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We explore T-splines, a generalization of NURBS enabling local refinement, as a basis for isogeometric
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d results in all cases. We summarize the current status
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1. Introduction

Engineering design and analysis have reached a critical junc-
ture. Each has its own geometric representation, and the design
description, embodied in computer aided design (CAD) systems,
needs to be translated to an analysis-suitable geometry for mesh
generation and use in a Finite Element Analysis (FEA) code. This
task is far from trivial. For complex engineering designs it is now
estimated to take over 80% of overall analysis time, and engineer-
ing designs are becoming increasingly complex. For example, pres-
ently, a typical automobile consists of about 3000 parts, a fighter
jet over 30,000, the Boeing 777 over 100,000, and a modern nuclear
submarine over 1,000,000 (see Fig. 1).

Engineering design and analysis are not separate endeavors. De-
sign of sophisticated engineering systems is based on a wide range
of computational analysis and simulation methods, such as struc-
tural mechanics, fluid dynamics, acoustics, electromagnetics, heat
transfer, etc. Design speaks to analysis, and analysis speaks to de-
sign. However, analysis-suitable models are not automatically cre-
ated or readily meshed from CAD geometry. Although not always
appreciated in the academic analysis community, model genera-
tion is much more involved than simply generating a mesh. There
are many time consuming, preparatory steps involved. And one
1

mesh is no longer enough. According to Steve Gordon, Principal
Engineer, General Dynamics Electric Boat Corporation, ‘‘We find
that today’s bottleneck in CAD-CAE integration is not only auto-
mated mesh generation; it lies with efficient creation of appropri-
ate ‘simulation-specific’ geometry”. (In the commercial sector,
analysis is usually referred to as CAE, which stands for Computer
Aided Engineering.)

The anatomy of the process has been studied by Ted Blacker,
Manager of Simulation Sciences at Sandia National Laboratories,
and is summarized in Fig. 2 along with the breakdown in the per-
centage of time devoted to each task. Note that at Sandia mesh
generation accounts for only 20% of overall analysis time, whereas
creation of the analysis-suitable geometry requires about 57%, and
only 23% of overall time is actually devoted to analysis per se. The
approximate 80/20 modeling/analysis ratio seems to be a very
common industrial experience and there is a strong desire to re-
verse it, but so far little progress has been made despite enormous
effort to do so. The integration of CAD and FEA has proved a formi-
dable problem. It is our opinion that fundamental changes must
take place to fully integrate engineering design and analysis.

Recent trends taking place in engineering analysis and high-
performance computing are also demanding greater precision
and tighter integration of the overall modeling–analysis process.
We note that a finite element mesh is only an approximation of
the CAD geometry, which we will view as ‘‘exact”. This approxima-
tion can in many situations create errors in analytical results. The



Fig. 1. Engineering designs are becoming increasingly complex. As the number of parts comprising an object increases, so too does the amount of time required for it to be
manufactured. Such growth in complexity makes analysis a time consuming and expensive endeavor. (Courtesy of General Dynamics/Electric Boat Corporation.)

Fig. 2. Estimation of the relative time costs of each component of the model generation and analysis process at Sandia National Laboratories. Note that the process of building
the model completely dominates the time spent performing analysis. (Courtesy of Ted Blacker, Sandia National Laboratories.)
following examples may be mentioned: shell buckling analysis is
very sensitive to geometric imperfections, boundary layer phe-
nomena and lift and drag are sensitive to precise geometry of aero-
dynamic and hydrodynamic configurations, and sliding contact
between bodies cannot be accurately represented without precise
geometric descriptions. Automatic adaptive mesh refinement has
not been as widely adopted in industry as one might assume from
2

the extensive academic literature because mesh refinement re-
quires access to the exact geometry, and thus it also requires seam-
less and automatic communication with CAD, which simply does
not exist. Without accurate geometry and mesh adaptivity, conver-
gence and -precision results are in many cases impossible.

Deficiencies in current engineering analysis procedures also
preclude successful application of important pace setting technol-



ogies, such as design optimization, verification and validation
(V&V), uncertainty quantification (UQ), and petascale computing.
The benefits of design optimization have been largely unavailable
to industry. The bottleneck is that to do efficient shape optimiza-
tion the CAD geometry-to-mesh mapping needs to be automatic,
differentiable and tightly integrated with the solver and optimizer.
This is simply not the case as meshes are disconnected from the
CAD geometries from which they were generated. V&V requires er-
Fig. 3. NURBS control points lie in a rectangular grid. Rows of T-spline control point can
control grid. (c) NURBS and T-spline control grids for head model. 4800 NURBS control po
modeled using T-splines; one-fourth the modeling time of NURBS.
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ror estimation and adaptivity, which in turn requires tight integra-
tion of CAD, geometry, meshing, and analysis. UQ requires
simulations with numerous samples of models needed to charac-
terize probability distributions. Sampling puts a premium on the
ability to rapidly generate geometry models, meshes, and analyses,
which again leads to the need for tightly integrated geometry,
meshing, and analysis. The era of petaflop computing is on the
horizon. Parallelism keeps increasing, but the largest unstructured
be incomplete. (a) Topology of NURBS control grid. (b) Topology of sample T-spline
ints; 1100 T-spline control points. (d) Head modeled as NURBS and T-spline. (e) Car



mesh simulations have stalled because no one truly knows how to
generate and adapt massive meshes that keep up with increasing
concurrency. To be able to capitalize on the era of Oð105Þ core par-
allel systems, CAD, geometry, meshing, analysis, adaptivity, and
visualization all have to run in a tightly integrated way, in parallel
and scalably.

Our vision is that the only way to breakdown the barriers be-
tween engineering design and analysis is to reconstitute the entire
process. We believe that the fundamental step is to focus on one,
and only one, geometric model, which can be utilized directly as
an analysis model, or from which geometrically exact analysis
models can be automatically built. This will require a change from
classical finite element analysis to an analysis procedure based on
Fig. 4. Local refinement using T-splines. The add

Fig. 5. (a) Hand modeled using seven NURBS surfaces. (b) Blowup of highlighted region sh
merging.
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exact CAD representations. This concept is referred to as isogeo-
metric analysis, and was first proposed in Hughes et al. [30] and
further developed in [3,4,6,7,18,19,21,22,27,49,52]. Isogeometric
analysis is based on the same computational geometry representa-
tion as the CAD model.

There are a number of candidate computational geometry tech-
nologies that may be used in isogeometric analysis. The most
widely used in engineering design is NURBS (non-uniform rational
B-splines), the industry standard (see, e.g. [23,24,28,37,38,40]). The
major strengths of NURBS are that they are convenient for free-
form surface modeling, can exactly represent all quadric surfaces,
such as cylinders, spheres, ellipsoids, etc., and that there exist
many efficient and numerically stable algorithms to generate
ed control points do not change the surface.

owing NURBS control grids. (c) T-spline control grid; the gap is closed using T-spline



Fig. 6. Utah teapot model. (a) The original NURBS surfaces. (b) Intersection curves where the body and spout intersect (the spout has been moved away from the body). (c)
Trimmed-NURBS representation in which the hole is cut in the body and the excess part of the spout is trimmed away. (d) Trimmed-NURBS body and spout moved back to
their original positions. (e) Blowup showing the gap between the body and spout inside the green rectangle in (d).
NURBS objects. They also possess useful mathematical properties,
such as the ability to be refined through knot insertion, Cp�1-conti-
nuity for degree p NURBS, and the variation diminishing and con-
vex hull properties.1 NURBS are ubiquitous in CAD systems,
representing billions of dollars in development investment. The ma-
jor deficiencies of NURBS are that gaps and overlaps at intersections
of surfaces cannot be avoided, complicating mesh generation, and
that they utilize a tensor product structure making the representa-
tion of detailed local features inefficient. Furthermore, it is impossi-
ble to represent most shapes using a single, watertight NURBS
surface. T-splines are a recently developed generalization of NURBS
technology (see [44]). T-splines correct the deficiencies of NURBS
in that they permit local refinement and coarsening, and a solution
to the gap/overlap problem. Commercial bicubic T-spline surface
modeling capabilities have been recently introduced in Maya [45]
and Rhino [46], two NURBS-based design systems. Extensions of
T-spline surfaces to arbitrary polynomial degree have been described
in Finnigan [26].

A NURBS surface is defined using a set of control points, which
lie, topologically, in a rectangular grid, as shown in Fig. 3a. This
means that a large percentage of NURBS control points are super-
fluous in that they contain no significant geometric information,
but merely are needed to satisfy the topological constraints. In
Fig. 3c, 80% of the NURBS control points are superfluous (colored
red2). By contrast, a T-spline control grid is allowed to have partial
rows of control points, as shown in Fig. 3b. A partial row of control
points terminates in a T-junction, hence the name T-splines. In
Fig. 3c, the purple T-splines control points are T-junctions. For the
head modeled by NURBS and T-splines in Fig. 3c and d, the T-spline
model requires only 24% of the control points compared to the
NURBS model. For a designer, fewer control points means faster
modeling time. The artist that created the T-spline model of the
car in Fig. 3e estimated that it took one-fourth the time it would
have taken using NURBS. Refinement, the process of adding new
control points to a control mesh without changing the surface, is
1 The standard variation diminishing property holds for NURBS curves but does not
extend to surfaces.

