e*RY,

(31)
0P, = U, + €2Rg’,
where we have set
RY := —div (U2 V®.) + oUZ sin(®.) cos(®.), (32)
and VU, VU, \2
o ._ s 2 : e 2 e 2
Ra = —O'U€ Sin (‘1)5) —div (1_752(]62) +ée Ug m — Ue |V(I)€| . (33)

In view of the Sobolev control in (B0), the remainder terms RY and R® are bounded uniformly
with respect to € in Sobolev spaces, with a loss of three derivatives. Due to this observation, the
differences u. := U, — U and ¢, := ®. — ® between a solution (U, ®.) to (HLL.) and a solution
(U, ®) to (SGY) are expected to be of order €2, if the corresponding initial conditions are close
enough.

The proof of this claim would be immediate if the system (31I]) would not contain the nonlinear
term sin(2®.). Due to this extra term, we have to apply a Gronwall argument in order to control
the differences u. and ¢.. Rolling out this argument requires an additional Sobolev control on

the solution (U, ®) to (SGS).
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In this direction, we use the consistency of the systems (BI]) and (SGS)) so as to mimic the proof
of Corollary B for a solution (U, ®) to (SGI). Indeed, when & = 0, the quantities E¥ in (20)
reduce to

1 o o (0
BlaU@)i=5 3 [ (105UF + o2Vl + oo sin(@) ).
|al=k—1

When (U, ®) is a smooth enough solution to (SGS)), we can perform energy estimates on these
quantities in order to obtain

Lemma 1. Let k € N, with k > N/2+ 1. There exists a positive number A, depending only on
o, k and N, such that, given any initial datum (U°,®°) € H¥=L(RN) x HE (RN), there erists a
positive time
1
T, > 5,
A (100 s + IV QO s + || sin(@O)|| 1)

such that the unique solution (U, ®) to (SGS) with initial condition (U°, ®°) satisfies the energy
estimate

10 GO gis + V@ 0l + ] sin (@, 1) e
<AL (IT° s + IV pgas + [ 5in(°) s )

for any 0 <t <Ti.

In view of (SGS) and (31I), the differences v. = U, — U and ¢. = ®. — ® satisfy

(34)

e = Ap. — osin(pe) cos(®. + @) + 2RV,
Orpe = Ve + 82R§.

With Corollary 2] and Lemma [Il at hand, we can control these differences by performing similar
energy estimates on the functionals

1 .
ehoimy > [ (080l +105V e + 0102 sin(en)P). (3)
laf=k—1"R
This is enough to obtain

Proposition 4. Let k € N, with k > N/2+1. Given an initial condition (U2, ®%) € NVETZ(RN),
assume that the unique corresponding solution (U, ®.) to (HLL.) is well-defined on a time in-
terval [0,T] for a positive number T, and that it satisfies the uniform bound

1
6HU€('at)HLoo < %’ (36)
for any t € [0,T). Consider similarly an initial condition (U°,®%) € L*(RN) x HL (RY), and

denote by (U, ®) € CO(R, L2(RY) x HL (RY)) the unique corresponding solution to (SGS)). Set
ue :=U; = U, o : =P, — P, and

Ko(T) = max (I1U=(, Ol e + VUl + V@ (D)l + [ sin(@e (1) )
t€[0,T]

(i) Assume that ®0 — ®° € L2(RN). Then, there exists a positive number Cy, depending only on
o and N, such that

I )llz2 < C (I9llle + 2llz2 + 2 KelT) (1 + 2Ko(T)? + Ko(T)) ) €7, (37)
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for any t €0, 7).

(i7) Assume that N > 2, or that N =1 and k > N/2 4 2. Then, there exists a positive number
Cs, depending only on o and N, such that

Jue (- )2 + (Ve (5 D)l 22 + [ sin(ee ()] 2 < Cz(llug\lm +[IVelllz2 + [ sin(wd) [ 2

2 KL (T) (1+ £2Ka(T) 4+ Ko(T)P) ) 2,

for any t € [0,T].
(iii) Assume that k > N/2+3 and that the pair (U, ®) belongs to C°([0, T], H*(RN) x HETL(RN)).
Set

we(T) i= Ke(T) + v (UGl + 1920, Ol + [ sin(®, )l )

Then, there exists a positive number Cy, depending only on o, k and N, such that

lete )l s + 1902y )l i—s + I sinpe (-, )l prn-s
< Cu(ulge-s + 11Vl s + [ i) | gos (39)

+ &% ke (T) (1 + %k (T)* + (1 + EQ)Kg(T)3)> (Cr(1+re (TPt
for any t € [0,T].
We are now in position to conclude the proof of Theorem [l

Proof of Theorem [ In view of Corollaries[[land 2] there exists a positive number C,, depending
only on o, k and N, for which, given any initial condition (U2, ®%) € NV*+2(RY) such that (B
holds, there exists a number 7T} satisfying (7)) such that the unique solution (U, ®.) to (HLL.)
with initial conditions (U2, ®?) lies in C°([0, 7], NVFFL(RY)). Moreover, the quantity K.(7%) in
Proposition @ is bounded by

Ko(T:) < C.K:(0).

Enlarging if necessary the value of C,, we then deduce statements (i7) and (4i7) in Theorem [II
from statements (i) and (é¢) in Proposition @l

Similarly, given a pair (U?, ®°) € H*(RY) x HET(RN)), we derive from Theorem Hand Lemmal[Il
the existence of a number 77 such that (I0) holds, and the unique solution (U, ®) to (SGS)) with
initial conditions (U?, ®°) is in C°([0, T3], H*(RN) x H¥F(RN)). Statement (iv) in Theorem [
then follows from statement (iii) in Proposition @l This completes the proof of Theorem [l O

1.5 Outline of the paper

The paper is organized as follows. In the next section, we gather the proofs of Theorems Bl and [
concerning the Cauchy problem for the Sine-Gordon equation. These results are well-known by
the experts, but we did not find their proofs in the literature. For the sake of completeness, we
provide them below.

Section 3] is devoted to the analysis of the local well-posedness of the Landau-Lifshitz equation
in the original and hydrodynamical frameworks.

In Section ] we collect the various elements concerning the derivation of the Sine-Gordon regime
in Theorem [l by addressing the proofs of Proposition B Corollary 2 Lemmal[lland Proposition (4l

We similarly clarify the derivation of the wave equation in Section
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In Appendix [Al we describe the main properties of the sets Hskin(RN ), while Appendix [Bl gathers
the tame estimates that we use in our computations. Finally, Appendix[C]contains more material
about the solitons for the one-dimensional Landau-Lifshitz equations and their correspondence

with the solitons for the Sine-Gordon equation.

2 The Cauchy problem for the Sine-Gordon equation in the prod-
k N k—1/mN
uct sets H: (RY) x H* 1 (R"Y)

In this section, we assume, up to a scaling in space, that o = %1, and we refer to Appendix [Al

for the various notations concerning the spaces HE (RY).

2.1 Proof of Theorem

The proof follows from the following proposition.

Proposition 2.1. Let f € HX(RY). Given two functions (¢°, ¢*) € HL(RY) x L2(RY), there
exists a unique function p € CO(R, HY(RN)) NCYH(R, L2(RN)) such that ¢ = f + ¢ satisfies the
Sine-Gordon equation with initial conditions (¢° = f + %, ¢'). Moreover, this solution satisfies

the following statements.

(i) For any positive number T, the flow map (©°, ') = (p,0;¢) is continuous from H'(RN) x
LXRY) to C([-T, T, H'(RY)) x C°([~T, T}, L*(RY)).

(ii) When ¢° € H*(RY) and ¢* € H'(RYN), the function ¢ belongs to the space CO(R, H*(R))N
CHR, H*(RY)) NC*R, L3(R)).

(7i1) The Sine-Gordon energy Esg is conserved along the flow.

Proof. We decompose a solution ¢ to the Sine-Gordon equation as ¢ = f + ¢. The function ¢
then solves the nonlinear wave equation

dup —Ap=Af - %sin@f + 2¢), (2.1)

with a Lipschitz nonlinearity H(y) := —o sin(2f+2¢)/2. Therefore, we can apply the contraction
mapping theorem in order to construct a unique local solution. Its global nature, the continuity
of the corresponding flow and the conservation of the energy then follow from standard arguments
in the context of the nonlinear wave equations. For the sake of completeness, we provide the
following details.

The Duhamel formula for the nonlinear wave equation (2.I) with initial conditions (¢(-,0) =
02, 050(+,0) = @) writes as

(-, 1) = A(p)(-,t) :=cos(tD)" + wgpl - / sin((t —7)D)Df dr
tsin((t — 7)D) ’ (22)
+ [ S ) ryar,

where we set, here as in the sequel, D := v/—A. In order to solve this equation, we now apply
the contraction mapping theorem to the functional A in the function space C°([-T, T], H*(RY))
for a well-chosen positive number 7.

Let k € N. Given a function g € H*¥(RY), we know that

cos(tD)g € C°(R, H*(RM)) nCY (R, H*H(RY)), (2.3)
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and
DIsin(tD)g € CO(R, H* 7 (RN)) nC(R, H*7~1(RY)), (2.4)

for any integer j > —1 (see e.g. [33]). Since Df is in H®(RY) := N2 HY(RY), the first three
terms in the definition of the functional A are well-defined and belong to CO(R, HY(RM)) N
CY(R, L2(RY)).

Let T > 0. Since f is in HL (RY), the function H(v) belongs to CO([-T,T], HY(RY)), when v
lies in this space. In view of (Z3)) and (2.4)), the last term in the definition of the function A(v) is
therefore in CO([~T,T], H*(RN)) NCY([-T,T], H*(RY)). Hence, the map A is well-defined from
CO[-T,T), HY(RY)) to CO([-T,T], H*(RN)) N C*([-T,T], L*(RY)), and its time derivative is
given by

O AW)(-,t) = —sin(tD) D + cos(tD)p* + /0 cos((t — 7)D)(H(v)(-,7) + Af) dr

when v € CO([-T, T, H'(RY)).
Given two functions (v1,ve) € CO([~T,T], H'(RY)?, we next have

A0 = A 0) = [ SR (H ) r) = B ) ar

Since
[H (v1) = H2)||go_gry.12) < 01 = valleo-r,m,12),

and since the operators sin(vD) and sin(vD)/(vD) are bounded on L2(RY), uniformly with
respect to v € R, we deduce that

[A(v1) — A(va)llco—rym,my < TV1+T2|lvr — vallco—1,17,12)-

Taking T' = 1/2, we conclude that the functional A is a contraction on C%([—1/2,1/2], L2(RY)).
The contraction mapping theorem provides the existence and uniqueness of a solution ¢ €
CO([-1/2,1/2], H' (RY)) to the equation ¢ = A(y), which is also in C*(R, L?(R")) due to this
fixed-point equation. Since the existence time 7' = 1/2 is independent of the initial conditions,
we can extend this unique solution on R. Note finally that the function ¢ = f + ¢ solves
the Sine-Gordon equation with initial datum (¢° = f + %, ¢* = ¢!) (at least in the sense of
distributions).

1Y of the

In order to prove (i), we make explicit the dependence on the initial conditions (°, ¢
€ H'(RY) x

functional A by writing Ao 1. Given another pair of initial conditions (@, @h)
L?(RMN), we infer again from (Z3) and (2.4)) that

HAeao,gol (v) — Ago g Hco ([-T,T),HY) + Hat o (V) = OpAgo %7’1(5)“00([*T,T],L2)
<20’ = Pl + VI +T2p! = Gz + T+ V1+ T2 = Olleor,1),12),
for any functions (v,9) € CY([-T,T), H')?. Taking T = 1/4 so that T'(1 + V1 +T2) < 1, we

deduce the existence of a universal constant K such that the solutions ¢ and ¢ corresponding
to the initial conditions (¢, '), respectively (¢°, '), satisfy

H‘P - ('Z)HCO([—i,%],Hl) + Haﬁp - 815@“00([—5,%],L2) <K% = &llm + o' — &'llz2)-

A covering argument is enough to establish the continuity of the flow with respect to the initial
datum.
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When the initial datum (¢, ') lies in H2(RY) x H(RY), it follows from (Z.3)) and ([2.4)) that the
first two terms in the definition of the functional A are in C°(R, H?(R™))NCY(R, H*(RY)). Due
to the smoothness of the function f, this is also true for the third term, while we have already
proved this property for the fourth term, when ¢ is in C°(R, H*(R")). As a consequence, it only
remains to invoke the equation ¢ = A(y) in order to prove that the solution ¢ is actually in
COR, H2(RM)) N CY(R, H'(RY)). Coming back to ([21]), we conclude that the solution ¢ is also
in C3(R, L2(RY)).

In this situation, we are authorized to differentiate the Sine-Gordon energy and to integrate by
parts in order to compute

o Bsa(6(,1)) = 0.

Therefore, the energy of a solution ¢ € CO(R, H2(RY)) N CY(R, HY(RY)) N CO(R, L2(RY)) is
conserved along the flow. In the general situation where the solution is only in C°(R, H'(R™)) N
CY(R, L?(RY)), the conservation of the energy follows from the continuity of the flow by applying
a standard density argument. O

With Proposition 2.I] at hand, we are in position to show Theorem [l

Proof of Theorem[3. Consider initial conditions (¢°,¢') € HL (RY) x HY(RY). Lemma [AT]

provides the existence of two functions f € H(RY) and ¢° € HY(RY) such that ¢° = f + ¢°.
In this case, the space ¢° + H'(RY) is equal to f + H'(R™). Proposition 211 then provides
the existence of a solution to the Sine-Gordon equation ¢ = f + ¢ € CO(R, ¢° + H}(RY)), with

Oip € CO(R, L2(RY)), for the initial conditions (¢°, ¢').

Concerning the uniqueness of this solution, we have to prove that it does not depend on the
choice of the function f. Given an alternative decomposition #° = f+ @ and the corresponding
solution ¢ = f 4 @, we observe that

f-f=¢"-¢" e H'RY).

Hence, the function f — f + ¢ is a solution in CO(R, H'(RY))NCY (R, L*(RY)) to @1 with initial
conditions (¢°, ¢!). Since w is the unique solution of this equation, we deduce that o = f—f+¢,
which means exactly that ¢ = ¢.

Statements (i7) and (ii7) are then direct consequences of (i7) and (ii¢) in Proposition 21l Con-
cerning (i), we come back to the contraction mapping argument in the proof of this proposition.
We make explicit the dependence on the parameters in the definition of A and H by writing
Ag 0,1 and Hy. We check that

HHf(v) - Hf(f))HCO([—T,T},LQ) < H sin(f — f)HLQ + [lv = ®||CO([*T,TLL2)5

when (f,f) € H!

sin

(RM)? and (v, ) € CO([—T,T], H*(RN))2. Applying ([23) and (Z4), we obtain

HA¢“79017f(U) - A@O,@l,f(@)HCO([_T,TLHI) + “8'?’4@07@1,1‘(”) - 3tA¢0,¢1,f(77)HCO([_T,T},B)
<20 = @l o + A+ VI+T2)@" = @] o + 2T |V = VI
+T(1+ V1 +T2)(H sin(f — f)][  + [Jo— {)HCO([fT,T],LQ))’

for any (©°, @°) € HY(RY)? and (¢!, $') € L2(RY)2. Taking T = 1/4, we are led to the existence
of a universal constant K such that the solutions ¢ and ¢ corresponding to the initial conditions
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(0, ¢1), respectively (@°, 1), satisfy
e — 95”00([755,111)*"‘8%0 - at@”ct)qﬁ,i],m)
<K (|Ie” = &l + 10" = &'l 2 + 1 = Al )-

Invoking the estimates in Lemma [A.]] this inequality can be translated in terms of the functions
¢ and ¢ as

Hgb_(l;‘{' f_ fHCO([, JH1) +Hat¢ atQSHCO(,l 1 L2)

4’4

<K (b (¢, 8°) + [|o* = 8] . )

15
14

(2.5)

It remains to use the inequalities

Isin(¢ — @)z < I sin(f = fllzz + llp = @llz < dgin (6%, 6°) + llp — B2,

and
Vo — Vo2 < Vf = VSl + Ve — V|2 < din(6°,6°) + |V — V@ 2,

to obtain the estimate in (i) for 7' = 1/4. The general case follows from a covering argument. [J

2.2 Proof of Theorem [

We split the proof into three steps.