2 For interpretation of color in Figures, the reader is referred to the web version of
this article.
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an important basic operation used by designers. A limitation of
NURBS is that refinement requires the insertion of an entire row of
control points. T-junctions enable T-splines to be locally refined.
As shown in Fig. 4, a single control point can be added to a T-spline
control grid. Another limitation of NURBS is that because a single
NURBS surface must have a rectangular topology, most objects must
be modeled using several NURBS surfaces. The hand in Fig. 5 is mod-
eled using seven NURBS patches, one for the forearm, one for the
hand, and one for each finger. It is difficult to join multiple NURBS
surfaces in a single watertight model, as illustrated in Fig. 5a and
b, especially if corners of valence other than four are introduced.
However, it is possible to merge together several NURBS surfaces
into a single gap-free T-spline, as shown in Fig. 5c.

Other methods have been devised for creating watertight
smooth surfaces of arbitrary topology. A notable example is subdi-
vision surfaces [51], which are defined in terms of various refine-
ment rules that map a control polyhedron of arbitrary topology
to a smooth surface. They have been used for shell analysis by Cir-
ak et al. [15–17]. The appeal of subdivision surfaces is that, like T-
splines, they create gap-free models and there is no restriction on
the topology of the control grid. Subdivision surfaces are gaining
widespread adoption in the animation industry. Most of the char-
acters in Pixar animations are modeled using subdivision surfaces
[51]. The president of Walt Disney Animation Studios and Pixar
Animation Studios, Catmull, was one of the inventors of subdivi-
sion surfaces in 1978 [14]. The CAD industry has not adopted sub-
division surfaces very widely because they are not compatible with
NURBS. With billions of dollars of infrastructure invested in
NURBS, the financial cost would be prohibitive.

Another serious problem with NURBS is that it is mathemati-
cally impossible for a trimmed NURBS to accurately represent the
intersection of two NURBS surfaces without introducing gaps in
the model. A reason for this is that a generic curve of intersection
between two bicubic patches is degree 324 [41], whereas the de-
gree of the image of a conventional trimming curve is only 18.
Fig. 6 illustrates how these gaps occur. Fig. 6a shows the Utah tea-
pot model in which the body and spout are modeled as two distinct
NURBS surfaces. Using surface intersection operations that are
standard in CAD systems, the spout cuts a hole in the body, and
the body cuts away the excess portion of the spout. The white rings



in Fig. 6b show where the cuts will occur, and Fig. 6c shows the
resulting cuts. The trimmed teapot body and spout in Fig. 6c are
represented using trimmed NURBS. In Fig. 6d, the trimmed spout
is moved back into position relative to the trimmed body. How-
ever, they do not form a watertight model, as the blowup in
Fig. 6e shows.

An NSF-sponsored workshop in 1999 [1] identified the unavoid-
able gaps in trimmed NURBS as the most pressing unresolved
problem in the field of CAD. This problem is a major cause of the
interoperability between CAD and analysis software [34], which
was once estimated to cost the US automotive industry alone over
$1 billion annually [12]. One existing approach is to employ ‘‘heal-
ing” software, which does not fix the problem, but only reduces the
size of gaps. The problem is a significant ingredient in the design-
to-analysis bottleneck because a CAD model must be closed in or-
der to generate an analysis-suitable mesh. T-splines provide a way
to close the gap [43]. Fig. 7 shows how T-splines can represent the
NURBS model in Fig. 6 as a single, gap-free T-splines surface using
the merge capability of T-splines shown in Fig. 5c. In addition to
the fact that T-splines solve many of the problems with NURBS that
have vexed the CAD community for three decades, T-splines are
forward and backward compatible with NURBS. Every NURBS is a
special case of a T-spline (i.e., a T-spline with no T-junctions or
extraordinary points) and every T-spline can be converted into
one or more NURBS surfaces by performing repeated local refine-
Fig. 8. Examples of some of the simple solid and thin-walled s

Fig. 7. Utah teapot model. (a) The trimmed body and spout from Fig. 6c each modeled as
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ment to eliminate all T-junctions. Compatibility is crucial for com-
mercialization, especially in a mature industry like CAD, and it may
allow T-splines and NURBS to co-exist during a gradual period of T-
spline adoption.

The isogeometric concept would endeavor to use the surface
design model directly in analysis. This would only suffice if analy-
sis only requires the surface geometry, such as in the stress or
buckling analysis of a shell. In many cases, if not most, the surface
will enclose a solid and an analysis model will need to be created
for the solid. The basic problem is to develop a three-dimensional
(trivariate) representation of the solid in such a way that the sur-
face representation is exactly preserved. This is far from a trivial
problem. Surface differential and computational geometry and
topology are now fairly well understood [50], but the three-dimen-
sional problem is still open [47,48]. The hope is that through the
use of new technologies, such as Ricci flows and polycube splines
[35,50], progress will be forthcoming. The polycube spline concept
has features in common with the template-based system devel-
oped by Zhang et al. [52] for modeling patient-specific arterial
fluid–structure geometries.

The current state-of-the-art in isogeometric analysis is as fol-
lows: A number of single and multiple patch NURBS-based para-
metric models have been developed and analyzed
[4,7,18,19,27,30,52]. Various mesh refinement schemes have been
investigated, namely, h-, p- and k-refinement (i.e., mesh, C0 degree
tructures to which isogeometric analysis has been applied.

a T-spline surface. (b) The two T-splines in (a) merged into a single gap-free T-spline.



elevation, and Cp�1 degree elevation, resp.). It has been shown that
isogeometric analysis preserves geometry at all levels of refine-
ment and that detailed features can be retained without excessive
mesh refinement, in contrast with traditional finite element analy-
sis. Superior accuracy to finite element analysis on a degree-of-
freedom basis has been demonstrated in all cases, and indications
of significantly increased robustness in vibration and wave propa-
gation analysis has been noted (see [18,32]). So far, isogeometric
analysis has been applied to simple solid parts and thin-walled
structures (see Fig. 8), and its extension to more complex parts is
apparent (see Fig. 9). The current range of applicability for isogeo-
Fig. 10. Current range of applicability of isogeometric ana

Fig. 9. Extension of the isogeometric analysis methodology to various parts and com
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metric analysis includes more complex thin-walled structures (see
Fig. 10). The challenge is to apply it to very complex modules and
assemblages. Examples emanating from modern ship design are
representative (see Fig. 11).

Given the incredible inertia existing in the design and analysis
industries, one may reasonably ask why one should believe that
the time is right to transform the technology of these industries.
Here are our reasons. Recent initiatory investigations of the isogeo-
metric concept have proven very successful. Compatibility with
existing design and analysis technologies is attainable. There is
interest in both the computational geometry and analysis commu-
lysis includes more complex thin-walled structures.

ponents is apparent. (Courtesy of General Dynamics/Electric Boat Corporation.)



Fig. 11. Some examples from modern ship design of the types of complex modules and assemblages that present challenges to analysts. (Courtesy of S. Gordon, General
Dynamics/Electric Boat Division.)
nities to embark on isogeometric research. Several minisymposia
and workshops at international meetings have been held.3 There
is an inexorable march toward higher precision and greater reality.
New technologies are being introduced and adopted rapidly in de-
sign software to gain competitive advantage. New and better analy-
sis technologies can be built upon these new CAD technologies.
These tools will be adopted by engineering designers because they
are better, faster and cheaper. Engineering analysis can leverage
these developments as a basis for the isogeometric concept.

In Section 2 we review B-splines and NURBS. In Section 3, as a
prelude to T-splines, we describe PB-splines, an unstructured
‘‘meshless” spline technology. In Section 4, we present T-splines,
and in Section 5 we apply T-splines to some basic problems of com-
putational fluid and structural mechanics. In Section 6 we draw
conclusions. Appendix A tabulates T-spline data for a simple mesh
of a plate with a hole and Appendix B describes the process of com-
patibly merging two NURBS patches into a single T-spline mesh.

2. B-splines and NURBS

We begin with a review of B-splines and NURBS with particular
emphasis on the features which are important for understanding
the generalization to T-splines.
3 For example, the 7th World Congress on Computational Mechanics; the 9th US
National Congress on Computational Mechanics, the Seventh International Confer-
ence on Mathematical Methods for Curves and Surfaces, and the 6th International
Conference on Computation of Shell and Spatial Structures.
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2.1. B-splines

B-splines are piecewise polynomials that offer great flexibility
and precision for a myriad of modeling applications. They are built
from a linear combination of basis functions that span a corre-
sponding B-spline space. These basis functions are locally supported
and have continuity that is easily controlled. Members of the result-
ing space have continuity properties that follow directly from those
of the basis. As we introduce the basic machinery needed to build B-
splines, we will attempt to foreshadow our needs in a T-spline set-
ting. Notation will necessarily be overloaded as the complexity of
the method builds, but every attempt will be made to call attention
to any shifts in the notational convention as they arise.