Step 1. Local well-posedness in the product sets HE (RN) x HF1(RYN).

Concerning the existence and uniqueness of a solution, we apply again the contraction mapping
theorem. Consider initial conditions (¢°, ¢!) € HE (RY) x HF=L(RYN), write ¢° = f + ¢, with

sin

f e HX(RY) and ¢° € HF—1(RY), and set 1 = ¢!. Going back to the Duhamel formula in (222,

s

we derive from ([2.3]) and (2.4]) that the first three terms in the definition of the functional A are
in C°([0,T], H*(R™)) n ¢t ([0, T], H*~1(RY)). Concerning the last term, we invoke the Moser
estimates in Corollary [B.2] and the Sobolev embedding theorem in order to check that

IVH @)zt < CL+ [VollF< + IVAE) (IV0ll e + 1V fllxr),

when v € HF (RN ). Here as in the sequel, the positive number C' only depends on k and N. Due
to the Sobolev embedding theorem, the functional A is well-defined on C°([0, T], H*(RY)), with
values in CO([0, T, H*(RN)) nC'([0, T, H*=1(RY)). Moreover, we check that
1A@)lleogo,77, 15y <N + (L4 Dl gz + Tl f | pess + T2 ([ sin(Hl g2 + vl r2)
+OT(L+ Vol i + IV A=) (IVoll s + 1V Fll 1)

when v belongs to C°([0,T], H*(R™)). Note here that A actually takes values in C°([0,T],
HFYRNY) N el ([0, T), HF(RN)), when ¢ € HEFHRY) and ¢! € HF(RYN).

s

Next, we again deduce from Corollary [B.2 and the Sobolev embedding theorem that

IVH (v1) — VH(v2)|| grr—1 :HV(sin v — 1)2) cos(2f + vy + v2) HH’E L
<O(1+ || Vo 5= + [IVoalli=" + [V FIF=D) %
X (L4 Vil gr—s + Vol g + IV £ 1) [[o1 = w2l v,
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when (v1,v9) € H¥(RV)2. When v; and vy belong to C°([0, T], H*(R™)), we obtain

[A(v1) — A(v2)llco(o,17, %) < CT<THU1 — valleoor),r2) + ||v1 — v2lleo .7, #re) X

(2.7)

x (11901l oo 212+ 1902l oo 712 + 1V Weogory ) )
At this stage, we set Rg := [|° || gx + || || gyr—1. In view of ([2.8]) and ([Z.7), there exists a positive
number Ty such that the functional A is a contraction on the closed ball

Br :={v e (0,71, H*R™)) : [vllcoqory.ar+) < R}-

The existence and uniqueness of a local solution ¢ = f + ¢ to the Sine-Gordon equation with
initial conditions (¢°, ¢') then follows from the contraction mapping theorem. The property
that it belongs to C°([0,T%..), ¢° + H¥(RN)), with ;¢ € C°([0,TE,.), HF1(RY)), as well as
the local Lipschitz continuous dependence on the initial datum in (i7), can be derived as in the
proof of Theorem Bl (invoking, when necessary, the Moser estimates and the Sobolev embedding

theorem).

Concerning the characterization of the maximal time of existence T we infer by contradiction

max?
from the previous contraction argument that we have

lim  [jo(-, )| ge =00 if TF, < oo.

max
t—Tk, .

The characterization in (¢) then follows from the formula ¢(-,t) = f 4 ¢(-, t), which guarantees
that

ol — 1l < (@0 ,0) < oDl + 1l
for any ¢ € [0, Tk ,.).

Y max
When ¢° € HEFHRN) and ¢! € HR(RYN), it follows from the fixed-point equation that the
solution ¢ is in C([0,T%..), ¢° + H*1(RN)), with ;¢ € C°([0,TF,.), H*(RY)). By uniqueness
of the solution, the function ¢ is the restriction to the interval [0,TF. ) of the solution ¢ in

Y - max max

~ ’ max
CO([0, TEEDY, @0 + HEFL(RNY), with 9,0 € CO([0, TEEL), H*(RY)). Hence, we have
Tax < T -

The equality in this formula is then a consequence of the characterization in (7).

In order to complete the proof of (iii), note that the Moser estimates and the Sobolev embedding
theorem also guarantee that the function sin(2¢) belongs to C°([0, T¥,.), H**1(RY)). As a con-
sequence of the Sine-Gordon equation, the function 0y ¢ is therefore in C°([0, TF,..), H*~1(RY)).

At this stage, it only remains to establish statement (iv). We first address the question of global
well-posedness.

Step 2. Global well-posedness when 1 < N < 3.

is equal to Tkx,

. e . . . . k
In view of statement (iii) in Theorem [], the maximal time of existence T, N

max
where ky denotes the smallest integer larger than N/2 + 1. As a consequence, we are allowed
to reduce the proof to the case k = ky. We then argue by contradiction assuming that TN is
finite, and we obtain a contradiction by controlling uniformly the quantity dfiﬁ (¢(+,t),0) on the
time interval [0, TFN ).

With this goal in mind, we introduce the function
Bi) =5 [ (@D 6(a,)? + (D'6(,1))) da.
RN
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for any 1 < ¢ < ky. This function is well-defined for any ¢ € [0, TN, ). By Theorem [3, the

solution ¢ belongs to CO(R, ¢° + H?(R)), with ;¢ € CO(R, H'(R)). Hence, there exists a positive
number & such that

/R _sin ((, 1) dz + Ey(t) + Ea(t) < &, (2.8)

for any ¢ € [0, T*N.). Since kx = 2 when N = 1, the bound in (Z38) is enough to complete the

? max
proof in dimension one.

Assume now that N =2 or N = 3 in case kxy = 3. When ¢ € HL (RY) and ¢' € H3(RY), the

sin

quantity F3(t) is differentiable on [0, TN, ) by statement (i44) in Theorem El Moreover, we can

) - max
use the Sine-Gordon equation and integrate by parts in order to obtain

Ej(t) = —% - D?sin(2¢)(x,t) 0, D*¢(x,t) dz

This provides the estimate

EL(t) < E3 )2|| D% sin(26)(-, (2.9)

Ol -
The chain rule then gives
1D sin(2)]| .2 < 21 D?@l|2 + 4] VoI|Zs-
Combining the Sobolev embedding theorem and the bound in (Z8) is enough to obtain
HD2 sin(2¢) HL2 < K(52 + 522),

where K refers, here as in the sequel, to a universal constant. In view of (29]), there exists a
positive number £3 such that

E3(t) < &,
for any ¢t € [0,TXN ). By a standard density argument, this bounds remains true when ¢° €
H3 (RY) and ¢! € H?(RY). This concludes the proof of Step

Step 3. Continuity of the flow map on HZ (RN) x H'(RN) when 2 < N < 3.

s

More precisely, we fix two initial conditions (¢ = f + ¢°, ¢!), with f € HX(RY) and ¢" €

H?(R). We derive from Theorem [J the existence and uniqueness of a corresponding solution
¢ = f + ¢ to the Sine-Gordon equation, with ¢ € CO(R, H?(R")) and d;p € CO(R, H'(RY)).
Given any positive number 7T, our goal is to establish that

max (@2, (6n (1), 6(,1)) + (|81 (,8) = A0(, )] 1) = 0, (2.10)

te[-T,T)

for any sequence of solutions ¢, to the Sine-Gordon equation corresponding to initial data
(80, 0L) € HE (RN) x HY(RY) such that

sin
162 — ¢l + 6% — &' — 0, (2.11)

as n — oQ.

In order to establish this statement, we take a sequence of initial conditions (gbp [+ ep, gbp)
with (9, gbll,) € H*®(RY)2, such that

@0 — ¢ in H*(RY), and ¢, — ¢' in H'(RY), (2.12)
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as p — co. We denote by (51, = [+ ¢p the corresponding solutions to the Sine-Gordon equa-
tion. By Steps [l and 2 they belong to CO(R, f + H3(RY)), with 8,6, € CO(R, H?(RY)). As a

consequence of the Sine-Gordon equation, the derivative 0y¢), is therefore in CO(R, H' (RM)).

On the other hand, we deduce from the proof of Proposition 2.I] that there exists a positive
number A, not depending on m and p, such that

H%bm - SEPHCO([fT,T],Hl) + ||8t¢§m - atQZBpHCO([—T,TLL?) < A(H@% - QBSHHl + ||¢~511n - @Z;;l)HLQ)a (2.13)
for any integers (m,p) € N2. Hence, it follows from (Z.I2)) that
H(ﬁpHCO([—T,TLHl) + Hat(gp”co([fT,T],L% <A, (2.14)

where A refers, here as in the sequel, to a further positive number not depending on p.

We next prove that (3p)pen and (9;¢,)pen are Cauchy sequences in CO([—T, T, H?), respectively
CO([-T,T], H"). We first establish their boundedness by arguing as in Step Bl We introduce the
quantities

By0 =5 | (10d(@ 0 + D%y (x,0)7) do.

which are well-defined and of class C! on R in view of the differentiability properties of the
functions ¢,. As in Step [2, we compute

B0 = o [ | cos26,)(V 3096, ) < 2ATo( Dl S (0.

In view of (2I4), this inequality guarantees that the quantity F¥ is bounded on [T, T'] uniformly
with respect to the integer p. In turn, this proves that the sequences (DQQZ;p)peN and ((9thz~5p)n€N
are bounded in C°([-T,T],L?). Combining (2I3) with the Sobolev embedding theorem, we
conclude that

HatV&pHCO([_T,TLLz) + ”D2<5p”co([—T,T},L2) + qugp”co([—T,T},LG) <A (2.15)

Given two integers (m,p) € N2, we next introduce the difference z := &m — qu = Om — Pp, and
we consider the quantity

1
SEs(t) = 5 /RN (|8tVz(x,t)|2 + |D2z(x,t)|2> dz,

which is well-defined and of class C' on R. Since the difference z is solution to the wave equation
Dz — Az = —o sin(2) cos(dpm + ),

we obtain by integrating by parts that

SE)(t) = —O'/ (V(sin(2) cos (P + @,)),@V@RN.

RN

This provides the estimate

SE3(t) < 0B2()% (IV(, &)z + Isin((, ) s (IVSm (-, s + IV S5, Dlz6) ).

which we bound by
1 ~ ~ ~ ~ 2 _ ~ ~ ~ 1
SE(t) < ASE ()2 ([ @m — @pllan + 1dm — dpllz2)® (1 + 16 — Eplla + 16m, — Spll22)°,
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in view of (213)), (ZI5]) and the inequalities

Isin(z( )1z < [sin(z(, )2 < 2(, D]

Finally, we are led to
6F5(t) < A(6E5(0 50— BL_dN12)3 (14]¢% — @0 5L _dl1.2)3), (2.16
2( ) = 2( )+(||g0m SDpHHl_{_HQSm gbp”LQ) ( +||80m gpp”Hl_}—Hgbm ¢p||L2) ) ( : )

for any t € [~T,T]. Invoking (ZI3), this shows that (Z,)pen and (J;d,)pen are Cauchy se-
quences in CO([~T,T], H?), respectively CO([~T,T], H'). Since their limits in C°([-T,T], H')
and CO([~T,T), L?) are equal to ¢, respectively d;¢, by the continuity of the flow in these spaces,
we conclude that

HSEP - SDHCO([fT,T},HQ) + Hat(l;p - aIEQSHCO([—T,T],Hl) — 0, (2'17)

as p — 0.

With this density property at hand, we are able to establish the continuity of the flow. We
argue as in the proof of ([ZI7). Coming back to ([2.II]), we find functions f, € HZ(RY) and
2 € H?(RY) such that ¢! = f, + ¢, and

Bin (s 1) + lom = llmz < Kdgin (67, %), (2.18)

for a universal constant K. Here, we have set, as above, ¢ = f +". Given any fixed integer n,

we introduce initial conditions (~9L,p = fn+ @271{), qgrll’p), with (@27]), qgrll,p) € H>®(RM)2, such that

@, — oo in H*(RY), and &}W — ¢L in HY(RY), (2.19)

as p — oo. We denote by q;n,p = fn + @n,p the corresponding solutions to the Sine-Gordon
equation. They belong to CO(R, f,, + H3(RY)), with O;¢n, € COR, H*(RY)) and Oyudn, €
CO(R, HY(RY)), and we also derive from (ZIT) that

HSEn,p - QD"HCO([fT,T},HQ) + ||8t¢§n,p - athnHCO([fT,T],Hl) —0, (2-20)

as p — 0o.
Going back to (23]), we next have

HSEn,p_prHCO([,T,TLHl)+||at¢~5n,p_aﬂl;pHCO([fT,T},L?) < A(d;in(~9L,p’q;2)+”¢;711,p_¢§;)”[/2)’ (2-21)

where the positive number A depends, here as in the sequel, neither on n, nor on p. As for (Z.14)),
this yields 3
H%vpuco([fT,T],Hl) H10ebnplleo-r1),L2) < A,

and we can derive as in the proof of (2.I5) that
106V bn.pll o119, 12) + 1D*Gnplleoor,1,r2) + IV dnplleo—r,1,00) < A

We then follow the lines of the proof of (2.I6]). Setting z, = gz;mp — <;~5p and

1
85(0) =5 [ (1093 0F + D560 da,

we compute

S0 < 9803 (IVDllin + s ) )
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so that, by (2:21)),

SEL(t) <OB(0)* (W — Vflie + lIsin(fo — )
90 1) = VB )z + [ mp(o0) = B 1) ).
In view of ([2I8) and (2.2I]), this provides the estimate
HD2 ~nvP_D2¢)PHCO([—T,T],H1) + H@Vq;n,p - altv‘ng)HC‘)([fT,TLLQ)
<A( (69, 6°) + d2n(B0, 0) + 9L — Bl ) * (2.22)
X (14 (80, 6°) + 2 (62, 0) + 9L, — Bhllann) .

In view of [212)), 21I7), 21I9) and ([2:20)), we can take the limit p — oo in ([22]]) and [222) in

order to write
H% - SDHCO([fT,T],HQ) + 110s6n = Oedlleo(—r,1, 11
2
< A2 (D05 0°) + lon — & 1) (14 din(ens 0°) + llon — @'l ) ®.

The convergence in (2.I0) finally results from (ZI1]), (2.I8]) and the identity ¢, — ¢ = f, — f +
wn — . This concludes the proofs of Step Bland of Theorem @l O

W=

3 The Cauchy problem for the Landau-Lifshitz equation

In this section, the parameters A\; and A3 are fixed non-negative numbers.

3.1 Density in the spaces £F(RY)

The proof of Theorem [ below relies on a compactness argument, which requires the density of
smooth functions in the sets E¥(RY). Recall that these sets are equal to Z*(RM,S?) for any
integer k > 1, where the vector spaces Z*(RY) are defined as in (I8). In particular, the sets
EF(RN) are complete metric spaces for the distance corresponding to the Z¥-norm. Using this
norm, we can generalize [9, Lemma A.1| to arbitrary dimensions in order to check the density of
smooth functions.

Lemma 3.1. Let k € N, with k > % Given any function m € E¥(RN), there exists a sequence
of smooth functions m, € ERYN), with Vm,, € H*(RYN), such that the differences m, —m are
in HE(RN), and satisfy

mp —m — 0 in HYRY),

as n — 0o. In particular, we have
|, — ml|zx — 0.