2.1.1. Knot vectors and basis functions
Univariate B-spline basis functions are constructed from a knot

vector. A knot vector is a non-decreasing sequence of coordinates
in the parameter space, written N ¼ n1; n2; . . . ; nnþpþ1

� �
, where

ni 2 R is the ith knot, i is the knot index, i ¼ 1;2; . . . ;nþ pþ 1, p
is the polynomial degree, and n is the number of basis functions
which comprise the B-spline. More than one knot can be located
at the same location in the parameter space. A knot vector is said
to be open if its first and last knots have multiplicity pþ 1. Open
knot vectors are standard in the CAD literature, and we will only
consider the use of open knot vectors in this paper.

B-spline basis functions for a given degree, p, are defined recur-
sively in the parameter space by way of the knot vector, N. Begin-
ning with piecewise constants ðp ¼ 0Þ we have
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1 if ni 6 n < niþ1;

0 otherwise:

�
ð1Þ

For p ¼ 1;2;3; . . ., we define the basis functions by the Cox–de Boor
recursion formula:

Ni;pðnÞ ¼
n� ni

niþp � ni
Ni;p�1ðnÞ þ

niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1ðnÞ: ð2Þ

Fast, stable, and efficient algorithms exist for evaluation of B-spline
basis functions and their derivatives. The de Boor algorithm is per-
haps the most famous of these, see [24].

From (1) and (2), one can verify that B-spline basis functions
possess the following properties:

(1) Partition of unity:
Pn

i¼1Ni;pðnÞ ¼ 1; n 2 ½n1; nnþpþ1�.
(2) Pointwise nonnegativity: Ni;pðnÞP 0; i ¼ 1;2; . . . ;n.
(3) Linear independence:

Pn
i¼1aiNi;pðnÞ ¼ 0() ak ¼ 0;

k ¼ 1;2; . . . ; n.
(4) Compact support: fnjNi;pðnÞ > 0g � ½ni; niþpþ1�.
(5) Control of continuity: If a knot value has multiplicity k (i.e.,

ni ¼ niþ1 ¼ � � � ¼ niþk�1), then the basis functions are Cp�k-
continuous at that location. When k ¼ p, the basis is C0

and interpolatory at that location.

These features are very useful in a finite element context. The
first four properties ensure a well conditioned and sparse matrix.
The fifth property allows for great flexibility. Not only do smooth
bases lead to superior accuracy per degree-of-freedom compared
with C0-continuous bases [2,19,32], but the continuity can be re-
duced to better resolve steep gradients [18]. Additionally, one
can use B-splines to build a basis that spans the same space as clas-
sical p-version finite elements (that is, a basis of degree p that is C0

across element boundaries). This is the well-known Bernstein basis
[36].

An example of a quadratic B-spline basis for
N ¼ f0;0;0;1;2;3;4;4;5;5;5g is shown in Fig. 12. The basis is
interpolatory at the first and last knot values due to the use of an
open knot vector, and also at n ¼ 4, where the multiplicity of the
knot value is equal to the polynomial degree. The basis is
Cp�1 ¼ C1 across element boundaries.

2.1.2. Anchors
Note that knots, fnignþpþ1

i¼1 , and basis functions, fNj;pgn
j¼1, are not

in a one-to-one correspondence. As the use of open knot vectors
is assumed throughout, we have nþ pþ 1 knots and n basis func-
tions. However, it will prove convenient to identify locations in the
parameter space to which basis functions are associated. We refer
to these locations as anchors. They are defined as follows. For each
Ni;p, its anchor, denoted ti is given by

ti ¼
niþðpþ1Þ=2 if p is odd;
1
2 niþðp=2Þ þ niþðp=2Þþ1

� �
if p is even:

(
ð3Þ
Fig. 12. Quadratic basis functions for open, non-uniform knot vector
N ¼ f0;0; 0;1;2;3;4;4;5;5;5g.
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The idea is depicted in Fig. 13 for a uniform knot vector. Note that
anchors associated with distinct basis functions may lie at the same
parametric location.

2.1.3. B-spline curves
Let ds denote the number of space dimensions. A B-spline curve

defined in ds-dimensional space Rds is defined as follows:

CðnÞ ¼
Xn

i¼1

PiNi;pðnÞ; ð4Þ

where Pi 2 Rds is a control point. Piecewise linear interpolation of
the control points defines the control polygon.

Important properties of B-spline curves are:

(1) Affine covariance: An affine transformation of a B-spline
curve is obtained by applying the transformation to its con-
trol points.

(2) Convex hull: A B-spline curve lies within the convex hull of
its control points (see [40] for the relationship between the
convex hull and the polynomial degree of the curve).

(3) Variation diminishing: A B-spline curve in Rds cannot cross
an affine hyperplane of codimension 1 (e.g. a line in R2,
plane in R3) more times than does its control polygon [37].

In addition, B-spline curves inherit all of the continuity proper-
ties of their underlying bases. This is illustrated in Fig. 14a, where
we built a B-spline curve from the basis shown in Fig. 12. At the
spatial location corresponding to parameter value n ¼ 4, the B-
spline curve is only continuous. The B-spline curve interpolates
the control point P6 at this location. The use of open knot vectors
ensures that the first and last control points, P1 and P8, are interpo-
lated as well.

The control points are in one-to-one correspondence with the
basis functions. This also means that the control points and the an-
chors are in one-to-one correspondence. Just as the anchor informs
us approximately where in the parametric domain each function is
N
i,2

N
i+1,2

N
i+2,2

N
i+3,2

N
i+4,2

t
i

t
i+1

t
i+2

t
i+3

t
i+4

t
i+5

N
i+5,2

(b) Even degree, the anchors are the center of the knot spans

Fig. 13. Anchors. (a) In the odd case, each function is centered at a knot value. (b) In
the even case, each function is centered at the center of a knot span. (In the case of a
uniform knot vector, the anchor location corresponds to the maximum of the
function in question, but this will not occur in the case of a general knot vector.)
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Fig. 14. Quadratic B-spline curve in R2. Knot vector and basis functions as in Fig. 12.
(a) Curve with control points and control polygon. Control point locations are
denoted by the red �. (b) Curve with anchors. Anchor locations are denoted by the
red �.

4 The terms control mesh, control net, and control lattice are used interchangeably.
We prefer the term control mesh because it corresponds to a mesh of multilinear
finite elements. Note, however, that the control mesh and physical mesh are distinct
objects in isogeometric analysis.

5 In computational geometry the word ‘‘patch” refers to the case of a surface. In our
discussion we expand the concept to any dimension.
centered and takes its maximum, it also tells us approximately
where the associated control point is located (see Fig. 14).

2.1.4. Multivariate B-spline functions
Multivariate B-spline basis functions are defined by tensor

products of univariate B-spline basis functions. Inevitably, our
notation becomes a bit cluttered as we must now indicate the
parameter of interest when referring to each of the univariate enti-
ties comprising the spline. With dp parameters, we shall let
‘ ¼ 1; . . . ; dp denote the direction of interest. While dp ¼ 2 (sur-
faces) and dp ¼ 3 (volumes) suffice for nearly all geometry and
analysis problems, this section presents multivariate B-splines of
any dimension. Note that the appearance of ‘ as a superscript is al-
ways used for disambiguation and should never be interpreted as
an exponent. The B-spline basis functions are built from dp knot
vectors, one for each dimension. We write

N‘ ¼ n‘1; n
‘
2; . . . ; n‘n‘þp‘þ1

n o
; ð5Þ

where p‘ indicates the polynomial degree along parametric direc-
tion ‘, and n‘ is the associated number of functions. These univariate
B-spline basis functions are denoted N‘

i‘ ;p‘

n on‘

i‘¼1
and are defined

using knot vector N‘ exactly as in Section 2.1.1.
We now define a multi-index i 2 Zdp . In particular, we are inter-

ested in the set

I ¼ i ¼ i1; . . . ; idp

� �
ji‘ 2 1; . . . ;n‘f g 8i‘ ¼ 1; . . . ;dp

� �
: ð6Þ

Similarly, we can denote the various polynomial degrees as
p ¼ p1; p2; . . . ;pdp

n o
. Now, for each multi-index i 2 I, we can define

a corresponding dp-dimensional B-spline basis function as

Bi;pðnÞ �
Ydp

‘¼1

N‘
i‘ ;p‘
ðn‘Þ; ð7Þ

where n ¼ n1; n2; . . . ; ndp
� �

.

10
It is important to note that, with this definition, there are a total
of
Qdp

‘¼1n‘ B-spline basis functions associated with the dp knot vec-
tors. Multivariate B-spline basis functions inherit most of the
aforementioned properties of their univariate counterparts,
namely partition of unity, nonnegativity, compact support, higher
continuity, and linear independence.

In Fig. 15, we have plotted Bf3;3g;f2;2gðnÞ, a bivariate B-spline basis
function corresponding to knot vectors N1 ¼ 0;0;0;1;2;2;3;4;f
4;4g and N2 ¼ 0;0;0;1;1;2;3;4f g, and the two univariate func-
tions whose tensor product defines it. Note the decreased continu-
ity that the basis function inherits from its univariate constituents;
in particular, there is a break in continuity along the global knot
lines n1 ¼ 2 and n2 ¼ 1.

The notion of an anchor for each function (or, equivalently, for
each control point) generalizes to the multidimensional case as
well. With each Bi;p, we associate anchor ti. The anchors of the mul-
tivariate functions are defined as the set containing dp anchors
associated with the univariate functions from which Bi;p was built.

2.1.5. B-spline surfaces and solids
With multivariate B-spline basis functions defined, we can now

define B-spline surfaces and solids. Before proceeding, we define
the control mesh4 to be our dp-dimensional analogue of the control
polygon. The control mesh is the collection of control points Pif gi2I

with I as in (6). An example is given in Fig. 16 for a quadratic mesh
comprised of two elements.

To define a B-spline surface, we require a multi-index
p ¼ fp1; p2g, two knot vectors N1 ¼ n1

1; n
1
2; . . . ; n1

n1þp1þ1

n o
and N2 ¼

n2
1; n

2
2; . . . ; n2

n2þp2þ1

n o
, and a corresponding control mesh Pif gi2I .

Then, the B-spline surface is defined as

SðnÞ ¼
X
i2I

PiBi;pðnÞ; ð8Þ

where the bivariate B-spline basis functions Bi;pðnÞ are defined by
(7).

Analogously, to define a B-spline solid, we need a multi-index

p ¼ fp1; p2; p3g, three knot vectors N1 ¼ n1
1; n

1
2; . . . ; n1

n1þp1þ1

n o
,

N2 ¼ n2
1; n

2
2; . . . ; n2

n2þp2þ1

n o
, and N3 ¼ n3

1; n
3
2; . . . ; n3

n3þp3þ1

n o
, and a

corresponding control mesh Pif gi2I . Then, the B-spline solid is de-
fined as

VðnÞ ¼
X
i2I

PiBi;pðnÞ; ð9Þ

where Bi;pðnÞ are now trivariate B-spline basis functions.
From henceforth, let us simply use S to refer to a multivariate

spline object. While there is a jump from the univariate case of
curves to the multivariate case, there is little fundamental differ-
ence between different values of dp P 2.

Collectively, any B-spline associated with a particular set of
knot vectors, polynomial degrees, and control points is referred
to as a patch.5 Each patch has its own parameter space. Large geom-
etries are frequently built from many patches. When two patches
meet, the control points coming from each side must be identical
along the interface where they meet, and the corresponding knot
vectors must be identical as well. Under these conditions, only C0-
continuity of the basis is achieved across the patch boundaries.



Fig. 15. Bivariate quadratic B-spline basis function Bf3;3g;f2;2gðn1; n2Þ for knot vectors N1 ¼ 0; 0;0;1;2;2;3;4;4;4f g;N2 ¼ 0;0;0;1;1;2;3;4f g. (a) Univariate B-spline basis
function N1

3;2ðn
1Þ. (b) Univariate B-spline basis function N2

3;2ðn
2Þ. (c) Tilted view of Bf3;3g;f2;2gðnÞ. (d) Overhead view of Bf3;3g;f2;2gðnÞ.
2.1.6. The index, parameter, and physical spaces
Fig. 16 shows both the physical mesh and control mesh in the

physical space. It is also informative to consider the domain of
the mesh, a subset of the parameter space, shown in Fig. 17, which
is simply the pre-image of the physical mesh. The B-spline map-
ping takes each point in the parameter space to a point in the phys-
ical space, and the images of the knot lines under the NURBS
mapping bound the physical elements.

The concept of the index space was introduced in Hughes et al.
[30]. It is created by plotting the knots at equally spaced intervals,
regardless of their actual spacing, and labeling each knot line with
its index value. This point of view is extremely useful for develop-
ing algorithms, as well as for building intuition. For example, in the
index space, it is easy to identify the knot lines at which the sup-
port of any given function will begin or end, as well as which func-
tions have support within any given element. This is trickier in the
parameter space as some of the knots may have the same value.

As mentioned previously, the parameter space definition of an-
chors, given by (3), may lead to anchors associated with distinct
basis functions lying at identical parametric locations. Index space
enables us to define unique locations of anchors associated to dis-
tinct basis functions. Corresponding to (3), we assign to each one-
11
dimensional B-spline basis function Ni;p a unique anchor in index
space, si, given by

si ¼ iþ ðpþ 1Þ=2: ð10Þ

Note that when p is odd, si has integer value, whereas when p is
even, si is real and the average of consecutive integers. Multi-
dimensional B-spline basis functions have coordinate anchors
whose components in each direction are given by (10).

Fig. 18 shows the index space for the surface in Fig. 16. We have
plotted the anchors of the functions. As p ¼ 2, these fall in the cen-
ter of the cells. Were this an odd degree, the anchors would fall at
the intersections. In both cases, the anchor for each function lies at
the exact center of its support in the index space. There is a continu-
ous, piecewise linear mapping from index space to parameter
space that is surjective but generally not bijective. This mapping
renders definition (10) consistent with (3).

2.2. Non-uniform rational B-splines

There are geometric entities in Rds that cannot be modeled ex-
actly by piecewise polynomials. Many important ones, however,
can be obtained through a projective transformation of a



Fig. 16. A biquadratic B-spline surface generated from N1 ¼ f0;0;0;1;2;2;2g and
N2 ¼ f0; 0;0;1;1;1g. (a) The physical mesh is comprised of the image of the parent
domain under the geometrical mapping. The curves in the physical mesh are the
images of the knot lines. In this case, we have two elements. (b) The control mesh is
comprised of the red control points, the black lines connecting the control points,
and the images of the knot spans under a bilinear mapping. This is completely
analogous to a finite element mesh of four-node bilinear elements. Note that the
control points are not generally interpolated by the surface itself. It is extremely
important to distinguish between the physical mesh and the control mesh.

0 1 2
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0

ξ2

ξ1

Fig. 17. The domain of the mesh, a subset of the parameter space, corresponding to
the biquadratic B-spline surface seen in Fig. 16. The domain of the mesh is the pre-
image of the physical mesh.
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Fig. 18. The index space corresponding to the biquadratic B-spline surface seen in
Fig. 16. The anchor for each function is shown as a red circle. For this even-degree
case ðp ¼ 2Þ, the anchors fall in the centers of the cells. For an odd polynomial
degree, the anchors would fall at the intersections of knot lines. Note that,
regardless of degree, an anchor falls at the center of the support of a function in the
index space.
corresponding B-spline entity in Rdsþ1 yielding a rational B-spline.
In particular, conic sections, such as circles and ellipses, can be ex-
actly constructed by projective transformations of piecewise qua-
dratic curves.

The construction of a rational B-spline curve in Rds begins by
choosing a set of control points Pw

i

� �
for a B-spline curve in Rdsþ1

with knot vector N ¼ n1; . . . ; nnþpþ1

� �
. These are referred to as the
12
‘‘projective” control points. The control points in Rds are then de-
rived from the following relations:

ðPiÞj ¼
Pw

i

� �
j

wi
; j ¼ 1; . . . ;ds; ð11Þ

wi ¼ Pw
i

� �
dsþ1; ð12Þ

where ðPiÞj is the jth component of the vector Pi and wi is referred to
as the ith weight. It is common practice to require all weights to be
nonnegative. This assures that the convex hull property holds. Then,
the NURBS (non-uniform rational B-spline) curve is defined by

CðnÞ ¼
Xn

i¼1

PiRi;pðnÞ; ð13Þ

where the projected NURBS basis functions Ri;pðnÞ are defined by

Ri;pðnÞ ¼
wiNi;pðnÞPn
j¼1wjNj;pðnÞ

: ð14Þ

Multivariate NURBS basis functions are defined analogously using
dp knot vectors, N‘, and a set of weights wif gi2I where I is the appro-
priate index set. Given p and i, the corresponding multivariate
NURBS basis function is defined as

Ri;pðnÞ ¼
wiBi;pðnÞP
j2IwjBj;pðnÞ

: ð15Þ

NURBS surfaces and solids are then defined in the same manner as
B-splines surfaces and solids, namely

SðnÞ ¼
X
i2I

PiRi;pðnÞ: ð16Þ

NURBS inherit all of the important properties from their piecewise
polynomial counterparts. These include

(1) Partition of unity.
(2) Pointwise nonnegative.
(3) Affine covariance.
(4) The convex hull property.
and the continuity of a NURBS object follows from that of the basis
in exactly the same manner as for B-splines. It is common practice
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Fig. 19. Function subdivision. (a) B-spline basis functions generated from
N ¼ f0; 0;0;0;1;2;3;4;5;5;5;5g and p ¼ 3. (b) New B-spline basis functions
generated from N ¼ f0; 0;0;0;1;1:5;2;3;4;5;5;5;5g and p ¼ 3. (c) As an example,
consider N4;3 from our original basis, which has support on [0,4] and approaches the
origin with a second derivative of zero. (d) The new basis has two functions, N4;3

and N5;3, which also have support on [0,4] and approach the origin with zero second
derivative. (e) We can represent N4;3 as a linear combination of N4;3 and N5;3 with
coefficients of 1/2 and 5/6, respectively.
to require all weights to be nonnegative; otherwise, the convex
hull property may be violated.

A B-spline object that does not use weights (i.e., the form pre-
sented in Section 2.1) is called a polynomial B-spline to distinguish
it from a rational B-spline. Note that setting all the weights to be
equal reduces a rational B-spline to a polynomial B-spline. In this
paper, we refer to polynomial B-splines as B-splines and rational
B-splines as NURBS. As in the case of B-splines, we refer collec-
tively to any NURBS object associated with a single set of knot vec-
tors, polynomial degrees, and control points as a ‘‘patch”.