Remark 3.1. This density result is not necessarily true when k£ < % (see e.g. [26, Section 4] for
a discussion about this claim).

Proof. The proof is reminiscent from the one of [9, Lemma A.1|, which relies on standard argu-
ments introduced in [26]. For the sake of completeness, we recall the following details.
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We consider a function y € C* (RN ), with a compactly supported Fourier transform, and such
that |x| <1, X =1 on the unit ball B(0,1), and X = 0 outside the ball B(0,2). We set

pala) = [ Xtz =) m(y) dy

for any n € N* and € RY. Since x belongs to the Schwartz class, the functions p, are
well-defined and smooth on R, and their Fourier transforms are equal to

i =5(2)me).

As a consequence of this identity, their gradients s, belong to H>(R"), and the differences
in — m are in HE(RYN), with

i —m — 0 in HE(RY), (3.1)
as n — oo. However, the functions p, are not S?-valued, so that they do not belong to the
energy space &(RY).
In order to fill this gap, we deduce from (B]) and the Sobolev embedding theorem that

llal = 1] e =0,

as n — 0o. Therefore, the map m,, = p, /|| is well-defined for n large enough, and it satisfies
the conclusions of Lemma B.11 O

3.2 Proof of Proposition [

Let T be a fixed positive number. Concerning the conservation of the Landau-Lifshitz energy, it
follows from the smoothness assumptions on the solution m that the function EﬁL is of class C!
on [0,7], and that its time derivative is equal to

B0 = [

<8tm, —Am + A\imier + A3m363> (x,t) dx.
RN R3

In view of (LLJ), this expression identically vanishes, so that the Landau-Lifshitz energy is indeed
conserved along the flow.

We now turn to the proof of (2I]). Combining the assumptions in Proposition [I] with the Moser
estimates in Lemma [B.1l we check that the second order derivative dym is well-defined as a
function of C°([0, 7], H*=2(RY)). In view of (20, the energies Ef, are of class C! on [0, 7], and
we can integrate by parts in order to obtain the formula

B 0= Y /R (@m0 (Bum + A%m — (0 4+ x5) (Amrer + Amges)
ol -2 (3.2)

+ A3 (m161 + mgeg)) >R3 (z,t)dz,
for any ¢ € [0,T]. On the other hand, we derive from (LI the identity

Oym + A’m — ()\1 + )\3) (Amlel + Amgeg) + A3 (m161 + m363) = F(m), (33)
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where we have set

F(m) = Z (61 (2(<9@m, 8jm>R38jm - |8Jm|281m) - 2(%» ((&m, 8jm>R3m))

1<i,j<N
+ A\ < div ((mg —2m3)Vm + (mim — m3e1 + mimge3)Vmy + (mimse; — mgm — miez)Vms)
+Vmy - (miVm — mVmy) + Vmg - (mVmg — mgVm) + mgs|Vm|?es
+ (m1Vm3 — m3Vm1) . (Vm163 — Vmgel) + Alm% (m161 — m))

+ )\3<div ((m% — 2m§)Vm + (mymges —mim — mgel)le + (msm — m%eg + mlmgel)Vmg)
+ Vmg - (m3Vm — meg) +Vmyq - (me1 — m1Vm) + m1|Vm|e;
+ (m1Vm3 — m3Vm1) . (Vm163 — Vmgel) + Agmg (mgeg — m))
+ A3 <(m% + m3)m + mimges + m§m161) :
(3.4)

In order to derive this expression, we have used the pointwise identities
(m, (%m)Rg = <m, 8iim>R3 + |8Zm|2 = <m, (9iijm>R3 + 2<a¢m, (%-m)Rg + (8jm, 8iim>R3 =0,

which hold for any 1 < i,7 < N, due to the property that m is valued into the sphere S?.
Combining (32)) with (33) and ([34]), we obtain

B =Y / ataam 8°F (m )> (z,1) dz, (3.5)

|oo|=£—2

for any ¢ € [0,7]. In order to establish the bound in (2I]), we need to control the derivatives
0% F(m) with respect to the various terms in the quantity EEL by applying the Leibniz formula
and the Moser estimates in Lemma [B.l We face the difficulty that the derivative 9¢F(m)
contains partial derivatives of order £ + 1 of the function m, which cannot be a priori controlled
by the quantity EfL.

In order to by-pass this difficulty, we decompose the derivative 9% F'(m) as
09F(m) =G%m) —2 Y 090, ((0im, dym)pa)m, (3.6)
1<i,j<N

where the function G“(m) satisfies

G (M), )|z < Cr(L+ [[ma ()| Zoe + [lma( )| Toe + VM 0)[[ 1) /000, (3.7)

for any t € [0,T]. Inequality ([B.7) is a consequence of the Leibniz formula and the Moser
estimates in Lemma [B.Il The use of theses estimates is allowed by the uniform boundedness
of the gradient Vm, which results from the Sobolev embedding theorem and the assumption
k> N/2+1.

We then introduce the remaining term of the decomposition of 9% F(m) into (3.5, and integrate
by parts in order to write

/R i <atagm,agaij(<aim,ajm>R3)m>R3
= —/ 920; ((0im, 9;m)ps) <<(9t(9 Oym, m) s + (0105 m, dym)
RN

RS)?
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for any 1 <4,j < N. Invoking once again the Leibniz formula and Lemma [B.1l we directly check
that

< C|[Vm( )|~ Z0L (). (3.9)

/]RN (8§8j(<(9im, d;m)gs) <(9t8§‘m,8im>R3)(x,t) dx

On the other hand, we can invoke the Landau-Lifshitz equation and the Leibniz formula in order
to write

8?(9]' (<8Zm, ajm>R3) <6t6§‘* m, m>R3

= — Z (CMB >3§GJ(<BZm, 8jm>R3) <3§m X 8(;*7[3 (Am — )\1m1€1 — A3m3€3)7m>R3,
BLa*

where a;}* = 090;. For 8 = 0, the quantity in the right-hand side of this formula vanishes. This
cancellation is the key point in order to infer again from Lemma [B.1] that

'/]RN (8§8J((8im,8jm>R3) <(9t8§‘*m,m>R3>(x,t) dx
<CrlVm(, Oz (IVm(t)l|zee + lma ()l zee + s (- t)l|zee ) EL(0)-

We finally gather this estimate with (B.3), (37), (B.8) and (B.9) in order to derive (2I)). This
completes the proof of Proposition [ O

3.3 Proof of Proposition

We first compute the equation
du=—vx (Au—J(u)) —ux (Av—J(v)), (3.10)

where we have set J(u) := A\uje; + A\gusges and J(v) := Ajvie; + Azvses. Under the assumptions
of Proposition B the time derivative d;u lies in C°([0, T], L2(RY)), so that the function u — u®
belongs to the space C1([0, 7], L*(RY)). Since u{ and uJ are in L2(RY), the quantity ¢¥; is well-
defined and of class C! on [0,7]. When 1 < ¢ < k — 1, it similarly follows from the smoothness
assumptions in Proposition Bl that the quantities foL are well-defined and of class C* on [0,7].
We now split the proof of their control into three cases according to the value of /.

Case 1. ¢/ =0.

In view of (22 and (B.I0]), we obtain after integrating by parts,

N
[etL]'(t) = /RN <Z (O5u = Ojus e2,v X ju +u X Djv) gy
=1

+ (u—udes, v x J(u) +u x J(v)>R3)(x,t) dx,

for any ¢ € [0,7]. The estimate in (23] is then a consequence of the Holder inequality and the
fact that |v] < 1.

Case 2. (= 1.

We similarly derive from the definition of the function inL that

e - |

RN

N
(— (Opu, Auyp, + Z (u x 00 + v x Oy, O (u x O;v + v X 8¢U)>R3>(x,t) dx.
i=1
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In view of (BI0) and after some integration by parts, the first term in the right-hand side of this
formula writes as

N
— /RN <8tu, Au>R3 (x,t)de = — Z /]RN <u X O;v + v X 8¢U,3¢AU>R3 (z,t)dx + T (1),
=1

where we have set
N
~1 -
Ji(t) = Z - (D7u, 050 x J(u) +v % 0 J (u) +u x 8;J (v)) s (@, 1) da.

Therefore, we have

N

el =0+ /

{(ux Ov+ v x Ogu, O (ux v+ v x du) — 8¢AU>R3> (x,t)dz. (3.11)
i=1 /RY

At this stage, we have to compute the time derivative in the right-hand side of (B.11]). We first
check that the function v is solution to the equation

o =—-vx (Av—J()) — %u x (Au— J(u)),
In view of (B.J0) and using the identities
(u,v)gs = 0, and |v]* + i|u|2 =1, (3.12)
we are led to the formula
O(u x O;v + v X Qu) = O;Au — du (i(u, Au)gs + (v, AU>R3> — 0w ((u, Av)gs + (v, Au)gs)
+u ((al-v, Av)gs + i(@iu, Au)ps — (v, 0; Av)ps — i(u, al-Au)Rs)

+ v <(8¢v, Au)ps + (Ou, Av)gs — (u, 0; Av)ps — (v, al-Au)Rs) + 33 (u, v).
(3.13)

In this expression, the term depending on the anisotropic vectors J(u) and J(v) is given by

3(u,v) = — 8T (u) + du <i<u J(@)go + (0, J@)zs ) + v ({, T(@))go + (v, (1)) ps)

(= (B, T(0))rs — (05 T())rs + {0, T () + 7 o 05T ()

4
Oiu, J(v))rs + (u, 0;J (v))rs + (v, 8,~J(u)>R3>.

Ry

—~

+o ( — (v, J(w))ps —

This anisotropic term is not difficult to estimate, but we have to find a cancellation in the other
terms in order to prove the bound in (24)).

In this direction, we first differentiate the identities in (3:I2) in order to get

N
(u, Av)ps + (Au,v)ps = —2 Z(aju,BjU>R3,
j=1

and ) 1
(v, Av)ps + Z(u, Au)gs = —|Vo|? - Z|Vu|2.

30



Similarly, we have
N

(1, 0; Av)gs + (0;Au, v)ps = —2)  ((i5u, 0jv)ps + (D51, 0ijv)rs) — (Oivt, Av)ps — (Au, Oiv)ps,
7j=1

and

1
(v, 0 AU>R3+ (u, O Au)ps
_ _2z< 10, D) + <al u, Qju)ga ) — (O, Av)gs — L o, Az
J J ) 4 9
Introducing these identities into (3.I3)), we get

O(u X Ojv +v X Oju) = O;Au+ 2v Za ( v, 0ju)gs + (O;u, 0; ’U>R3) + i3 (u, v) + ik (u, v),

(3.14)
where we have set

N
1
js(u,v) ::(\VU‘Z + Z’Vu‘Z) Oiu+ 2 Z@ju, 0;v)gs O;v
j=1

+2u <<3 v, Av)gs + = (8 w, Au)ps + Z ( D;v, 0jv)ps + — : <3Z]u 0; u>R3)>

7j=1

At this point, we come back to ([BIIl). We use the cancellation of the terms 9;Aw in (311
and ([BI4), and integrate by parts in order to obtain

N
[Q‘EiL]/(t) =J1(t) + Z/N (ux 9w +v x O, j3(u,v) +iz(u,v))(z,t) do

_ 222/ ((0ju x O;v,v)gs + (u X 00, v)gs + (u X v, D;V)gs) X (3.15)

7=11i=1

x ((0v, Oju)ps + (8,~u,3jv>R3)) (x,t)dx.

With this formula at hand, we can prove the bound in (24)). Indeed, we first check that the last
terms in (B.I5) satisfy

[

where K refers, here as in the sequel, to a universal constant. Coming back to the definitions of
the functions j3(u,v) and ji(u,v) and using the inequalities |u| < 2 and |v| < 1, we check that

((0ju x By, v)gs+{u x v, v)ps + (u x O;v,0jv)gs) ((Oiv, Dju)gs + (Dyu, Ojv)gs)

<K[[Vol|geo [[Vul| 2 <HWHL<>° IVullzz + (1Voll7ee + 0]l =) IIuHLoo>,

32(u, )|z < K ([Vullz2 + Vol 2 lullze),
and

13 (u, v)ll 2 < K((HWH%w +Vuli) [Vullzz + (IVolle [0l g2 + [Vl oo [lull 2) HUHLw)-
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This provides the estimate
/]RN {ux O + v x Oz, j3(u, v) +i5(u,v)) < K(||Vullgz + |V g2 [Jul| g ) x
< (14 Vel + IVule) 19l 2 + (1900122 + 90l ol + [l [l z2) ulz=).
Finally, we bound the quantity Ji(t) by
31 )] < (IVuC, )2 + Vot O)llzz [ul, )l ) [[Vul, )]l 22
Gathering all these estimates of ([3.15]), and recalling that

IVullpoe + [Volpee < K([Vmlzee +[[Vin]|ze2),

and
lull s + 0l < K(llmll 5 + 10l 5)
for 1 < 7 <2, we obtain (24)).

Case 3. 2</¢<k-—1.

The proof is similar to the case £ = 1. We now integrate by parts in order to obtain the formula

Z / 8,58 u, 0y 8ttu + A% — (A + Ag)(Aulel + Augeg)
|a|=0-2

+ A1 A3 (U161 + U3€3)) >R3 (z,t)dz,
for any ¢ € [0,7]. Coming back to (B3], (B:4)) and (B.06), we obtain
[eLe]'(6) = 31(1) +35(1), (3.16)

where we have set

W)= > / (0,080, G*(11) — G*(m) s (2, 1) da,
|a|=0-2
and
jg(t) =2 / <8t8§‘u, 8?81]((81771, @m)Ra)m—aﬁ@m (<8Z’I’7”L, ajm>R3)ﬁ”L>R3 (m, t)dx
la|=t—2 1<ij<N /RY

We now deal with the quantity Jg, which is the more difficult term to control in order to derive
the bound in (25). Expressing the integrand in the formula for J5(¢) in terms of the functions u
and v, we get

3?8@‘ (<3ZT7L, 8jTh>R3)T~n — 8?8@‘ ((8Z~m,8jm>Rs)m
:6;)‘827- ((@u, (9jv>R3)v + agaij ((aiv, aju>R3)v

1
+ 8:?(9@]' (<8iv, 8jU>R3)u + 185‘8” ((alu, 8ju>R3)u.

Concerning the last two terms in this identity, we can rely on the Moser estimates in Lemma [B.1]
in order to obtain

‘/RN (0,02, 02035 (D30, 050) s ) g | < CIV0l| o V0l e [l poo 05050l 12,
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and

/RN (005, 05035 (i, Oju)pa )u) s | < ClIVullzee [ Vull ge [lull oo [|0:07 ull 2,

where C refers, here as in the sequel, to a positive number depending only on k.

The estimates of the two other terms follow from integrating by parts and using (3.10]). Indeed,
this provides the identity

/RN <8t8§u,8§8,~j (<Blu, 8jU>R3)U>R3

= /RN 950; ((O5u, Bjv)gs) (950 (u x (Av—J(v)) + v X (Au— J(u))),v)gs.

We then directly derive the bound

/RN 920; ((Oiu, 0jv)gs) (950 (u x (Av — J(v))),v>R3

X (190l je-2 + 11701l ge) lallzoe + V0ol e + e ).

< C(llulloelIVoll e + V0]l oo llull )

On the other hand, we can invoke the Leibniz formula in order to write

(050; (v x (Au— J(w))), v)gs = Y (2) (880 x 08P (Au— J(w)), v) s,

BLa*

with 98" = 029;, as before. As in the proof of Proposition I, we again observe a cancellation for
£ = 0. This is enough to guarantee that

'/]RN 920; ((Diu, 0jv)gs) (950 (v x (Au — J(u))),v>R3

X (190l 02 + 190 ge) lallzoe + 190l lull e + o).

< C(llullze IVl e + IVl lull gre) x

Collecting all these estimates leads to the inequality

|35(t)] < C((HVU(-J)IILOO IVul, )l ge + IV0( )llzoe VO )] ge) s )l zee 10l 8)|| e
+ ([luC )l e (IVOC O ez + V0O gge) + V0 e [l )] e + [l )] e ) %
< ([luC Ol VO O e + 11V ()| 2o ”U('?t)HHl))-

(3.17)

We next turn to the quantity ’J‘i, which we simply bound by

A< S adut b . |62 ) — GXm) ()] o (3.18)

la|<t-2

Coming back to the definition of the nonlinearity G* and using as before the Moser estimates in
Lemma [B.I], we can compute

|G () — G (m)|| .. SC((”UHHZ IVl oo [Vull e + [IV0llzoe [Vl e) fJullzoe
+ (L IVullfee + [V0llFoo) lull gre + ez (0]l gres llullzoe + ul gre—s)
+0e=2((lvillzz + llvslize) lullzee + [luallzz + HU3HL2)-

Combining with (B.16), (B17) and ([BI8]), we obtain (25]). This ends the proof of Proposition 21
O
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3.4 Proof of Theorem

The construction of the solutions splits into three parts. We first consider an initial datum
m® € ERY), with Vm® € H>®(RY), and we construct the unique corresponding maximal
solution m to (LL). We next establish that the corresponding flow map is well-defined and
locally Lipschitz continuous from £*¥(RY) to spaces of the form C°([0,T], £¥¥—1(RN)). Here,
the notation ky refers to the smallest integer such that ky > N/2 + 1. In particular, we
are allowed to extend uniquely the flow to the whole set £~ (R). We finally check that the
corresponding solutions to (LI) satisfy all the statements in Theorem

Step 1. Construction of smooth solutions to (LLl).

Let m® € E(RY), with Vm® € H®(RY). Note that the existence of such initial conditions is a
direct consequence of Lemma 311

In order to construct a solution m corresponding to this initial datum, we rely on the bounds
in Proposition [l Due to the Sobolev embedding theorem, the quantity E’E?j corresponding to a
smooth enough solution m : RV x [0, T}] — S? satisfies the differential inequality

(ST < Cry (14 ZH(6)?) SHY (1),

for any t € [0,T,]. Here as in the sequel, the notation C}, refers to a positive number, depending
only on k. As a consequence, we obtain the estimate

SEY(0) %’

SN (t) < -, (3.19)
(14 277 (0)% — Sy (0)2 €2k ') 2
when N
1 14+ XFY(0)2
pe i = (LEEEOD),
2Cky

k
o7 (02

We next iterate this argument for any integer & > ky. Given a positive number 0 < T <
min{T,, 7"}, we similarly derive from Proposition [ that

[SL)' () < Gk (1+ 355 (1)) SF(8),

for any ¢ € [0,7"]. We then infer from (B.19]) that

¢ (1+ 2} (0)?) By (0)
YrL(t) < PN o kg 3G T (3.20)
1+ 377 (0)? = 57 (0)2 e i
In view of the definition of the quantity EfL, the functions m and Jym are uniformly bounded

in Z¥(RN), respectively H*=2(RY), on the time interval [0, T].

Arguing as in [30], we check that the a priori bounds in (3.19) and (3.20) remain available when
the equation is discretized according to a finite difference scheme. The existence and uniqueness of
discretized solutions follow from the standard theory of ordinary differential equations. Classical
weak compactness and local strong compactness results, as well as a standard diagonal argument,
provide the existence of a maximal solution m : RY x [0, Tiyax) — S? to (LIJ) with initial datum
m?. This solution m is in L>([0, T], Z¥(RN)), with dym € L>=([0,T], H*~2(R")), for any number
0 < T < Tpax and any integer k > ky. In particular, it is a smooth solution to (LIJ).

Note that its maximal time of existence Ti,.x does not depend on the integer k. This fol-

lows from (3.20), which guarantees that its maximal time of existence T¥,. as a solution in

34



L>([0,T), Z¥(RN)), with oym € L>([0,T), H*=2(RY)), for any 0 < T < TF

maxs 18 characterized
by the condition

if this maximal time is finite. As a consequence of this property, we obtain

Thax = T = Tnax,

max max
for any k > ky.

Note also that we are allowed to invoke again Proposition [l in order to prove the bound

Sk (1) < O 2k (0) efo (VMG ) o, (3.21)

for any 0 <t < Thax and any k > ky. Therefore, if the maximal time of existence Tiax is finite,
it satisfies the condition

Tmax
/ IV )3 dt = oo.
0

We finally turn to the question of the uniqueness of this solution. We fix an integer k > ky. Given
an initial condition m° € E(RYN), with Ving € H®(RY), we denote by mm : RY x [0, Tipax) — S?
a corresponding smooth solution to (LL). Set T, = min{Tmax,TmaX}. The solutions m and m
belong to C°([0, T%), EFNHL(RN)), with (0w, dym) € CO([0, T), H*¥~1(RN))2. Therefore, we are
allowed to invoke Proposition [2] in order to find a positive number C} for which the difference
u := m — m satisfies

_ = 3 _
[SFL(8) < Cr(1+ SEL(s) + SE0(5))” (ST () + [u( D)1 + [IVu3][72),
for any 0 <t < T. On the other hand, we infer from the Sobolev embedding theorem that
1) = u§ eaf < Ci &1 (1).

This is enough to obtain the bound

max Glﬁil(t) < Glﬁil(o) efg Cr (1+EEL(S)+EEL(S))SdS
t€[0,7) -

~ 3
+ (]2 + Vud]12,) <ef5 Cr (145F ()48 () ds _ 1),

for any 0 < T < T,. Here, the quantity ifL is defined with respect to the solution m. In view
of the definition of the quantity 6f£1> this provides the estimate

2 0 2
e (1900l + lu(-1) — i eal)

¢ Sk k 3
Sck(||vuo‘|?{kf2 + Hu?H%? + ||Ug||%2) efo Cr (1+ZLL(S)+ELL(S)) ds (3.22)
~ 3
e (o O (HEREOTEE) o ),
We conclude that the difference u identically vanishes on [0, T}) when m" = m°. This proves the
uniqueness of the solution.

Step 2. Unique extension of the flow map.
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Given an integer k > ky, we now consider an initial datum m® € £¥(RY). Lemma B.1] provides
the existence of a sequence of initial conditions m2 € £(RY), with Vm? € H>*(R"), such that
md —m® =0 in HYRY),
as n — 0o. Let my, be the corresponding smooth solutions to (LI constructed in Step [l above.
Combining this convergence with ([3.20]), we check that the quantities Efﬁl defined with respect
to the solutions m,, are bounded on the time intervals [0,7] for any 0 < T' < Tk , uniformly

with respect to n large enough. As a consequence of ([3.22]), the sequence (my,)nen is a Cauchy
sequence in CY([0, T], EF~L(RM)).

Let us denote by m its limit. Note first that this limit is independent on the choice of the sequence
(mY),en. Note also that it is an (at least) weak solution to (LLI) with initial datum m° due to
the Sobolev embedding theorem of H*~1(RY) into C°(RY). Actually, it is the unique solution
in CO([0, T, EF~1(RN)) to (LI with initial datum m°, which is a limit of smooth solutions
to (LL). Finally, since the quantities EIEEL are bounded on [0, T], uniformly with respect to n, so
is the quantity ¥F;. In particular, the function m belongs to L>([0,T],&*(RY)), with oym €
L>=([0,T], H*=2(R"Y)). Moreover, since k > N/2 + 1, it follows from the Sobolev embedding
theorem and standard interpolation arguments that

Vm, — Vm in C°([0,T] x RY),

as n — oQ.

Concerning the maximal time of existence of this solution, we denote by T* the supremum of the
positive times T' for which there exists a sequence of initial conditions m2 € £(RY), with Vm? €
H>(RY), such that the corresponding solutions m,, are well-defined in L>([0, T], £¥(RY)), with
Oymy, € L2([0,T), H*=2(RY)), and satisfy

m? — m®in EERY),  m, = minC°([0,T],*LRY)), and Vm, — VminC°([0, T]xRY),
(3.23)
as n — 00.

We first claim that the solution m in this statement is uniquely defined on the time interval
[0, TF). When TF < Tk~ , this follows from the previous construction. When T > Tk~ , we fix a
number 0 < 7' < T* and consider two sequences of smooth solutions m,, and m,,, which satisfy
the properties in ([3.:23)) for two possible solutions m and m. The solutions m,, and m,, satisfy
the bound in ([B2]]) on [0,7], and the left-hand side in this bound is uniformly bounded with
respect to n due to the convergences in ([3:23). As a consequence of ([322]), the sequences my,
and 7, own a common limit m = 7 in C°([0, T], ¥~ (RY)). This proves the uniqueness of the
solution m satisfying the properties in ([3.23]).

Our goal is now to establish that either T = oo, or
Tk
I ::/ V(e 0|2 dt = oo,
0

Note first that T* is well-defined and positive due to the inequality 7% > TEN . We now argue
by contradiction assuming that TF and the integral I¥ are finite. We again fix a number 0 <
T < TF, and consider a sequence of smooth solutions m,,, which satisfy the properties in (3.23)).
Invoking (3:21)) and (B.23)) as before, we check that the quantities EIE’EL are bounded on [0, 7] by a
positive number X, depending only on X¥; (0) and I¥. As a consequence of (3.19) and (3.20), we
can extend the solutions m,, on a time interval of the form [T, T+ 7], where the positive number
7. only depends on ¥,. Moreover, due to (8:22)), the sequence (m,)nen is a Cauchy sequence
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in CO([0, T + 7.], EF~1(RYN)), and we can check as before that it satisfies the properties in (3.23)
for a solution m, to ([Il), which is equal to m due to the previous unique determination of this
solution. Applying this argument to 7" = T — 7/2 leads to a contradiction with the definition
of the maximal time T*. Hence, either T, = oo, or the integral I¥ is infinite.

Note finally that, due to this characterization, the maximal time of existence T* does not depend
on the possible choice of the integer k. We denote by Ti,ax this maximal time in the sequel.

Step 3. Conclusion of the proof of Theorem [A

Let k > ky. Step 2 above provides the existence of a unique solution m : RN x [0, Tipay) — S?
to (LI) corresponding to an initial datum mP°, which is the limit (according to the properties
in ([323)) of smooth solutions to (LIL). This solution is in C°([0, Tinax), EFH(RY)). Its maximal
time of existence Tiax satisfies the statement (i7) in Theorem [l

Concerning statement (i), we consider a sequence of smooth solutions m,, converging to m on a
time interval [0,7], with 0 < T' < Tiax. We then combine as before (8:21I) and (B23)) in order
to check that the quantities Eif are bounded on [0, 7], uniformly with respect to n. Statement
(7) then follows from a standard weak compactness argument.

Statement (iv) is a direct consequence of the previous construction of the solution m, while the
conservation of the energy in (v) results from a standard density argument. This property is
indeed satisfied by smooth solutions in view of Proposition [l

Concerning the local Lipschitz continuity of the flow map in statement (iii), we fix a solution
m: RV x [0, Tinax) — S? with initial condition m° and a number 0 < T < Tiax. We set

S o= 24+ 541(0) (14 et (HITmeoln) ds),

where C}, is the constant in the right-hand side of (3:2I]). We notice that the inequality in (319
remains available (for smooth solutions) when ky is replaced by k for a possibly different positive
number C}, and we fix a positive number 75 such that

(ET - 1) GC’“Tk

1
(1+Er —1)2 = (Sp — 1)2e2C%m) 2

< ETa

for this further number C}%. Here, the number 73 is tailored such that, if the quantity ifL(O)
corresponding to a smooth solution m is less than X7 — 1, then the quantity SIEL(t) is bounded
by X7 on [0, 7).

We finally introduce a sequence of smooth solutions m,, : RV x [0,7] — S2, which satisfy the
properties in ([3:23). Due to ([8:2I]), we can also assume that the corresponding quantities EIEEL
satisfy the bound

We are now in position to establish the local Lipschitz continuity of the flow.

Given a positive number R, we take an initial datum m° € £(RY), with Vi’ € H*®(RY), such
that
[ —m| . < R,

and consider the corresponding smooth solution m : RN x [0, Tmax) — S?. For R small enough,
we have

SEL0) < Op — 1.
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In view of (B2I) (with ky replaced by k), we infer that Ty > 7k, and that the quantity XF; (¢)
is bounded by X7 on [0, 7%]. Invoking ([B:22]), we next find a positive number A, depending only
on k, T and Y7, such that

max (1) — 1 (- )l s < Agin® —ml s < ArR, (3.24)
t€[0,7k]

for any n € N. Taking the limit n — oo, this inequality remains true for the difference m — m.

As a consequence of the Sobolev embedding theorem and standard interpolation theory, we next

find two positive numbers A and «g, depending only on k, such that

max V(1) — V(- t)|| pee < ApgAJr RSk, (3.25)
t€ 3Tk

We finally come back to (3:2I]) in order to obtain

S(t) < CrSp(0)edo (HIVm8)IF oo +2ALATF ROEDLTF [Tm(.o5) oo +4AFATH RS0 ) s

)

for any t € [0, 7). For R small enough, we infer that

SR(t) < Sp—1, (3.26)

for any ¢ € [0, min{r, T'}].

When T > 73, we iterate this argument on the time interval [0,27;]. Since Y;(7%) is less than
Y7 —1 by 328), the maximal time of existence Tinax is more than 274, and the quantity ¥¥, (¢)
is bounded by Y7 on [0,27]. Estimates ([3.24]) (with m,, replaced by m) and ([B.25]) follow for
the same constants Ap, Ap and ai. For R small enough, we derive ([3.26]) on the time interval
[0, min{27y, T'}].

Arguing inductively, we conclude that there exists a positive number R such that, if
[|[m® = m°|| z» <R,

then the maximal time of existence Tmax of the solution m is larger than, or equal to 71", and we
have

max || (-,t) — m(-,t)| ge-1 < Ap|m® — mP|| -1

t€[0,7)
It only remains to apply a standard density argument in order to replace the smooth solution
m in this inequality by an arbitrary solution. The flow map is then well-defined and Lipschitz
continuous from the ball B(m°, R) of E¥(RN) towards C°([0, T], E¥~1(RY). This concludes the
proof of Theorem O

3.5 Proof of Corollary [l
Consider an initial datum (u°, ¢%) € NV¥(RY) and set
m? = (p’sin(¢"), p” cos(¢°),u’),

with p° := (1 — (u°)?)%/2. Assume first the existence of a solution (u,®) : RN x [0, Thax) —
(—1,1) x R to ([ALI) with initial datum (u°, #°), which satisfies the statements in Corollary [l
Let 0 < T < Tax be fixed. Since k — 1 > N/2, it follows from statement (iii) in Corollary [I]
and the Sobolev embedding theorem that u is continuous from [0,7] to C(RY). Moreover, we
claim that

T
n s, flu(-, )L (3.27)
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Indeed, due to the non-vanishing condition in (@), the number n” is less than or equal to 1.
Assume by contradiction that it is equal to 1. In this case, there exists a number 0 < t, < T
such that

[uls ta) || e = 1.

On the other hand, the function u(-,¢,) lies in H*~1(RY). By the Sobolev embedding theorem,
it converges to 0 at infinity. As a consequence, there exists a position z, € RY such that

(., )] = 1,

which contradicts the non-vanishing condition in ().
Set p:= (1 —u?)'/?, and
m = (psin(e), pcos(d), u).