2.3. Refinement

Some of the ways in which NURBS can be refined were dis-
cussed in [18]. For the purposes of the present work, we recall only
knot insertion, as that will be the focus of our investigation of
T-splines. We will begin with the case of a B-spline curve, and then
extend it to the multivariate case. Exactly the same process applies
to NURBS, but we refine the projective control points rather than
the control points themselves.

2.3.1. Knot insertion
The mechanism for implementing h-refinement is knot inser-

tion. Knots may be inserted without changing a curve geometri-
cally or parametrically. Given a knot vector N ¼ fn1; n2; . . . ;

nnþpþ1g, let N ¼ �n1 ¼ n1; �n2; . . . ; �nnþmþpþ1 ¼ nnþpþ1
� �

be an extended
knot vector such that N � N. The new nþm basis functions are
formed as before by applying recursion formulas (1) and (2)to
the new knot vector N. The new nþm control points,
P ¼ P1;P2; . . . ;Pnþm

� �T
, are formed from the original control points,

P ¼ fP1;P2; . . . ;PngT , by a linear transformation

P ¼ TpP; ð17Þ

where

T0
ij ¼

1 if ni 2 ½nj; njþ1Þ;
0 otherwise

(
ð18Þ

and

Tqþ1
ij ¼

�niþq � nj

njþq � nj
Tq

ij þ
njþqþ1 � �niþq

njþqþ1 � njþ1
Tq

ijþ1 for q

¼ 0;1;2; . . . ;p� 1: ð19Þ

Knot values already present in the knot vector may be repeated as
above but the continuity of the basis will be reduced. Continuity
of the curve is preserved by choosing the control points as in
(17)–(19).

If instead of a curve we wish to insert knots into one of the knot
vectors, N‘, of a surface or solid, we utilize the same procedure. The
matrix Tp is generated exactly as above by considering N‘ and N‘.
The new control points would be generated by applying (17) to
each row or column in the control mesh. For example, let us con-
sider a B-spline surface into which we insert m knots in the para-
metric direction ‘ ¼ 1. That is, N1 will be refined, but N2 remains
the same. The new control points for the surface are given by

Pik ¼
Xn1

j¼1

TP
ijPjk; ð20Þ

for i ¼ 1;2; . . . ; n1 þm and k ¼ 1;2; . . . ;n2. The new tensor product
basis functions are generated in the standard way from N1 and N2.

2.3.2. Function subdivision
There is another way to view this process that provides some

insight into the logic behind T-splines. Let us denote by S the
space of all curves that can be built from our original knot vector,
13
N, and let S be the space of all curves that can be built from the
extended knot vector, N. Clearly, if both our geometry and its
parameterization are to be preserved, then we must have that

S � S: ð21Þ

A natural way to ensure that this is true is to insist that each of our
original basis functions can be expressed as a linear combination of



the functions from the refined basis. This notion of function subdi-
vision is already present in (17). To see this, let
N ¼ fN1ðnÞ;N2ðnÞ; . . . ;NnðnÞgT be a vector containing the basis func-
tions generated from N, and let N ¼ N1ðnÞ;N2ðnÞ; . . . ;NnþmðnÞ

� �T
be

a vector containing the basis generated from N, where we have sup-
pressed the polynomial degree from our notations for clarity. We
have the following expressions for our B-spline curve:

CðnÞ ¼ PT N ¼ PT N ¼ TpPð ÞT N ¼ PT Tpð ÞT N
� �

ð22Þ

and thus,

N ¼ Tpð ÞT N: ð23Þ

An example of this concept is shown in Fig. 19. We begin with the
knot vector N ¼ f0; 0;0;0;1;2;3;4;5;5;5;5g, from which we gener-
ate a cubic basis, shown in Fig. 19a. After inserting a new knot value
of �n ¼ 1:5 into the knot vector, we could use (1) and (2) and gener-
ate a new basis, shown in Fig. 19b. Each function in the original ba-
sis, like the one in Fig. 19c, can be represented as a linear
combination of functions from the refined basis. In this case, the
two functions in Fig. 19d can be combined to reproduce our original
function, as in Fig. 19e.

The relationship expressed in (23) is merely one way to look at
knot insertion. Nothing is gained or lost in the univariate setting by
considering refinement of the functions, as opposed to refining the
(a) Local refinement

(b) Global refinement
Fig. 20. (a) There are many instances in which we would like to locally refine an
initial NURBS mesh by subdividing an individual element. (b) Unfortunately, knot
insertion is a global process that necessitates the propagation of the refinement
throughout the domain.
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knot vector and generating a new set of functions directly from
them. However, refining functions is a more general concept, and
it will lead to more flexibility when we revisit refinement below
in the context of T-splines.

2.4. Limitations of a NURBS-based framework

NURBS have been, and continue to be, widely used by designers.
As mentioned, they are a standard in the CAD community and have
recently been used with a great deal of success as a basis for iso-
geometric analysis. However, they have several drawbacks that
we would like to avoid. One is that they generally achieve only
C0-continuity across patch boundaries. (In special circumstances,
they can achieve higher continuity.) However, if two NURBS sur-
faces do not share a common boundary curve, they cannot even
achieve C0 continuity without perturbing at least one of the sur-
faces. Another drawback is that the joining of two patches that
were created separately can be problematic, frequently requiring
the insertion of many knots from one patch into the other, and vice
versa. This is a significant disadvantage of NURBS: knot insertion is
a global operation. When we refine by inserting knots into the knot
vectors of a surface, the knot lines extend throughout the entire
domain (see Fig. 20b). In [18], one approach to local refinement
was considered that involved multiple patches. This technique,
however, required the use of constraint equations which are incon-
venient to implement, and refinement still propagates throughout
a given patch. This is a problem in both geometrical modeling and
in analysis. What we would like is a technology that allows us to
use the smooth functions and geometrical flexibility of NURBS,
while permitting local refinement.
3. PB-splines: an unstructured, meshless spline technology

As a prelude to the description of T-splines, we introduce the
concept of point-based splines, or simply PB-splines [44]. Though
we will not actually compute with PB-splines, we feel that they
have the potential to have an impact in the area of meshless meth-
ods. Here, we examine them as a generalization of the concept of
NURBS, and discuss both what is to be gained and lost by their use.

3.1. Local knot vectors

Thus far, we have built spline basis functions beginning with a
knot vector and the function definitions of (1) and (2). From the
building blocks of these univariate, non-rational B-spline func-
tions, multivariate, rational NURBS functions can be constructed.
Note that this process has already taken on a global perspective
– knot vectors alone describe the entire parametric domain. Recall,
however, that the support of a B-spline function, Ni;p, is contained
in ½ni; niþpþ1�. As such, the only knots that contribute to the defini-
tion of Ni;p are fni; niþ1; . . . ; niþpþ1g. Thus, if we are only interested
in Ni;p, we have no need for the global knot vector. We can instead
define a local knot vector,

Nloc
i ¼ fniþjgpþ1

j¼0 ð24Þ

and use it in conjunction with (1) and (2) to define Ni;p, without
altering the result in any way.

To illustrate the notion of a local knot vector, consider first the
global knot vector N ¼ f0;0;0;0;1;2;3;4;5;5;5;5g and the associ-
ated basis for p ¼ 3, shown in Fig. 21a. We take N4;3 to be the func-
tion of interest, shown in Fig. 21b. This function may be
characterized by the local knot vector Nloc

4 ¼ f0;1;2;3;4g. This local
knot vector alone is enough to define N4;3 through (1) and (2). That
is, we do not even have to know the polynomial degree. A local
knot vector will always contain exactly pþ 2 knots, and so we
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can infer the degree of the function from the length of the local
knot vector.

Thus, although somewhat cumbersome and redundant in the
case of B-splines, one could choose to abandon the original notion
of a single global knot vector and utilize a set of local knot vectors
to define the basis functions. Of course, in a univariate B-spline set-
ting, all we would have gained is additional overhead and nota-
tional complexity. Still, we have effectively deconstructed the
spline into its basic parts. We now must decide how to put them
back together.

3.2. PB-splines

Instead of beginning with a B-spline and extracting the local
knot vector and associated basis function, consider the case where
we are provided some local knot vector of arbitrary length

Na ¼ fnigma
i¼1; ð25Þ

where we have dropped the superscript ‘‘loc” as we no longer have
any notion of a global knot vector and, hence, every knot vector will
be interpreted as a local knot vector. We associate with it a single
function NaðnÞ of degree pa ¼ ma � 2. Eqs. (1) and (2) guarantee that
NaðnÞ is a unique and well-defined function. We will refer to it as a
blending function rather than a basis function as no space has yet
been defined. Given many such functions, without assuming that
the various knot vectors are related in any way, we could assign
coefficients and create a curve from them.