Since n < 1, there exists a smooth function F : R — R such that F(z) = (1 — z2)'/? for any
|z| < nT. In particular, we can combine statement () in Corollary [ and inequality (B.I)) for this
function in order to prove that the map p is well-defined, bounded and continuous on RY x [0, 77,
with 9yp € L>=([0,T], H*2(RY)) and Vp € L>([0, T], H*~1(RY)). Applying Lemma [B.1] again,
and using Corollary B2} we deduce that the function m lies in L>([0,T], EF(RY)), with dym €
L>=([0,T], H*=2(R")). A direct computation then shows that this function is a weak solution
to (LI). As a consequence of the uniqueness property in Theorem [, it is the unique solution
to (LI) with initial datum m°. This provides the uniqueness of the function w, which is equal
to the third component mg by definition. Concerning the phase function ¢, we can combine
statement (ii7) in Corollary [Il and Corollary [A.] in order to prove that it is continuous on
RN x [0, T]. Moreover, it satisfies the identity

1

(1 —m3)}

on RV x [0, T]. Due to the continuity of the function m on R x [0, T], the continuous solutions
of this equation are unique up to a constant number in 7Z. Since ¢(-,0) = ¢°, this number is
uniquely determined, so that ¢ is also uniquely determined. In case of existence, the solution
(u, @) is therefore the unique hydrodynamical pair corresponding to the solution m to (LL) with
initial datum m° (as long as this hydrodynamical pair makes sense).

Concerning existence, we first check that m® is in £¥(R™). Indeed, since u® € H¥(RY) with
k > N/2, it follows as before from the non-vanishing condition |u°| < 1 that

n° = ||ul||p~ < 1. (3.28)

Arguing as above, this guarantees that the function m? is in £¥(RY). Theorem [ then provides
the existence of a unique solution m : RY x [0, Tiyax) — S? to (LI)) with initial datum m?°.

Set
Tmax 1= Sup {7 € [0, Trax) : |m3| <1 on RN x [0,7]}.

We deduce from statement (7i7) in Theorem [B and the Sobolev embedding theorem that the
function mj is continuous from [0, Tiax) to CP(RY). Since m$ = P, it follows from (28] that
Tmax 1S a positive number. Similarly, we show that

i [ma (D) = [[ma( Tz = 1, (3.29)

when Tnax < Thax-
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Let 0 < T' < Tax. Arguing as for (327, we obtain

T
= Imax "t oo < 1. 330
t€[0,T ng( )”L ( )

Set p == (1 — mg)l/ 2. As before, the function 1/p is well-defined, bounded and continuous on
RN x [0,7T], with 9,(1/p) € L*([0,T], H*"2(RY)) and V(1/p) € L*=([0,T], H*(RY)). As a
consequence, we can lift the solution m as

m = (p sin(¢), pcos(¢), m3),

where the phase function ¢ is uniquely defined by the condition ¢(-,0) = ¢°, and continuous
from RY x [0, Timayx) to R. Since

sin(@) = L, gp = VIHC g vy = (MiVIe

p p p

we also observe that sin(¢), d;¢ and V¢ lie in L>([0, T], L>(RN)), L>([0,T], H*2(RY)), re-
spectively L>([0,T], H*=1(RN)) for any 0 < T < Tiax. In particular, the function ¢ belongs to
L>=([0,T), HE (RY)).
At this stage, we set u := m3 on R x [0, Tinax). Then, the pair (u, ¢) lies in L>(]0, T], N VF(RY)),
with (Osu, 9;0) € L>([0,T], H*2(RY)), for any 0 < T' < Tmax. A simple computation shows
that it is a strong solution to (HLIJ)) with initial datum (u®,#°). Statements (iv) and (v) in
Corollary [ are then direct consequences of the same statements in Theorem [

We also derive from statement (#i7) in Theorem [0l that the functions psin(¢) and u are in
co([0, 7], H*=1(RY)), while the function pcos(¢) lies in C°([0, T],CY(RY)), with V(pcos(¢)) €
CO([0,T], H*—2(R")). Combining ([3.30) with Lemma [B.I] we check that the function 1/p is
continuous from [0, 7] to CJ(RY), with V(1/p) € C°([0,T], H*~2(R")). By Lemma [B.1] again,
the function sin(¢) is in C°([0,T], H*~1(RY)), therefore in C°([0, T],CY(RY)), while cos(¢) lies
in CO([0, 7], C)(RY)), with V cos(¢) € C°([0,T], H*=2(R¥)). Finally, we rely on the identities

V¢ = cos(¢)V (sin(¢)) — sin(¢)V (cos(¢)), (3.31)
and
sin (6(+12) = 6 1)) = (sin (6(12)) = sin (4(-, 1)) ) cos (6(-, 1))

(3.32)
+ sin (¢(-, 1)) (cos (&(-,t1)) — cos (¢(, tg))),

in order to conclude that the phase ¢ belongs to C°([0,T], H*"*(RN)). Hence, the flow map

sin
(u®, ¢°) = (u, ¢) is well-defined from NVF¥(RYN) to CO([0, T], NVF~1(RY)). In order to complete
the proof of statement (iii), it remains to address the continuity of this map.

Consider initial data (u,¢%) € NVF(RM) such that

ud — u° in H*(RY), and ¢0 — ¢° in HE

sn(RY), (3.33)
as n — oo. Applying Corollary [B.2] provides

sin(¢) — ¢%) — 0 in H¥RY),
so that by the Sobolev embedding theorem,

sin(¢) — ¢%) — 0 in CP(RY).
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Hence, there exists an integer ¢ such that
¢0 — ¢° — tr in CO(RM).
In particular, we have
sin(@)) — (=1)%sin(¢”) in CP(RY), and cos(¢?) = (—1)cos(¢°) in CO(RY).
Combining (8:33) with the identity
(—1)"sin(¢}) — sin(¢”) = (=1)" sin(¢y, — ¢°) cos(¢) + sin(¢”) ((=1)" cos(¢y, — ¢°) = 1),
we are led to
sin(@?) — (=1)!sin(¢®) in H*(RY), and Vcos(¢?) = (—1)*Vcos(¢?) in HFLHRY).
Similarly, we infer from (3.33) and Lemma [B.1] that
P2 —=p% inCYRYN) and Vp? — Vp' in HFY(RY).
Setting
miy = ((=1) ) sin(éy), (=1)pp cos(9), uy),
with p0 := (1 — (u?)?)Y/2, we deduce from Lemma [B.1] again that
md —m® in EF(RY),
as n — 0o.

We now rely on statement (i7i) in Theorem Bl For n large enough, this statement guarantees
that the solutions m,, to (LIJ) with initial data mQ are well-defined on the time interval [0, T,
and that they satisfy the convergences

tIeIan% |mn (- 1) — m(-,t)HZ,c_1 — 0, (3.34)

as n — oo. By uniqueness, the solutions (uy,¢,) to ([ALL) with initial data (u,¢0) are well-
defined on [0, 7]. Moreover, we have

Mp = (( 1) prsin(éy), (— ) P c0s(¢n), n),

where we have set p, := (1 — (u,)?)"/2. Arguing as before, we derive from (334) that
U, = u  in CO([0,T], H* "2 (RY)), (=1)"sin(¢y,) — sin(¢) in C°([0, T], H*1(RY)),
as well as
(1) cos(¢n) — cos(@)  in C°((0, 7], C(RY)),
and
(=1)*V cos(¢pn) — Vcos(¢) in C°([0,T], H*2(RY)).
Invoking analogues of ([B.31]) and (3.32]), we conclude that

¢n — ¢ in CO(0,T], HE1(RM)).

Sin
This completes the proof of the continuity of the flow map.

We finally turn to the characterization of the maximal time of existence. Due to the previous
correspondence between the solutions to (LIl and (HLL), the maximal time of existence of the
solution (u, ¢) to (HLL) is equal to Tmax. When Tmax < Tiax, formula ([3:29) provides the second
condition of statement (i7) in Corollary Il Otherwise, the maximal time of existence of (u ¢)
is equal to Thax, and the condition in Theorem [ then translates into the first condition of
statement (i7) in Corollary [Il This concludes the proof of this statement, and of Corollary [l O
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4 The derivation of the Sine-Gordon equation

4.1 Proof of Proposition [3
Set p. := 1 — £2U2. With this notation at hand, we can rewrite ([ILL.) as

0Uz = pe AP, 4 Vp. - VO, — Zp, sin(20,),

(4.1)
O = U. — & AU, — VU, - V(L) = 22U, |V@ |2 — 062U sin?(®.),
while the energy of order £ is given by
EYU., ®.) Z / |vaaU 12+ 00U + pe [VOOD|? + op. |0 sin(P )|2). (4.2)

|\£1

In view of ([&I)), the time derivatives 9;U. and 9;®. belong to C°([0, T], H*+1(R")), when the
pair (Us, ®.) lies in C°([0, T], NVFT3(RN)). For 2 < ¢ < k+1, the energy E£(U., ®.) is therefore
of class C! on [0,T]. In view of (), its time derivative can be decomposed as

5
[Ef(UE, ‘be)]/(t) = sz(t)a
j=1
where we set
T, = / 82U, 8° <,0€ A®, + Vp. - Vb, — 5;)5 sin(26, ))

|o|=£—-1

T,:= Y / pe O, aa(UE - —AU - 6—VU v( ) ~ 20, |V, [? - 02U, sin2(<1>5)),

|a|=¢
Is: —|Zg/ —BO‘U 80‘ pEAfb +Vp.- Vo, — 2p5 sin(2<I>€)),
1y =0 Z / pe 0% (sin(P;)) x

|o|=0—1

2 2
X (9‘;(005((1)5) (U. - ;—AUs - %VUE . v(pi) _ 20 |VS.[? — 022U sin2(<1>5))),
€

£

and E

2 [ 0@ (905 - S0V + o sin(e ).

|a|=¢—1 Pe

In order to establish (28]), we now bound all these quantities. For the sake of simplicity, we drop,
here as in the sequel, the dependence on ¢ € [0, 7.

We first collect the estimates for the functions Ug, ®. and p. that we are using for controlling
the quantities Z;. Concerning the function p., we infer from ([27)) and direct computations the
uniform estimates

1 1
5P S L Vol <22 Uellie VUi, and [9(-)| < 8200l 9T lloe,
&€
(4.3)
as well as 1
a2 pe| oo + Hdz(p—) HLM < CE(| VUL 200 + [Ue | oo |42 UL | oo ). (4.4)
=
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Here as in the sequel, the notation d?f stands for the second differential of the function f, while
C refers to a positive number, possibly different from line to line, and depending on k& and N,
but not on ¢ and o. Applying Lemma [B.Il with F(z) =1 — z, and using (27]), we also get

105 pell e < CE|Uel oo Ul (4.5)

for any 1 < |a| = m < k + 1. Similarly, we can find a smooth function G € C§°(R), with
G(z) =1/(1 — z) for || < 1/2, so that, by 21), 1/p. = G(eU.). Applying again Lemma [B.1]

we are led to
forany 1 <|a|=m <k+1.
Coming back to the definition of ¥¥*1 we deduce from (2] that

fe' 1 2
9 ()]0 < O MLl WU (4.6)

1
2

1
|05U 112 < (25813, 0o VUL 1 < (2843, (4.7)

as well as ) ) )
o2 ||0g sin(Pe)|| 12 < 2(2’;“)5, and |09V, |r2 < 2(2’;“)5, (4.8)

for any 0 < |a| < k. It then follows from Corollary [B.3] that
.1 , 1
min {2, 1} |09V cos(Pe )| 12 < C(| sin(®e)|| o + V|| o) (Zerl) 2 (4.9)

when 0 < |a| < k.
We first estimate the quantity Zs. In view of (A3]), we have

|Z5| < 422||Ue| oo 10Uz || L~ EE.

Since
10Ue || e < AR Lo + 282 |Us || oo [[VUe || oo [|[ Ve || oo + 0| sin(De)]| oo,

by (£1) and (43]), this is bounded by

1T5] < 82Uz (AR v + 2|z oe VU] o [0z + o] sin(@e) ) SEH. (4.10)

We next split the quantity Z; as

3
1, = Z Ly m,
m=1

Tipi= ), /N O2U. (p: 02 AD. + Vp. - 92V, + 92Vp. - VI.),
R

|o|=£—-1
Iyo:= Z / 97 Ue < Z <a> 85/)6 a:?HBA(I)E + Z <a> afvpe : agfﬁv@e)’
jaj=—17RY 1<iige-t VP 1<z VP
BLla B<a
Ti3:=— % Z /N 02U, 83 (p- sin(29,)).
laf=t—1"R

The quantity Z; ; contains the higher order derivatives. It cannot be estimated according to (28]
without taking into account cancellations with the similar parts Zo 1 and Z3; of the quantities
T5, respectively Z3. Hence, we postpone the analysis of Z; 1, and first deal with Z; 5. Indeed,
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we can bound directly this term by combining the estimates in Lemma [B.1] and Corollary [B.1l

with (£3]), ([@4) and (£5) in order to get
| Z12] < CNUN gre—s (IV pellzoe IV @ell e + d* el oo [V el gre—s + lld? el oo IV el o)

< C (|0l (IVUellzoe + @%@l + |20 |1) + [ VU|I o ) L.
(4.11)

We next control Z; 3 by taking advantage of a cancellation with the quantity Z4. As before, we
decompose this quantity as
3
1y = Z Zym,
m=1

with

141 =0 Z / peaa SlIl )) a:?(COS(‘I)E)Ue),

|a|=0—1
Typ:i=— Z / pe 02 (sin(®.)) O (iAU8 cos(fbe)) ,
lo=—1 Pe
Tyg:i=— Z . 80‘ sm 80‘((:08((1)5) (VU5 . V(%) + UEIVCDEIQ + oU; sing(fbg))).
la|=t—1 7R €

Applying the Leibniz rule, we observe that

Tig+Iy1=o0 Z Z (g) /]RN <p8 9% (sin(®.)) 85(COS(‘I>5)) o

la]=¢—11<|8|<¢—1
B<a
— 00U, 05~ B(sm( c)) Bﬁ(pe cos(®. )))

Hence, we deduce from ([L3), ([A5), (L7), (£8) and (£3), as well as from Corollary [B.1] that
T+ Zua| < Cor{sin(®2) ] oos (I cos(e) e 10l goos-+ 1l cos(®e) ] ens 10]1=)

0o (Jsin@o)lros (9l + [ cos(®)ll) + i@l (e

#1008 + sl Vel [ o5(2) e + Grgal]¥ cos(@ e o))

< Cmax {o,1} ((H sin(®c)|| oo + |V @e|l) (Il sin(®e)[zoe + 1Ue|l~)

+ &[0l poo (VU no + || sin @c| oo ) (1 + || sin(®e) ]| oo ||V<I>s\|L<>°)> DEHL
(4.12)

Note that this estimate is the only one, which contains terms without multiplicative factor e.

Estimating Z, 3 is also direct. In view of (£3), (L0), (L7) and (£8), we notice that

vo-v (),

1
V1922 s < MUl IVl + 9 2) (SE4)°,

1
< Ce|lUellze [IVUE||L (S5 2,

/—1
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and
1
02 || Uz sin(®2)?|| oy < C(|Uel|zo || sin(®2)]| o + 02 | sin(®2)][3 ) (SE1)2.

Using (49), we are led to
3 .
|Z4,3] < Cmax {1,02} <€HUeHL°° IVUellzoe + (I sin(®e)||Loe + |V Pe || £oe)

X (IUellzee + [ sin(@e) [z + Vel + [|Ue ]| oo [IV@e | Zoe + €% Ue | Lo IIVUEII%oo)> i

(4.13)
Concerning Z4 o, we use a further cancellation with the quantity Zs. Set
3
T3=Y Tsm,
m=1
with
T3, =€ Z/ —aa <Vp5 09V + 0Vpe - VO + Y <a>3§p,§3§‘5A<ba>,
|| =¢ 0<|8I<1 b
BLa
=" ) / —aa ( > (g)afpaag—ﬁmwr > (;‘)afvpg-ag—/fWg),
jal=¢ VR P2 2<|BI<t 1<[Bl<t-1
BLla B<La
Ty :=— Z /RN — OV U, - 0% V(,oe sin(®,) COS(‘I)E)),

|o|=£—-1

The identity

— AU cos(®.) = div <l

P P, VU, cos(¢€)> — V(l cos((I)E)) VU,

pe

provides

after integrating by parts. Hence, we have

IS3+Z42_U€ Z / (80‘ sm )

|a|=0-1

X (wa : ag(i VU. cos(%)) —pe 07 (VU V<— cos(®e )))>

Pe
Z ° s —1 cos V ( sin a—p3
i 1<g<<g1<ﬁ> ('05 O: (pe (@ )) IV (sin(®.)) - 9P VU.