In the multivariate case, we will again let ‘ ¼ 1; . . . ; dp denote a
given parametric direction. In order to define a function, BaðnÞ, we
now require dp knot vectors, N‘

a ¼ n‘1; n
‘
2; . . . ; n‘m‘

n o
. From these dp

knot vectors, we compute dp univariate functions N‘
aðnÞ such that

BaðnÞ �
Ydp

‘¼1

N‘
aðn

‘Þ: ð26Þ

We will consolidate notation by collecting the knot vectors in each
parametric direction into a set, denoted Na, given by

Na ¼ N‘
a

� �dp

‘¼1; ð27Þ

such that each Na uniquely defines a function BaðnÞ. To each Na we
will also associate the support of (26), namely

Da ¼ 	
dp

‘¼1
½n1‘ ; nm‘

�: ð28Þ
0 1 2 3 4 5
0

0.5

1

(a)

0 1 2 3 4 5
0

0.5

1

N4,3

(b)

Fig. 21. (a) Eight B-spline basis functions for N ¼ f0;0;0; 0;1;2;3;4;5;5;5;5g and
p ¼ 3. (b) Basis function N4;3 extracted from global knot vector associated with local
knot vector Nloc

4 ¼ f0;1;2;3;4g.
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Let us define a new index set, A, containing all a for which we have a
set of local knot vectors and corresponding blending functions. In
order to build a PB-spline, we must first define a domain, D. Though
D may be irregular, we must have that

D �
[
a2A

Da: ð29Þ

The only requirement for D is that
P

a2ABaðnÞ > 0 for all n 2 D. We
can now define blending functions on D by creating a partition of
unity:

RaðnÞ ¼
BaðnÞP
b2ABbðnÞ

: ð30Þ

The blending functions will constitute a basis if their linear inde-
pendence can be established. To each a 2 A we assign a control
point, Pa, and define a PB-spline by

SðnÞ ¼
X
a2A

PaRaðnÞ: ð31Þ

Note that it no longer makes sense to refer to a ‘‘control mesh”. The
term control cloud seems more appropriate as there need be no
organization or topology to the set of control points. Each point
multiplies one function. Of course, choosing points completely at
(b)

Fig. 22. PB-splines. (a) The supports, Da , and the parameter space for the spline, D.
(b) The corresponding biquadratic PB-spline with its four control points.
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Fig. 23. Example of a T-mesh. Each line in the mesh corresponds to a knot value.
random will result in degenerate geometries, but the concept re-
mains: there is no clear ordering of the control points as in the case
of NURBS. The notion of an anchor for each function also still per-
sists. As with the control points, these anchors are completely unre-
lated to each other. As such, they do not appear to be useful here.

An example of a PB-spline surface in R3 is shown in Fig. 22. The
supports of the functions and the global domain are shown in the
parameter space in Fig. 22a. In Fig. 22b, we see the PB-spline, along
with the control cloud. In this case, the functions used are all
biquadratic, but nothing precludes using different combinations
of polynomial degrees for each function.

Several of the nice properties of NURBS persist in PB-splines,
now in a completely unstructured environment. This construction
results in objects that possess the convex hull property. They have
at least as many continuous derivatives as implied by the local
knot vectors from which they were built, and the spaces can be lo-
cally enriched by adding more blending functions wherever they
are desired. The space of blending functions is even complete in
that it is capable of reproducing arbitrary linear polynomials (any
isoparametric basis that is also a partition of unity has this prop-
erty; see [29]).

Unfortunately, several undesirable features emerge. First, there
is no notion of an element in the classical sense. While the support
of a function, Ra, is easily discerned6 from its local knot vector Na,
there is no clearly identifiable region that we might call an element.
Also, as each function has been constructed without regard for any
other function, it is very difficult to speak of refinement in the tradi-
tional sense. Though new blending functions may be added at will, it
is not at all clear that new control points could be selected in such a
way as to preserve the original geometry. Finally, there is no clear
way of assessing the approximability of discretization spaces com-
prised of PB-splines. Thus, PB-splines have some nice properties,
but deficiencies as well. For example, we have lost any sense of
structure. With T-splines, we maintain much of the freedom of PB-
splines, recover the orderly structure of NURBS, and preserve many
the desirable properties of both.
4. T-splines: smooth functions, geometrical flexibility, local
refinement

T-splines combine much of the flexibility of PB-splines with the
topology and structure of NURBS [44]. They allow us to build
spaces that are complete up to a desired polynomial degree, as
smooth as an equivalent NURBS basis, and capable of being locally
refined in a manner similar to PB-splines but while keeping the ori-
ginal geometry and parameterization unchanged. The properties
that make T-splines useful for geometrical modeling also make
them useful for finite element analysis.

In [44], T-splines were defined for bicubic surfaces. We have
generalized this concept to three dimensions and arbitrary degree
p. As such, we have adopted slightly different definitions. We begin
with the two-dimensional case.

4.1. Control points, knot vectors, anchors, and the T-mesh

With NURBS, we used global knot vectors from which all of the
functions were defined. With PB-splines, each function had its own
local knot vectors that remained completely independent of the
other functions and their knot vectors. For T-splines, we strike a
balance between the two cases. Each function has its own local
knot vector, but these local knot vectors are inferred from a global
6 The fact that the support of the function is so easily identified may make this a
very useful meshless technology.

16
structure, the T-mesh, that encodes a topology and parameteriza-
tion for the entire T-spline object.

In Section 2.1.6, NURBS basis functions were defined from the
parameter space and the index space was utilized as an auxiliary
tool. With T-splines, for reasons that will be made clear later on,
this order will be reversed. We begin by defining an index space
version of a T-mesh as a rectangular tiling of a region in R2 such
that each edge of every rectangle has positive integer value. An
example of a T-mesh is given in Fig. 23. Note its similarity to the
index space representation of a NURBS, except that now vertices
connecting three edges, referred to as T-junctions, are allowed.
We now choose a degree p for the T-spline.7 Then, for each index
space direction i and each integer j for which some edge in the
T-mesh has value j in direction i, we choose a knot ni

j 2 R. We require
that if k > j, then ni

k P ni
j. Subsequent knots in the same direction

may have the same value. Thus, lines in the index space version of
a T-mesh will correspond to knot indices. Again, note the similarity
to the index space representation of NURBS, where the knots were
plotted equally spaced.

At this point, though very similar, we must treat the cases of
even and odd degrees separately. Let us begin with the odd-degree
case. For each vertex in the T-mesh, we now define an anchor sa at
that point. Each anchor will be used to infer local knot vectors
which in turn will define a T-spline blending function in the same
way as PB-splines. For each index space direction i, we create a lo-
cal knot vector Ni

a corresponding to anchor sa. At first, this vector is
empty. Next, we take the anchor’s location sa ¼ fi; jg and place n1

i

and n2
j in N1

a and N2
a, respectively. These knots will remain at the

middle of the local univariate knot vectors. Next, we travel hori-
zontally to the right of the anchor, record the value k of the first
orthogonal edge encountered, and place n1

k at the end of N1
a. We

continue this process until we have encountered a total of
ðpþ 1Þ=2 orthogonal edges to the right. Then, we travel horizon-
tally to the left of the anchor, record the value k of the first orthog-
onal edge encountered, and place n1

k at the beginning of N1
a. We

continue this process until we have encountered a total of
ðpþ 1Þ=2 orthogonal edges to the left. The remaining knots for
the second index space direction are found in a similar manner
by traveling vertically from the anchor, recording the first
ðpþ 1Þ=2 orthogonal edges encountered downwards and upwards
of the anchor, and adding the corresponding knots into N2

a. If at any
point no more orthogonal edges are encountered, but there still re-
main spaces for knots to be added, we repeat the last recorded knot
7 It is possible to choose different polynomial degrees for each index space
direction, but for the purposes of this paper we assume the same degree in all
directions.



in that direction for each remaining space in the knot vector. This
has the effect of producing a behavior similar to that of open knot
vectors without requiring them explicitly.

As an example, consider the T-mesh shown in Fig. 24 with
p ¼ 3, which corresponds to a cubic T-spline. Every line in the T-
mesh corresponds to a knot value, and every vertex is the anchor
for a control point, two of which have been drawn and labeled in
Fig. 24a. In order to build the corresponding blending functions,
we need to find the local multivariate knot vectors.

Let us consider the anchor sa ¼ f4;4g. We begin by placing the
knots n1

4 and n2
4 corresponding to the anchor’s coordinates into the

anchor’s knot vectors N1
a and N2

a, respectively. To find the remain-
ing local knots for the first parametric direction, we travel horizon-
tally from the anchor, recording the first ðpþ 1Þ=2 orthogonal
edges that we encounter to the left of the anchor, and the first
ðpþ 1Þ=2 orthogonal edges encountered to its right. For sa, this
yields N1

a ¼ n1
1; n

1
2; n

1
4; n

1
6; n

1
7

� �
. In the second parametric direction,

we do likewise in the vertical direction. It does not matter that
the anchor lies at a T-junction in the grid, we still search outward
from the anchor in the vertical direction, recording the first
ðpþ 1Þ=2 orthogonal edges encountered above and below the an-
chor. This yields N2

a ¼ n2
2; n

2
3; n

2
4; n

2
6; n

2
7

� �
. Note that we do include

n2
6, though this line terminates in a T-junction along the line of

our search.
1
1

2

2

3

3

4

4

5

6

7

sα

sβ

(a)

1
1

2

2

3

3

4

4

5

5

6

6

7

7

sα

sβ

)b(

Fig. 24. For odd polynomial degrees, such as the cubic example here, an anchor is locate
anchors sa ¼ f4;4g and sb ¼ f2;3g are identified by the red circles. (b) The knot vectors
orthogonal edges are encountered in the T-mesh. These paths are indicated by t
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1
2; n

1
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1
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and N2

a ¼ n2
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2
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2
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2
6; n

2
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� �
. (c) The knot vectors for sb are N1

b ¼ n
�

17
Let us consider a second anchor, sb ¼ f2;3g. Our process is the
same as before: we search for ðpþ 1Þ=2 orthogonal edges to the left
and right of the sb. In the second parametric direction, we proceed
exactly as before to obtain N2

b ¼ n2
1; n

2
2; n

2
3; n

2
4; n

2
5

� �
. In the first para-

metric direction, we have the issue that the T-mesh terminates be-
fore we have found ðpþ 1Þ=2 orthogonal edges to the left of the
anchor. As stated previously, any knot values that cannot be deter-
mined in a given direction are taken to be equal to the last value
added. This mimics the behavior of NURBS open knot vectors,
which have their first and last knots repeated pþ 1 times. In this
case, we have N1

b ¼ n1
1; n

1
1; n

1
2; n

1
3; n

1
6

� �
.