L d? (pe cos(®.)) O5VU. - BQ?BV(sin(CI)a)))).

pe
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A further integration by parts then transforms the third line of this identity into

/R peaﬁ(i cos(P ))80‘ (sin(®.)) - 69~ BVU)

Pe

- _/RN 9 (sin(®.)) (85(; cos(® )) Vp. - 097 PVU. +p535V<— cos(® )> 925V,

e Pe

+ p. 05 (pi cos(P )) o9~ 5AU>

£

In order to bound these various terms, we first infer from (43]) and (£4) that
[V (- cos(e.)|| Hv(- cos(@.)) || < CEIULNIue IVUellioo + [ sin(®2) 1 [T 120),

and

|2 (o cost@2)) [, < C(lsin(@lum 180 + 190

Loo
2 (|Uellzoe 12Ucl|zoe + (1 + 2 ULl Fe) IVULIE) ).

Similarly, if follows from (£3)), (£6), [£7) and (£9) that

1

— cos(P

pe (%)
1 . 1

< Cmax {1, — } (sin(@2) o + [Vellpo + el Uell ) (5571)2.
o2

|

1
Hpe COS((I)E)HHZ—l + HE COS(q)e) -1 e

Hence, we derive as before that

I3+ Ls2| <Cmax {1, 0}6(63||VU5||%00(1 + 2| UellFoe) + (IIsin(®@e)llzoe + [V Pe [z )
< (IV@ellzoe + el VU2 + el Vel 0w + el|d*Us|| oo + elld* @ <)
+ | Uellzoe (IVUellzee + [IV®el|zoe + elld*Uelzoe) + €| Uellzoe [ VU oo

% (IIsin(@2) 2= + [VOellz=) (IVU| o + VL) ) SE.
(4.14)

Coming back to 732, a simple computation shows that

| Z3.2| < O (el VU oo + el Uellzoe [|ID*Ue | poe + | Ue| o | D*@e | poe) SEH. (4.15)

It then remains to split the quantity Zo as

3
= E IZ,ma
m=1

46



Tyy = Z/ p. 90, (a A <g>a§j(pi) 828 AU

|al=¢ 0<B\§|§1
—52—2(V<p ) - vosU. +vaa<p )+ VU +20. - 92 (V.| )))
Ta _—522/ pe OB, < 3 < >a§(i)a§5AU€
la|=¢ zgﬁ\gfz B Pe

+% S <ﬁ>vaﬁ( ) voriu Y ()aﬁma 5<|v<1>|>)

1<|8|<e—1 1<|8]<¢t
B<a BLa

Ir3 = — ge? Z/ pe 05 @, 0y Usin2(<I>€)).

|la|=¢

We can derive as before the inequality

|Z22] < Ce([VPelioe + (UL |d°Uel| e + 2| VU |7 ) SEH. (4.16)
Using the inequality
o= 2||sin(@.) cos(®.) V| oy < C(Isin(@0)]z5 19| e

9@l e (| i(®) e + |52 [ | cos(@2) | i-1) )

[sin(®-)?][

we also compute
[Zoa] < O max {o.0% & (|| sin(@2)][ 3 + (Ve [sin(@0)]| g + [V [V
AT £ AT ags
At this stage, we are left with the quantity H := Z; 1 + Zo1 + Z3,1, which contains the higher

order derivatives. We again control this quantity by integrating by parts in order to make clear
the cancellations between the different terms. More precisely, we collect the terms of H as

7
szl"rtm /RN |Z (aa (p= 2 AD, + Vp. - VOD.) + p. 2V, 8“VU>
m= /—1

+52/RNZ ICAD, OCU, — %D BO‘AU —E/R > pe U000, 05(|VE])
_ o] =

+52/RN > p—aaU L%V, - VO, /R > UV - VO,
jal=¢ " jal=—1

L / S (v,oe <%6§‘<I>58§‘VU€+8§U58§V<1>5> _%agq>€agv<pi) .VU€>
R Ja=¢ :

+e/ > ‘”‘)5(6& PAUL 920, + 92U 9277 AD, ).
al=¢131=1 P

Integrating by parts directly provides
Hi=Hy=0.
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We next write Hs as

7—[3:52/
R

Applying the Leibniz formula and using Corollary [B.1] we first check that

3 p-U. 020, <zaqu>5-vq>5_ag(\vq>a\2))—252/N 3 pU. 009, 95V, V..
R

N
oo|=¢ | =¢

|20V ®: - VEe — 9 (VE| 2 < Clld el |19l e,
when |a| = ¢. Hence, we derive from (43]) and (L8] that

52/ S pe U050, (205v<1>5 VO, — a§(|vq>€|2)>' < C2||U || oo ||d2®e || oo SEH1,
R o=t

On the other hand, an integration by parts yields

—2¢2 /RN Z pe U 070 07V O, - VO, = e’ /RN Z div ('05 Ue V(I)E) |8§‘<I)€|2,
o=t o=t

so that we finally obtain

[Hsl < C2 (Ul 102 | + (14 2 U|F) VUL 120 [V @]z ) BEFL - (418)

We argue similarly for the term H4, which we decompose as

90U, U
Hy = 52/ D EEVD, - (09Vpe + 282U 05 VUL) — 254/ £ 9%U. 9°VU. - V..
R jame e RN = P2

Since

109V pe + 26°U-09 VU, || ;o < C*||VUe|| oo |Ue || e,

when |a| = ¢, and

254/ 3 %G;XU& 8oV, - V&, = _54/ 3 div<UE V<I>E> (050.)°.
RY Jaj=e P2 RY S, pe
we have
|Ha| < C52<||Us||L°° 2@ || oo + (1 + E2|U= ]2 ) [V UL 1o ||v<1>€HLoo> S+ (4.19)
We identically estimate the term s so as to get
1Hs| < C (| U poe [|d2®c 1o + [|VUL| 100 V|00 ) SEF, (4.20)

We now turn to the term Hg. We recall that
v <l) _ 2e2U. VU,
Pe p?

Hence, we can write Hg as

Hg = &2 / 3 (V”E(ag@a 8OV + 9°U. aqu%)
RN =t Pe

+£2p. 800 VU. - (w - a;g(U‘f VZUa)).

2 P2
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We can integrate by parts the first line of this identity in order to obtain

/ 3 Ve 8% 8OVU. + 8°U. 6°‘V<I>) / 3 div (We)a;}@agU
RN lal=t Pe RN o=t

Combining this formula with the estimate

H%&;Ug B ag<U5[ZUe)

o SO+ U 7e) IV e [1Uell e,

we are led to the bound

M| < 063<(1 + || Uelfoe) IVUENZoe + 1Ue ]| Lo | 42U | oo ) ZEH. (4.21)
We finally address the term H;. A first integration by parts gives

58
Hy = —¢ / Z 3 ( P (92-PVU. - 99V, + 00V, - 92V P,)
jaf=¢|8|=1 "%
B<a
85/)5

+v< -

) 0PV 090, + 00U a;;ﬁvq>6)>.

Integrating by parts once again the first line provides

Hy=¢ / > (aﬁ(aﬂf'gf)a& BVU. - 2PV,

laf= Zlﬁ\ 1

B
- v(a”ﬁ '05) (02PN 900, + 02U 02OV D,) ).
Pe

In view of (@), (£3), (Z1) and (48)), this can be controlled by
|Hr| < 063<(1 +|Uel[Foe) VUl Too + Ul |d°U | L) SEH. (4.22)

We finally put together all the estimates from (4I0) to [A22]). The estimate in (28] then follows
from the bounds

e|lUe||pe < —= and ||sin(®.)||p~ <1,

\/_

and the inequality 2ab < a? + b%. This concludes the proof of Proposition Bl U

4.2 Proof of Corollary

Consider first an initial condition (U2, ®%) € NV*¥+4(RN) such that ([29) holds for some positive
number C' to be fixed later. In view of Corollary [Il there exists a maximal time of existence
Tiax, and a unique solution (U, ®.) € C°([0, Tinax), NVF3(RY)) to (ALLZ) with initial datum
(U9, ®2), which satisfies all the statements in Corollary [l

Invoking the Sobolev embedding theorem, we can find a positive number K7, depending only on

k and N, such that

K, 1
<_<_

(00 < 00 < 2L < L

P
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when C, > v/2K;. Setting p. := 1—2U2 as before, we derive from the continuity of the solution
in NVF=1(RY) that the condition (27) in Proposition [l is fulfilled for any time small enough.
Hence, the quantity E’;H is well-defined, and the stopping time

T, := sup {t € [0, Tmax) : = < inf pe(x,7) and 2F1(7) < 25F1(0) for any 7 € [O,t]}, (4.23)

1
2 z€RN
is positive.

Moreover, the quantity Ef“ is of class C' on [0,7%), and there exists a positive number Ko,
depending only on o, k and N, such that
[ZE) () < Ko SEH (1) (Ilsin(fbe(-,t))\lioo UG )10 + Vel ) Zoe + [IVU( 1)l[7
(|2 (1) [Foe + 2PV )T + VR, )z (VR(, )7 + HVUS(-,t)H%M)),

for any 0 <t < T,. Since k+1 > N/2+ 2, we can again invoke the Sobolev embedding theorem
and use the bounds in 27)), (£7)) and (4.8) in order to find a further number K3, depending only
on o, k and N, such that

Isin(@- (-, )l + I1U=( 01700 + V(1) 7o

(4.24)
H VU )70 + [P 8|70 + 2| PUL( 1)[|70e < EKEEF(2).

This gives
1
S (1) < Kok (BEF(0)? + e K35 (1)),

for any 0 <t < T,. Coming back to (£.23), we next simplify this inequality as
1
S5 (1) < Kok (14 (262K5 557 (0) 7)) S (1),

In view of (27) and (29), there also exists a number Ky, depending only on o, k and N, such
that

22 K3 2F1(0) < 2K3K452(HUQ +e||[ VU e + (V2| e + || sin(fbg)Hka <1, (4.25)

e e

when C, > 2K3K,4. We conclude that

(S5 (1) < 2K0 K3 S (1)2
At this stage, we set
1
T AKKsxE0)

and we deduce from the previous inequality that

(4.26)

k+1
Engrl(t) < Ea (O)

< 2%2F1(0),
T 1 - 2K, K3XETL 0t = (0)

when we additionally assume that ¢ < 7. In view of (£24)) and ([4.25]), we also have

1 1 1
EllU( )| e < eEZEEFH(0)2 < V2’

so that

DN | —

inf x,t) >
LERN pa( ) =
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Finally, we derive as before from the Sobolev embedding theorem that

t
¢

0
In view of the characterization for the maximal time Ty,ax in Corollary [l this guarantees that

the stopping time T is at least equal to T.. We finally derive from (27), (A7) and (£L38) the
existence of a number K5, depending only on o, k and N, such that

VU.(+,s)|?

1
pE('a 8)5

t
1 2 Kg
. + Hpg(-,s)2V<I>€(-,s)HLoo> ds < K6/0 yEl(s)ds < e < +o0.

L

108+ €IV U 1) i+ [T 2D + [ (@)
< K (1)} <K (2841(0)) 2
<K EE ([0 o + ][ VU2 g+ (V22 o + [ sin (@) ).

In view of (£20]), we similarly obtain

1
1 >
AR KK (U e + e[ VU || i + V@2 | gy + || sin(@2)]| 5 )

3 -

It the? remains to suppose additionally that the number C, satisfies the conditions C, >
(2K4)? K5 and C, > 4K3K3K, in order to complete the proof of Corollary B when (U2, ®?) €
NVFFHRN).

We finally rely on the continuity of the flow with respect to the initial datum in Corollary [
in order to extend Corollary B to any arbitrary initial conditions (U2, ®Y) € NVEF2(RN) by a
density argument. O

4.3 Proof of Lemma [

When (U°, ®°) € H¥(RN) x HEFL(RN), it follows from Theorem Ml that there exists a maxi-

sin

mal time of existence Tiax, and a unique solution (U, ®) € C([0, Thax), H*(RN) x HEFL(RN))

sin

to (SGY) for this initial datum, with (8,U, 9;®) € C°([0, Tiax ), H* "1 (RN) x HF(RN)). In this
case, the functions ¢t — E{.(U(-,t), ®(-,t)) are well-defined and of class C! on [0, Tinax) for any
1 < ¢ < k. Moreover, we deduce from (SGS)), an integration by parts and the Leibniz formula
that

EsaU@) ) =0 > > (g) /R N 95 cos(®(x, 1)) (ag—ﬁU(m,t)agsm@(m,t))

lo|=t—1 B0
BLa
— U (2,t) 8% sin(®(z, t))) dz,

for any ¢ € [0, Tiyax). In particular, the Sine-Gordon energy EéG = Fgq is conserved along the
flow. When ¢ > 2, we can invoke Corollaries [B.1] and [B.3]in order to check that

B U,@)) (1) < A(JUC D3 + V()7 + | sin(@(-, )3 )
x ([Bsa(U.@)](1) + [EG (U, @)]0)).

Here as in the sequel, the positive number A depends only on o, k and N. Using the Sobolev
embedding theorem, we conclude that the quantity EéG = Z§:1 EéG satisfies the inequality

(S8 (U,2)]'(t) < A58 (U, @)](¢)°,
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for any ¢ € [0, Tinax)- In particular, we have
EgG(U7 CI))(t) < 22]§G(U7 (I))(O)v

when t < T, := 1/(2A%% (U, ®)(0)). In view of statements (i) and (#ii) in Theorem M we infer
that T, < Thax, and we also obtain the existence of a positive number A,, depending only on o,
k and N, such that the solution (U, ®) satisfies the statements in Lemma [] for the number T.

In order to conclude the proof of Lemma [I, we finally invoke the continuity of the flow with
respect to the initial datum in Theorem Ml in order to extend Lemma [I] to the solutions (U, ®)
to (SGY) corresponding to any arbitrary initial conditions (U°, ®°) € H*~1(RN) x HE (RY) by

sin
a density argument. O

4.4 Proof of Proposition 4

When (U2, ®Y) € NVF2(RN), the pair (U, ®.) lies in C°([0, 7], NVF1(RN)), so that the
quantity K (T) is well-defined. Moreover, it follows from the Sobolev embedding theorem that

oo T (HUE(-,t)HLoo+||VUe(-,t)IILoo +el| U, 1) £
t€[0,T]
+ [[sin(Pc (-, 1)) [[ oo + [[VPe(, E) | Lo + ||d2<1>e(-,t)llL°°> < CK(T).
(4.27)

Here as in the sequel, the positive number C' depends only on o, k and N. Combining this
inequality with the Moser estimates in Lemma [B.I] and Corollary [B.3, we are led to

ma [ (0)ls < CTY? (14 K.(T). (4.28)
Similarly, we derive
e IRE (-, )| g < CKo(T) (1 + (1 +€)Ke(T)?). (4.29)
S )

Here, we have also used (4.5]) and (4.€), which remain available due to condition ([36). With
these estimates at hand, we are in position to establish the three statements of Proposition [l

Step 1. Proof of (B7)).