Things proceed in a similar fashion for the case of even-degree
polynomials. One difference is that anchors now fall at the center
of every rectangle in the T-mesh instead of at every vertex. In addi-
tion, we no longer include the knots corresponding to the anchor’s
coordinates during the construction of the knot vectors. Fig. 25
shows the T-mesh corresponding to a quadratic T-spline with
two anchors plotted. Note the anchors no longer have integer coor-
dinates. We find the local knot vectors by scanning horizontally
and vertically from the anchor and recording the knots associated
with the first p=2þ 1 orthogonal edges that we encounter in each
direction. For example, for sa ¼ f3:5;3:5g in Fig. 25, we record the
knots associated with the first p=2þ 1 ¼ 2 orthogonal edges to the
left and right of the anchor to obtain N1

a ¼ n1
1; n

1
3; n

1
4; n

1
6

� �
. Similarly,
5 6 7
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d at each vertex of the T-mesh. (a) Two anchors for a T-mesh with degree p ¼ 3. The
for sa are determined by marching horizontally and vertically from the anchor until
he red lines and the orthogonal edges are indicated by red ticks. We have
1
1; n

1
1; n

1
2; n

1
3; n

1
6
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and N2

b ¼ n2
1; n

2
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2
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in the second parametric direction we have N2
a ¼ n2

1; n
2
3; n

2
4; n

2
5

� �
.

Proceeding in analogous fashion for sb ¼ f6;5:5g, its knot vectors
are N1

b ¼ n1
3; n

1
5; n

1
7; n

1
7

� �
and N2

b ¼ n2
1; n

2
4; n

2
7; n

2
7

� �
.

Note that in the special case where the T-mesh occupies a rect-
angular subdomain in R2 and is a full tensor product mesh, the T-
spline is equivalent to a NURBS patch.

4.2. Building a T-spline

For a given T-mesh and degree p, let A � Z2 be the index set
containing every a such that sa is an anchor. With local knot vec-
tors N1

a and N2
a defined for every a 2 A, using the process above,

we may define functions Ba in the parameter space exactly as
we did for PB-splines using (26). For each a 2 A we choose a corre-
sponding control point Pa 2 Rd, where d is the chosen dimension
for the physical space. For full generality, we assume that each
control point has an associated weight, wa, and construct a set of
T-spline blending functions as

RaðnÞ ¼
waBaðnÞP
b2AwbBbðnÞ

: ð32Þ

With such a definition, T-spline blending functions form a partition
of unity. Finally, our T-spline in physical space is given by

SðnÞ ¼
X
a2A

PaRaðnÞ: ð33Þ
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Fig. 25. For even polynomial degrees, such as the quadratic example here, an anchor is lo
degree p ¼ 2. The anchors sa ¼ f3:5;3:5g and sb ¼ f6;5:5g are identified by the red circle
from the anchor until orthogonal edges are encountered in the T-mesh. These paths are in
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As in the case of NURBS, it is useful to examine the three spaces in
which a T-spline may be viewed: the index, parameter, and physical
spaces. In fact, though the T-mesh itself lies in the index space, it
may be mapped onto the parameter and physical spaces. Such inter-
pretations of the T-mesh may be useful in terms of inferring the
structure of the individual T-spline blending functions in the
parameter and physical spaces. Throughout this paper, we shall re-
fer to the mapping of a T-mesh to the parameter or physical space
as a T-mesh as well for simplicity. In Fig. 26, we have plotted the T-
mesh and its images in the parameter and physical spaces for a
plate with a circular hole. In Appendix A, we have detailed the con-
trol points, weights, and global knot vectors for this example. Final-
ly, note that we may also identify locations of anchors in the
parameter and physical spaces using the aforementioned mapping
just as in the case of NURBS.

4.3. Continuity and definition of elements

The continuity of a T-spline in physical space follows directly
from that of its blending functions in the parameter space. In the
NURBS setting, this was a fairly unambiguous statement, but the
local T-spline construction warrants closer consideration, particu-
larly as it bears on numerical quadrature.

The continuity of each blending function is determined from its
local knot vector, exactly as in the B-spline and NURBS cases. Each
5 6 7
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cated the center of each rectangle of the T-mesh. (a) Two anchors for a T-mesh with

s. (b) The knot vectors for sa are determined by marching horizontally and vertically
dicated by the red lines and the orthogonal edges are indicated by red ticks. We have
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2
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function of degree p will have Cp�k continuous derivatives across a
knot value, where k is the multiplicity of the knot value in the local
knot vector. The difficulty arises from the fact that these values
only pertain to the support of the individual function. A line of de-
creased continuity does not necessarily propagate throughout the
domain, and thus T-splines may have different degrees of smooth-
ness within a T-mesh, as illustrated in Fig. 27.

Consider the example shown in Fig. 28 for a quadratic T-spline
surface. In Fig. 28b, the continuity of the function Ra, corresponding
to anchor ta, is not immediately obvious. To determine it, we must
first consider its support, Da. From the T-mesh in Fig. 28a, we ob-
serve that the local knot vectors are N1

a ¼ n1
1; n

1
3; n

1
4; n

1
5

� �
and
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Fig. 26. T-mesh and its images in the parameter and physical spaces for a plate
with a circular hole. (a) T-mesh in the index space. (b) T-mesh in the parameter
space. (c) T-mesh in the physical space.

Fig. 27. T-splines allow continuity to change abruptly.
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N2
a ¼ n2

1; n
2
2; n

2
4; n

2
5

� �
, and thus Da ¼ n1

1; n
1
5

	 

� n2

1; n
2
5

	 

. Function Ra is

only aware of its own knots, but from its point of view they extend
throughout Da as if this were a B-spline, as shown in Fig. 28c. The
continuity of Ra is no greater8 than C1 across each of the knots in its
knot vector. To denote the reduced continuity, we augment the ori-
ginal T-mesh by extending the relevant knot lines throughout Da,
using dotted lines so that the local knot vectors for other functions
can still be determined unambiguously, as shown in Fig. 28d. Finally,
we repeat this process for all of the functions in the T-mesh, adding
continuity reduction lines where necessary, as shown in Fig. 28e.
Recall that we have an anchor for a function at the center of each
rectangle in index space. For the sake of nomenclature, let us distin-
guish between continuity reduction lines, the dotted lines we added
to make continuity discernible by examining the T-mesh, and the so-
lid lines defining the T-mesh itself. Continuity of the functions is re-
duced across both the continuity reduction lines and the edges of the
T-mesh.

The union of all of the edges and continuity reduction lines in
the T-mesh in parameter space represent the set of all of the lines
across which continuity of the spline is less than C1. This union di-
vides the T-mesh into rectangular regions over which the T-spline
blending functions are smooth. Thus, when integrating, we may
perform numerical quadrature over these regions using classical
quadrature rules for C1 functions. This gives us a definition of ele-
ments for the purpose of numerical quadrature. In an analysis set-
ting, it is convenient to represent T-meshes in parameter space
with the continuity reduction lines included as in Fig. 28d such
that elements may be defined.

Note that, in the case of odd polynomial degrees, nothing pre-
cludes us from generalizing the definition of a valid T-mesh to in-
clude L-junctions of the type seen in Fig. 29a.9 They do not present
any ambiguity or new considerations in the approach we take for
inferring the local knot vectors from the T-mesh. For the experienced
finite element practitioner, however, they can seem a bit strange
when first encountered. It is crucial to remember that the T-mesh
and the mesh are not the same thing. We define the mesh as the un-
ion of the knot lines of the T-mesh with the continuity reduction
lines, as in Fig. 29b. We note that L-junctions are not permitted for
even degrees.
8 The continuity could be lower if knot values in the knot vector are repeated, just
as for B-splines. In the present discussion we are only concerned with determining
lines along which continuity is less than C1 .