In view of statement (iv) in Corollary [I and Theorem M the functions ®. and ® are in
C([0,T),®Y + L2(RY)), respectively C°([0,T],®" + L?(RY)). Since ®? — ®° ¢ L%(RY), the
function . belongs to C°([0,T], L?(R™)). Moreover, we can write the Duhamel formula corre-
sponding to (B4) in order to obtain the identity

sin((t — s)D)

@: (-, 1) = cos(tD) 2 + % vg—}—/o <62 cos((t — s)D)R2(-,s) + — 5 X

X (€2Rg(-, s) —osin (g (-, 5)) cos (®e(-, ) + D(, s)))) ds,

for any t € [0,7]. Here, we have set D = v/—A as before. In view of ([A28) and (429)), this

provides

t
o= Oz <lIeRllze + Ctllelllze +C | (= s) llee(:,5)ll 12 ds
0

+ O KTt (1 + (1 + €2 + ) (T)? + tK-(T)?).
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Set X(t) == |22 + C’fg(t — 8) lge(+,8)||z2 ds, and F(t) := Ct||[v?]|z2 + Ce2K(T)t(1 + (1 +
e2 + t)Ko(T)? + tK.(T)?). The function X is of class C? on [0,7], and it satisfies

X"(t) = Cllgo( )12 < C(X(0) + F(1).

for any ¢t € [0,7]. Since X(0) = ||¢Y]z2 and X’(0) = 0, integrating this differential inequality
yields

X (t) < ||¢2|| 2 cosh (V) + \/E/OtF(s) sinh (VO(t — s)) ds,

so that
(o t)llz2 < ll¢2llz2 cosh (VCt) + F(t) + \/E/OtF(s) sinh (VC(t — 5)) ds.
Estimate (B7)) then follows from the identities
C'/Ot s sinh (\/E(t —s))ds = sinh(V'Ct) — VCt,

and

C’\/E/t s% sinh (\/E(t —s))ds = 2 cosh(VCt) — 2 — Ct2.
0

Step 2. Proof of (38]).

Assume first that (U%,®%) € HY(RY) x H2Z (RY). In this case, the pair (9,U,®) lie in

CO(R, L2(RN) x HY(R™)) by Theorem Bl Since (0;U., 9;®.) belongs to C°([0, T], H*(RY)?) when
(U2, @) € NVEF2(RYN), it follows that the energy @&, in (3H) is of class C! on [0,7]. Moreover,
we have

e (0 =0 [

ve(x, t) sin(pe(z,t)) <cos(gp€(az, t)) — cos (P (,t) + ®(x, t))) dz
RN

+62/ (Rg(x, t)ve(z,t) + VRE (z,t) - Vo (z,t) + o sin(ge(z,t)) cos(pe (x,t)) RE (x, t)) de,
RN
for any ¢t € [0,7]. We bound the first integral in this identity by

O'/RN Ve (w, t) sin(pe(z,1)) (cos(p:(z,t)) — cos(Ps(z,t) + ®(,1))) do < 20%(’%@@),

whereas the second integral is controlled by

62/ (RY(z,t) ve(2,t)+VRE (z,t) - Vipe(x, 1) + o sin(p.(,1)) cos(pe(,t)) Rf(x,t)) dx
RN
4
€
<€sq(t) + o (IR (Ol + IVRZ(,Ol22 + ol REC 1)][72)-

We then deduce from the Gronwall lemma that

ela(0) < C(elo(0) + & max (IR (01 + ol R (0) 3 + [VRC,013:) ) e
When N > 2, or N =1 and k > N/2 4+ 2, we can control uniformly with respect to € the
right-hand side of this inequality by (£.28) and (£29). This leads to the bound in (38) when
(U%,®% € HYRY) x HZ (RY). We then complete the proof of ([B8) by a standard density
argument.
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Step 3. Proof of (39).

Let 2 < ¢ < k — 2. Since the pair (dv., ;) belongs to C°([0,T], H*~1(R™)2), we can differen-
tiate the quantities €5 in (B5) and invoke (34) in order to obtain

[ = Z / 8 sin(ip.) 0% (ve cos(p:)) — O5v= OF (sin(p:) cos(<I>5+<I>)))(w,t) dx
|a|=0—1

Z / 80‘05 ISRY + 00V . - OYVRE + 002 sm(cpa)8§(cos(<p5)Rf))(x,t) dx,
laj=t—1 7 RY

(4.30)

after an integration by parts. In order to bound the various terms in the right-hand side of this
identity, we first apply the Sobolev embedding theorem in order to get the bound

tem(”U( Dllzee + 5in(@(, )|z + [VO(,B)llp< ) < Cre(T),

Combining ([£27) with Corollary [B.3] this gives

eos(@<(-,8) £ @, )] s <C (|| Sin(@clcs) £ @, 0)]| o [T, 6) £ VEC, 1) s
[V 1) & (- ) o [|Sin(@e () £ @ (1) s
<Cr(T)?.
Setting GF2 .= ?;12 QZgG and assuming that £ > N/2 + 3, we also derive from the Sobolev

embedding theorem that

e Dl + [l sin(oe(o )] o+ [ Ve, B o < CEF2(0)2.

As a consequence of Lemma [B.I] we are led to the following estimate of the integrals in the first

line of (4:30])

/]RN <8§‘ sin(pz) 0% (ve cos(pz)) — Ogv- 0F (sin(p:) cos(<I>€+<I>)))(x,t) dx

<C(1+ ke(T)?) &5 2(2).

Concerning the second line, we similarly check that

62

/ (a%e IORY + 99V . - 0OVRE + 002 sin(p. ) 0% (cos(%)Rq’))(x,t) dx
RN

SC(%G@) + e (1R (O Fems + IVRE ()30 + we(D)IRE ()| + 1 BE (1)1, 1>
Using ({£.28), (429) and the Sobolev embedding theorem, we finally obtain

(€)' t) < c<(1 + he(T)?)SF2(t) + i (T)2 (1 + ke(T)® + ke (T) (1 + ﬁE(T)‘l))).
In view of Step 2 this inequality also holds for £ = 1. Hence, we have
[6"72)(t) <C(1 + ro(T)?) &F72(t)
+ Ot ke (T)? (1 +Re(T) + e ke (T) (1 + KE(T)‘*)).

Estimate (39)) is then a direct consequence of the Gronwall lemma. This concludes the proof of
Proposition @ O
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5 The derivation of the wave equation

Our aim is now to prove Theorem [2] which shows that the dynamics of the Landau-Lifshitz
equation can be approximated by the free wave equation as €, — 0. This relies on arguments
and estimates similar to the ones developed in the previous sections, with some modifications so
as to take into account the smallness of the parameter o.

First, we could use Proposition B in order to control higher order derivatives. However, if o is
small, we can obtain better estimates by considering the energy of order k > 2
rk . 1 2|va:(er€7U|2 o 2 271712 fe} 2
E;6 (U&U, (1)570) = 5 Z - (6 W + |(9x U5,0| + (1 — & UE’U)|V8:)3 (I)€7U| >
|al=k—1 i

Setting E! := E.(U. ,, ®. ), and
k
SF=> " El, (5.1)
j=1
for k > 1, we are led to the following estimates.

Proposition 5.1. Let ¢ < 1 and o be fized positive numbers, and k € N, with k > N/2 + 1.
Consider a solution (Us 5, ®. ) to (ALLY), with (Us 5, ®. ) € C°([0, T], NVE3(RN)) for a fived
positive number T', and assume that

1
inf 1-¢*U2, > -. 5.2
]RNIB[O,T} 9= 9 (5.2)
There exists a positive number C', depending only on k and N, such that
(B (8) < CSEH(2) (EHV@J(-J)H%M +el|Ueo (-, ) [ 53

4 SRV e + (1 + [T (D))
for any t € [0,T], and any 2 < ¢ <k + 1.

Proof. We proceed as in the the proof of Proposition Bl and keep the same notation, for which
we have

[Ef]/(t) =T+ T+ I3+ Is,

where T is equal to Zs without the last term o|0% sin(®.)|?. Using (5.2), the inequality 2ab <
a’® + b%, and the fact that 0 < € < 1, we deduce from the proof of Proposition Bl that

Tia+Tipo+ 1o 1+ 122+ 131 +I3,2+i5| < C<€HV‘1>5,0||%V1,00+6HU5,0||%,V1,00+63Hd2Ug,a||%oo) skt

In order to estimate the remaining terms, we rely on Corollary [B.2l In view of Corollary [B.1l we
obtain

Tl < Co(lpmo e Nsin@@e)lges + el e | sin(22e ) o) (5571)3
< Co(1+ IV 5= + 2 Ueg oo | sin(@c ) o0 ) TEF.
Proceeding in a similar way, we also get
|To3] + |Z3,3] < Ceo(1+ | VPeo|fo) SEHL

This completes the proof of (B.3]). O
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In order to state the consequences of Proposition 5.1l we introduce the quantity

Keo(t) = [[Ue oDl + el VU0 (Ol o+ [V (o0 g + 02 | sin(@eo (1)) o

Corollary 5.1. Let € < 1 and o be fixed positive numbers, and k‘ €N, with k > N/2+ 1. There
exists a number A, > 1 such that, if an initial condition (U0 ) € NVEF2(RN) satisfies

60’7

Ak 5(0) < 1,

then there exists a positive time
1
A, max{o,e}(1+ XET(0))

T. o >
&0 = max{2,%}’

such that the mazimal time of existence of the solution (Us s, ®c o) to (HLLZ) with initial condi-

tion (UEOU, o) is greater than T ;. Moreover, we have

VB Ue g (1)1 < 1,
and

Keo(t) < AuKe 5(0),
for any t € (0,1, ,].

Proof. The proof follows the same lines as the proof of Corollary 2l Indeed, the same arguments
show that the stopping time

< 1nf peo(x,7) and XE (1) < 285F1(0) for any 7 € [O,t]},

~ 1
T, := sup {t € [0, Thnax) : 3

is positive, and that there exist two positive numbers K; and K5, depending only on k and N,
such that . .
Ki3F10) < K. 5 (0)2 < KoXETL(0). (5.4)

Since 2% is constant in time, we infer from Proposition[B.Iland (5.1]) that the following differential
inequality holds

S5 (1) < Kymax {0, e} SE (@) (14 5571 (1)2 + S (1)F),
for any ¢ € [0,7}) and a further positive number K3. In view of the definition of T, and the fact

that £ > 2, we can enlarge K3 such that

max ,%
S (1) < Ky max {2} 541 () (14 9541(0)) ™

for any ¢ € [0,T,). Setting

In(2)

Te,a = k1 maX{Q,E
Ksmax{o,e}(1+ 271(0)) 2

we conclude as in Corollary @l that T, > T. ». Bearing in mind (5.4), the other statements follow
also as in Corollary 2 O

We now conclude the
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Proof of Theorem[2. The proof is simpler than the one of Theorem [l Let T; , be the time given
by Corollary B.1] and fix T' € [0,T; ,]. Setting ve » = U. s — U and ¢, , := ®., — P, we derive

from (HLL.) and (EW]) that

{atvw — Ap. , — $sin(20. ,) + 2RV,

(5.5)
815(;06,0 =Veo + 52R?7

with RV and R? as in (32) and (33). We next deduce from Corollary 511 and the Sobolev
embedding theorem that

28 (0O b9V 0 e 0+ [V )]2) < OO

(5.6)
where C refers, here and in the sequel, to a positive number depending only on N and k.
Let 0 <m <k — 2. We have
1
2 in(2®. (-, t < Keo(0), 5.7
o max ||sin(22eq (1)) 2 < Ker(0) (5.7)
and we infer from (5.6), Lemma [B.1l and Corollary [B.2] that
max | sin(2® (-, 1)) || e < C(Ke,o(0) + Ke,r (0)°), (5.8)
for any 1 < £ < m, and
max ||RE(-,t)|| ym < C(Ke,0(0) + K2 p(0)? + 0Ke 0 (0)™ ). (5.9)

Similarly, we have

max [|RY 1)) < C(oKe 0 (02 + Keo 0)).

and

miax |RY (-, 0)]| s < C(0Ke,0(0)? + K2 p(0)* 4 0Ke o (0)).

for 2 < ¢ < m. Therefore, using the embedding L?(RY) into H~*(RY) if m = 0, we conclude
that

e |RY (1) jyms < C(0Ke,0(0)? + Ke o (0)* + 0K o (0)™ ). (5.10)

In view of (B.5]), the Duhamel formulation is given by

Veo(st) = cos(tD)vg,o — Dsin(zﬁD)gp\g’(7

+ /Ot (COS((t —s)D) (aZRg(-, s) — %sin (2. (-, s))) — e?sin((t — s)D)DR2 (., s)) ds,

pean(ct) = cos(tD)g, + D)o
+/0 <M <52R§(-, s) — %sin (200 (-, S))) + &2 cos((t — s)D)R2(-, s)) ds,

for any t € [0,T]. Therefore, we are led to

e ()l mm=1 + | pe.o (1)l m < C(1+ %) <||v§,a||m—1 + 102 gllzm

+ mex (o] sin(2®: (-, 8)) || grm—1 + 2| RY (-, 8) || grm-1 +€2|!R§>(-,s)HHm)).
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Thus, the estimate (I6]) follows from (5.7), (58), (£.9) and (GI0).

For 1 < £ < m, the estimate in the homogeneous Sobolev spaces is similar to (5.II). We only
replace the norms H™ and H™~! by H' and H*™!, and the term 1+t> by 1+t in (5.11)). Then,
the estimate (7)) follows as before using (5.8]) instead of (5.7]). O

A Properties of the sets H: (RV)

S

In this first appendix, we collect some useful properties of the sets Hskin(RN ). In particular, we
underline the reasons why the Cauchy problem for the Sine-Gordon equation in the product set
HE (RY) x HF=Y(RY) cannot be immediately reduced to the usual Sobolev framework.

sin

Let k € N* be fixed. Recall first that the set H% (R™) is not a vector space. Indeed, the constant

Sin
function 7 belongs to this set, but not the function 7/2. On the other hand, it is an additive

group due to the trigonometric identities

sin(—¢) = —sin(¢), and sin(¢; + ¢2) = sin(¢y) cos(¢2) + sin(p2) cos(¢y).
Since any function in the space H¥(RY) belongs to HE (RY), we infer that

H*(RY) + HE,(RY) C H,

RM). (A1)

Concerning the topological structure of the set Hfm(RN ), we identify this set with the quotient
group H* (RM)/r7Z, and we endow it with the metric structure provided by the distance d¥

sin sin
in (H).

In many places, we do not work with the distance d*

sin?

but instead with the quantity

6llzs, = dbin(@,0) = (IIsin(@)|32 + Vo3 ).

This is an abuse of notation since this quantity is not a norm. However, we have the classical
identity
k
din (91, 92) = [lP1 — D2l -

so that the quantity ||¢|| ;= satisfies the triangle inequality. Note also the useful estimate

Il < l1lre. (A.2)

when ¢ € HF¥(RV).
Coming back to (A, we provide a decomposition of any function ¢ € Hfm(RN ) as a sum
¢ = f+p, with o € H¥(RY) and f € HZ(RN).

sin

Lemma A.l. Given any function ¢ € HE (RN), there exist two functions f € HX(RY) and
© € HF¥(RN) such that ¢ = f + o,

loll e < V2V grer,

and
1Fllee < Alldllgs
for any £ > 1. The positive number A in this inequality only depends on k and £.
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Proof. Consider a function x € C°*(RY), with supp x € B(0,2), and such that
X=1on B(0,1), and 0<yx<1.
Set R R R
f:5(\¢7 and (’5:(1_55)(?7
so that ¢ = f + ¢. By the Plancherel theorem, the function ¢ is in H*(RY), and it satisfies
el <[IVollrz,  and [Vl ger < [V e

Concerning the function f, we check that

[sin(f)l[r2 = [[sin(¢ — @)z < [[sin(@) ||z + [l@ll2 < [[sin(@)]lL2 + VO] L2,

and we also compute

IVFllfes <A /R (U IER) TREPIVOE) P e < A5 VG-

This decomposition is enough to establish the density of smooth functions.

Lemma A.2. Given any function ¢ € HE

E (RN), there exist functions ¢, € HZ(RN), with
¢n — ¢ € L2(RYN), such that

sin

llén — &l e — 0, (A.3)

as n — oo. In particular, we have
i (9ns 9) = |60 — Sl — 0.

Proof. Let us decompose the function ¢ as ¢ = f + ¢, with f € H2 (RY) and ¢ € H¥(RY). By

sin

standard density theorems in the Sobolev spaces, there exist smooth functions ¢, € H OO(RN )
such that

len = @llgn — 0,
as n — oo. Setting ¢, = f + ©n, we have ¢, — ¢ = p, — ¢ € L%(RY), so that

160 = Sllme = llen — @l — 0.

Moreover, we derive from (A.]) that the functions ¢, are in H(R"Y). The last convergence in

Lemma [A.2] follows from (A.2) and (A.3). O

In our analysis of the Sine-Gordon regime, it is important to control uniformly the function
o)< Hfm(RN ), at least when the integer k is large enough. In order to obtain such a control, we
study the behaviour at infinity of the functions in the space Hslin(RN ) in the spirit of the work
by Gérard [14] about the energy space of the Gross-Pitaevskii equation.

Lemma A.3. Let ¢ € HL (RY).

(1) For N = 1, the function ¢ is uniformly continuous and bounded on R, and there exist two
integers ((*,07) € Z? such that
o(z) — O+,

as © — Fo0. Moreover, the differences ¢ — (¥m are in L?(Ry.).
(ii) For N > 2, there exists an integer ¢ € Z such that

¢ —tm € H'(RY).
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Proof. When N = 1, the Sobolev embedding theorem implies the uniform continuity of ¢, and
then of sin?(¢). Since this function is integrable on R, it converges to 0 as z — 4o0o0. As a
consequence of the continuity of the function ¢, there exist two integers (¢+,¢7) € Z? such that
we have the convergences in (). In particular, the function ¢ is bounded. Moreover, we have the
pointwise inequality |¢(z) — ¢T 7| < /2 for x large enough, so that the Jordan inequality gives

%|¢(g;) — 07| < |sin(¢(x))).

This is enough to prove that the functions ¢ — ¢, and similarly ¢ — ¢, are in L?(R4.).
The proof of (ii) is similar. Let us consider two functions f € H (RY) and p € H'(R") such

sin
that ¢ = f 4 ¢. By the Sobolev embedding theorem, the functions f and sin?(f) are uniformly
continuous. The existence of an integer ¢ such that

flx) — b,

as |x| — oo, follows as before. The property that f — ¢m is square integrable results again from
the Jordan inequality. In view of the decomposition for ¢, this is enough to guarantee that ¢ — ¢
lies in H1(RM). O
Remark A.1. When N > 2, the quotient group H} (R™)/7Z reduces to the Sobolev space

HY(RYN). In view of (A2)), the H'-norm controls the quantity || - || ;1 , but the opposite is false.
Given a function y € C*°(R¥) such that

x =1on B(0,1), and x =0 outside B(0,2),

we can set

x
o) =mn(2)
and check the existence of a positive number A, depending only on N, such that

l6allze = Anligullm |

for any integer n > 1.

(RY)

When N > 2, we recover the uniform continuity and the boundedness of a function ¢ € H, Skin
assuming that the integer k is large enough.

Corollary A.1. Let N > 2 and k > N/2. The functions ¢ € Hskin(IRiN) are uniformly continuous
and bounded, and there exists an integer {*° € 7Z such that

d(x) — 0, (A4)

as || — oco. When N > 3, there exists a positive number A, depending only on k and N, such
that
¢ — £ |[Le < AV s (A.5)

Proof. Lemma [A3 provides an integer /> € Z such that the function ¢ — ¢*°7 is in H*(RM).
The uniform continuity and boundedness of ¢ then results from the Sobolev embedding theorem,
as well as the limit in (A4).

Estimate (A.D) is a consequence of the Sobolev and Morrey inequalities. Set ¢ = 2N if k > N/2+
1, and ¢ = gx otherwise, where the number ¢, is defined by the identity 1/q;, = 1/2— (k—1)/N.
There exists a positive number A, depending only on k and N, such that

1—-N

6(2) — 6@)| < Alz —y[' "7 [Vollze < Al —y|'" 7 [Vl e
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for any (x,y) € R?Y. On the other hand, it follows from the Sobolev embedding theorem that

I = =7 ox, < AV L2

N—
Combining these inequalities, we deduce from the Holder inequality that

Rty _ xr)— — 07
o) 11 < o (L w@-slans [ o) - o)

<A(IV gl + 116 = €7 o) < AVl e
This concludes the proof of Corollary [Al O

Remark A.2. For N = 1, though the functions ¢ € H} (R) are bounded and have limits (7
at +o00, there are no positive numbers A4 such that

I — E5 7l Lo may < Azlll, (o) (A.6)

for any ¢ € H. (R). For instance, the even functions ¢, given by

nmw if 0 < <nm,
On(z) = 2nm — 2 if nr < x < 2nm,
0 if x > 2nm,
satisfy
3nm
l6n = Gimlle sy = nm, and [6nll, @) =\ 5

with ¢ = 0. Inequality ([(A.8)) cannot hold for n large enough.

Remark A.3. When N = 2 and k& > N/2, the Sobolev embedding theorem provides the
existence of a positive number A, depending only on k, such that

I = £5m|[Lee < All — €7 | .
On the other hand, there is no positive number A such that
16— Erll o < Allgllgs (A7)

Indeed, let us consider the functions v,, defined by

nmw ifOSrgrn::%,
_ In(nm)—In(r) . . _nxw
vp(r) = nw(%—l) if r, <r <sp,:= Ok
0 if’l"zsna

for any integer n > 3. Given a non-negative and non-increasing function x € C*°(R) such that
x=1on (—oco,—1], and x =0on [1,00),

we set

br(2) = 07 (1 = x(ra + 2 — [2])) + val)x(rn +2 = 2D (2] — 0 +2),
for any « € R?. The functions ¢,, are smooth and compactly supported, so that they belong to
the space H2° (R?), with limits at infinity £2°7 = 0. On the other hand, we check that

sin

[6llzoe =nm,  Ilsin(n)llz2 = o(ﬁ) and [Vl = o(ﬁ)
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for n — oo, while

k _ Vnln(n)
106l =03 )

for any k& > 2. This contradicts the existence of a positive number A such that (A7) holds.

For N = 1, the limits at infinity %7 of a function ¢ € HZL (R) can be different. This set

does not reduce to a collection of constant translations of the space H'(R). When N = 2
and k > 2, the uniform norm of a function ¢ € HE (R?) is not controlled by the quantity

sin

||l g - At least in these two cases, bringing the Cauchy problem for the Sine-Gordon equation
in HE (RN) x H*=1(RN) back to a standard Sobolev setting is not immediate.

sin

B Tame estimates and composition in Sobolev spaces

For m € N, we denote by H ™(RY) the homogeneous Sobolev space endowed with the semi-norm

1l = D 10 F g2

|a|=m
We recall the following Moser estimates (see e.g. [25] 17 2]).

Lemma B.1. (i) Let (f,g) € L(RN)2n H™(RN)2. The product fg is in H™(RN), and there
exists a positive number Cy,, depending only on m, such that

£ gll gron < Co max {1l 2o gl gron s 1| e 19llzoe < Con (IF oo Ngll g + 1 F 1l Ngllzoe)-

More generally, given any functions (fi,...,f;) € L°(RN)I N H™RN)I | there exists a positive
number Cj,,, depending only on j and m, such that

10% f1 -+ 0% fjllr2 < Cjm max [ Il fellzoe 11 fill g
044

1<i<;j

for any a = (o, ..., ;) € NN such that Zgzl || = m.

(ii) Let m € N*. When f € Lo(RYY N H™(RY) and F € C™(RYN), the composition function
F(f) is in H™(RYN), and there exists a positive number C,,, depending only on m, such that

i < O oo IFNEL LN 7 :
IE g < G max [F o [l (11 (B.1)

As a direct consequence of Lemma [B.Il we obtain the following useful estimates.

Corollary B.1. Let m € N, with m > 2, and (a,8) € N*V with |a] = m and 8 < a. There
exists a positive number Cy,, depending only on m, such that we have the following estimates.

(@) If |B| > 1, Vf € L2RY)n H™ Y RY) and g € L*RN) N H™ YRY), then
ID? f D Pgll 2 < Conmax {|IV fllzoe l9ll g1 £ [| g gl 2= }-
(i) If |8] > 2, D*f € L®°(RN) N H™ 2(RN) and g € L°(RN) N H™2(RY), then
ID?f D Pgl 12 < Copmax {||D*f || o= ||gl grm-2: 11l g 19l £ }-
(i53) If 1 < |B| <m —1, Vf € L2RN)n H™ YRY) and Vg € L2RN) N H™ Y(RYN), then
IDPf D Pgllp2 < Crpmax {|IV fllzee 19l g1 11l g1 [V gllzos }-
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Our previous analysis of the Sine-Gordon regime of the Landau-Lifshitz equation requires bounds
on the functions sin(f) and cos(f), which do not depend on the uniform bound of the function f.
We indeed do not control this quantity in the Hamiltonian framework under our consideration.

In this direction, we derive from Lemma [B.1l the following bounds, which only depend on the
uniform norm of the gradient V f.

Corollary B.2. Let m € N, with m > 2. There exists a positive number Cy,, depending only on
m, such that

I + 11 €05(F) g < Con@ + [V FIFIT Fllagms, (B2)
for any function f: RN — R, with Vf € L*RN)n H™L(RY).

Proof. The proof is by induction. For m = 2, we directly check that

Isin(F)ll g2 + | cos(Hll g2 < 21V F 22V Fllzoe + 1D f] 12).

Let us assume that (B.2)) holds for any 2 < ¢ < m. It results from Lemma [B.Il and the inductive
assumption that

Isin(f) | gmsr = [ eos(f) VI ll o <Con (Il cos() Lo IV 1 gpm + I cos(F) gpm IV fll£o0)
<Con (I Fll gpmsr + A+ IV FITZ) IV Fllizmr [V fll o)
<O (L IV o) IVl

The proof for cos(f) follows in the same manner. O

In some parts of our proofs, we need to avoid the polynomial growth on the norm ||V f||ze in
Corollary [B.2l For this reason, we establish the next bounds with an at most linear growth in
terms of the norm ||V f|| .

Corollary B.3. Let m > 2. There exists a positive number Cy,, depending only on m, such that

lcos(£)l gpm < Con (I s (F)llzoe + [V Fll o) max { || sin(F)l| gmrs 11l 7 } (B.3)

for any function f : RN — R such that sin(f) € H™ 1 (RN), Vf € L¥RN) and Vf €
Hm_l(RN).

Proof. Lemma Bl indeed provides

lcos()l g = Nl $in(f) Vf [l - < Con max {[Isin(f)l[zoe 11l s [V Fllzoo | () g1}

which yields (B.3]). O

C Solitons of the Landau-Lifshitz equation

Solitons are special solutions to the one-dimensional Landau-Lifshitz equation, which take the
form
m(x,t) = me(x — ct),

for a given speed ¢ € R. The profile m. is solution to the ordinary differential equation

—cmy, +me X (mg, — A[me]ier — Az[me]zes) = 0.

63



In the case of biaxial ferromagnets, we can assume, without loss of generality, that A3 > A; > 0.

Set ¢* := )\;/ 2 )\}/ 2. For le| < ¢*, non-constant solitons m, are explicitly given by the formulae

ey (G (L (aE)?)?
(@) <(:osh(uécuv)7t hpew), cosh(pzx) )’

up to the geometric invariances of the equation, which are the translations and the orthogonal
symmetries with respect to the lines Rey, Res and Res. In this formula, the values of aF and puF
are equal to

)

e <02+A3—A1:F((A3+A1—c2)2—4A1A3)%>%
cr e 2(A3 — A1)

and

/’LC: 2

with . =1, if ¢ > 0, and §. = —1, when ¢ < 0. Note that

+ <)\3+)\1—C2i(()\34-)\1—02)2—4)\1)\3)%)%
(12)? = Mlag)? + A3(1 = (a)?).

+

- is equal to

The Landau-Lifshitz energy of the solitons m
Er(mZ) = 2p;.

The solitons form two branches in the plane (¢, Err).

Evr(me)
1
OAZ [
1
A ‘
R
22 :
|
; C* C

Figure 1: The curves Err,(m) and Erp(m_) in dotted and solid lines, respectively.

The lower branch corresponds to the solitons m_, and the upper one to the solitons m;} as
depicted in Figure[ll The lower branch is strictly increasing and convex with respect to ¢ € [0, ¢*],
with

1
E(mg) =2\ and E(m.)=2(MAs)i.

The upper branch is a strictly decreasing and concave function of ¢ € [0, ¢*], with

1
E(m$) =22 and E(m%L)=2(\As)i.

+

The two branches meet at the common soliton m_. = m/..

In the limit Ay — 0, the lower branch vanishes, while the upper branch goes to the branch of
solitons for the Landau-Lifshitz equation with an easy-plane anisotropy (see e.g. [8]).
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In the sequel, we focus on the solitons m_ corresponding to the lower branch. Since a, is a
strictly decreasing and a continuous function of ¢, with

VA3 )%
VAL+VAs/

the function m, := [m |1 + i[m_ ]2 may always be lifted as

ay, =1 and ac_*:(

=

m, = (1—[m.]3)? (sin(e;) +icos(e,)),

with )
¢ (r) = 2arctan < ((ac)? + sinb*(pe 7)) * — sinh(,ucx)>
C a,g .
When ¢ = 0, we observe that
1
@y () = 2arctan <67>\121>. (C.1)

Let us now fix a number 0 < ¢ < 1, and set A\; = ve and A\3 = 1/¢, so that ¢* = 1/e%/2 — (ve)'/2.
Given a number 0 < 7 < 1, we are allowed to consider the solitons m_ with speeds ¢. = 7/ gl/2
when ¢ is small enough. In this regime, the parameters a,_ and p,_ satisfy

1 vr2e2 v2r2(8 — 712 + 314)et
a-=1-

cz 2(1 _7.2) - 8(1 _7.2)3 +O(66)’

and
2.2

1
_ VE \2 o 4
() (-T2 o),
He. (1—7’2> < (1—7’2)2+ (6)
when € — 0. Here as in the sequel, the notation O(sk) stands for a quantity, which is bounded

by Ce*, where the positive number C only depends on v and 7. Coming back to the scaling
performed so as to obtain (HLLZ), we compute

1 2
U, (2.1) '_l[m_ <m—7t>} B vzt 4+ O(e%)
cmrelveN g s 1o (240E) =T
g2 (1 - 7’2)2 cosh (W)
and
1
_[x—Tt (V2 + O(?))(x — Tt)
O, (z,t) := SDc5< 1 > = 2arctan ((1 +0(c%)) (exp ( - 0 7-2)% ) + 0(82)> .

In view of (I3)), the pairs (U, ®..) form a family of solitons for (HLL.) with speed 7, which
converge towards the soliton (U, ®,) with speed 7 of the Sine-Gordon system in (SGS)). Actually,
the pairs (U, ®..) and (U;, ®,) are identically equal for 7 = 0. When 7 # 0, they satisfy the
estimates

e, = Urllgx + lIsin(@c, — @-)llz2 + [Pc, — Pl grss < Cre?,

for € small enough and any integer k. Here, the positive numbers Cy only depend on v, 7 and
k. Moreover, we can check that

5 1

U, I7(2 —92 2 4 2 2 2 d 2

||ch U ||L2 N V4'T( T ‘: T ) / (COSh(x) + ;x smh(x)) 722 .
£2 e—0 2(1 — 72)1 R 2—-2724 74 cosh(z)?

Since the integral in the right-hand side of this formula is positive, this equivalence proves that
the estimates of order £ in Theorem [I] are sharp.
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