9 In fact, ‘‘I-junctions” and isolated ‘‘point junctions” are legal in this framework
although we will not consider these constructs in this paper.
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Fig. 28. Determining continuity from the T-mesh. (a) A T-mesh in index space with p ¼ 2 and anchor sa indicated by a red circle. (b) The T-mesh in the parameter space with
anchor ta indicated by a red circle. (c) The support Da . The red lines indicate where the blending function has only C1 continuity. (d) We extend the knot lines throughout Da

to indicate that Ra is no more than C1 continuous across them. (e) Repeating this process for all of the functions in the T-mesh enables us to determine lines of reduced
continuity. Inside each rectangle, the blending functions are C1 and classical Gaussian quadrature may be used to evaluate element integrals. However, more efficient rules
may be possible (see [33]).
4.4. T-spline volumes

The extension of T-splines to three dimensions is relatively
straightforward. First we define an index space version of a T-mesh
as a tiling of rectangular prisms in R3 where every face has a posi-
20
tive integer value. As an example, consider the three-dimensional
T-mesh shown in Fig. 30. Next, we choose a degree p for the
T-spline. Then, for each index space direction i and each integer j
for which some face in the T-mesh has value j in direction i, we
choose a knot ni

j 2 R. We require that if k > j, then ni
k P ni

j. Subse-
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Fig. 29. Valid T-meshes for splines of odd polynomial degree can have L-junctions. The rules for inferring local knot vectors are in no way changed for such a structure. (a)
Example of a T-mesh in index space with an L-junction and p ¼ 3. (b) T-mesh in the parameter space. (c) Elements are defined by the union of the knot lines and the
continuity reduction lines.
quent knots in the same direction may have the same value. Thus,
faces in the T-mesh will correspond to knot indices.

For odd degrees, we now define an anchor sa at each vertex in
the T-mesh. Then, for each a and each index space direction i, we
create a local knot vector Ni

a. As in the two-dimensional case, we
place the knots corresponding to the anchor’s location in the mid-
dle of their respective local knot vectors. To find the remaining
knots for each index space direction i, we march in direction i from
the anchor until orthogonal faces are encountered and record the
knots ni

j corresponding to their values in the appropriate spots in
the local knot vector Ni

a. This is illustrated in Fig. 31.
As before, if at any point no more faces are encountered and

there still remain spots to be filled in the local knot vector, we re-
peat the last knot recorded in the remaining spots. This mimics the
behavior of open knot vectors in the case of NURBS. The even-de-
gree case follows in the same manner except that now we define
an anchor at the center of each prism in the T-mesh. Once we
1 2 3
1

2

3

1

2

3

Fig. 30. Three-dimensional T-mesh.
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determine the local knot vectors, the set of T-spline blending func-
tions is constructed in exactly the same manner as before, utilizing
(32). Thus, given a T-mesh and an appropriate set of control points,
we may define a three-dimensional T-spline volume using (33).
Notice that now we will have faces of reduced continuity.

5. Numerical results

5.1. Isogeometric fluids analysis

We begin our numerical results section by applying the
T-splines based isogeometric paradigm to fluids analysis. Isogeo-
metric analysis of fluid flows with NURBS discretizations is a
well-studied topic, with applications in turbulence modeling
[2,5,9], cardiovascular flows [7,13,52], and fluid–structure interac-
tion [6–8]. It has been shown in these works that NURBS functions
exhibiting higher continuity are an ideal candidate for approximat-
ing such flows.

The model problem which we consider here is the linear advec-
tion–reaction–diffusion equation:

cuþ a � ru�r � jruð Þ ¼ f ; ð34Þ

where u denotes the concentration, c is the reaction coefficient, a is
the velocity, j is the diffusivity, and f is the source.

We consider two opposite regimes of the advection–reaction–
diffusion system:

� reaction–diffusion ða ¼ 0Þ, and
� advection–diffusion ðc ¼ 0Þ.

The first example involves the simulation of the reaction–diffu-
sion problem described in Fig. 32. We note that the boundary con-
dition is zero except near the corners. Since this particular problem



Fig. 33. Reaction–diffusion problem. Sequence of T-meshes in physical space.
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Fig. 31. Extracting local knot vectors from a three-dimensional T-mesh. (a) T-mesh
in index space with p ¼ 3 and anchors sa ¼ f2;2;2g and sb ¼ f3;3;3g indicated by
red circles. (b) The knot vectors for sa are N1
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Fig. 32. Reaction–diffusion problem. Problem description and data.
is strongly dominated by reaction (the Damköhler number is 103),
we expect that the solution is zero except near the corners, where
it rapidly spikes to one. With local refinement, we hope to resolve
these spikes near the corners.

The T-meshes we utilized for solving this problem are presented
in Fig. 33, and numerical results were obtained using Galerkin’s
method. Solution profiles for polynomial degrees p ¼ 1;2;3 are
presented in Figs. 34–36. With increasing polynomial degree and
local refinement, we see that not only are we able to more sharply
capture the corner phenomena but we are also able to eliminate
spurious oscillations.

The second example involves solution of the advection–diffu-
sion problem shown in Fig. 37. Here, the Péclet number, which
characterizes competition between advection and diffusion, is
10�6, making the problem strongly advection-dominated, and thus
we expect a sharp interior layer and sharp boundary layers at the
outflow. Successful capturing of such layers requires robust, stable
numerical techniques in addition to increased resolution. The
problem was investigated using NURBS-based isogeometric analy-
sis, SUPG stabilization [11], and k-refinement in [30]. There, it was
noted that globally k-refined meshes produced results that were
nearly monotone. Here, we investigate the effect of local h-refine-
ment on the solution.

We begin with a uniform T-mesh of 10 � 10 elements, which
corresponds to a NURBS discretization. We then employ an auto-
matic refinement scheme that makes use of a simple gradient-
based error indicator and the algorithm described in [42]. At each
step of the refinement, elements are identified for refinement
based on the magnitude of the indicator. A list of elements is then
defined, and they are bisected in each parametric direction sequen-
tially according to the order they appear in the list. In all cases, the
standard SUPG formulation is used with stabilization parameter
22
s ¼ ha=2a, where ha is the integration element length in the direc-
tion of the flow velocity. For the problem considered, a ¼ jaj ¼ 1
and ha ¼

ffiffiffi
2
p

h, where h is the element edge length. Recall that inte-
gration elements are defined by adding continuity reduction lines
as described in Section 4.3.

The T-meshes generated by automatic refinement for the linear
ðp ¼ 1Þ case are shown in Fig. 38. We note that T-splines in this
case correspond to standard bilinear transition elements (see
[29], Figs. 3.11.3 and 3.11.4, and the accompanying exercise). We
see that the resulting T-meshes are refined near the interior and
boundary layers and the effects of refinement are quite localized.
We further see that L-junctions naturally arise from the automatic
refinement scheme. The results for these T-meshes are presented
in Fig. 39. We find that with refinement, the layers become sharper,
and the overshoots and undershoots about the layers are attenu-
ated but not eliminated. This is in contrast with the situation de-
scribed in Hughes et al. [30] in which k-refined meshes
converged toward monotone solutions. It is a somewhat surprising
fact that smooth, higher-degree functions produce better results
than locally-refined low-degree functions. This runs counter to
the conventional wisdom.



Fig. 34. Reaction–diffusion problem. Results for p ¼ 1.

Fig. 35. Reaction–diffusion problem. Results for p ¼ 2.

Fig. 36. Reaction–diffusion problem. Results for p ¼ 3.
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Fig. 37. Advection–diffusion problem, h ¼ 45
 . Problem description and data.

Fig. 39. Advection skew to the mesh, h ¼ 45
 . Results for p ¼ 1.
In passing we note that the refinement algorithm described in
[42] depends on the order of the elements identified for refinement
and, in certain cases, the refinement can propagate throughout a T-
mesh. For example, in a recent work by Dorfel et al. [20], automatic
T-spline local refinement employing bicubic T-splines resulted in
globally refined T-meshes when applied to the same advection–
diffusion problem as above. We have experienced similar behavior,
and this indicates to us the importance of developing new refine-
ment algorithms with better invariance and localization properties
(see also [20]).

5.2. Isogeometric structural analysis

An isogeometric structural analysis framework based on
T-splines preserves all of the desirable properties of its NURBS coun-
terpart. In particular, T-splines also satisfy standard patch tests. In
what follows, we present numerical solutions for linear elastic sol-
ids and structures. The Galerkin formulation of linear elasticity is
employed. All the calculations involve thin shells, but these are
modeled as three-dimensional solids and no shell assumptions
are employed. A direct algebraic equation solver was employed
for each of the calculations.
Fig. 38. Advection skew to the mesh, h ¼ 45
 . Sequence of T-meshes in physical
space for p ¼ 1.
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The first two examples come from the so-called shell obstacle
course: the pinched hemisphere and the pinched cylinder. These
problems, and their relevance to the assessment of shell analysis
procedures, have been discussed extensively in the literature,
and the particular form of the problems we have chosen is adapted
from Felippa [25] and Belytschko et al. [10]. These problems were
chosen due to the local nature of their external forcing (in fact, in
both examples point loads are applied). The last example we con-
sider is the hemispherical shell with stiffener presented in Rank
et al. [39] who solved the problem using a finite element method
and p-refinement strategy. In each of these examples, rather than
using an automatic refinement strategy, we hand-crafted a se-
quence of T-meshes for various polynomial degrees.

5.2.1. Pinched hemisphere
In the pinched hemisphere, equal and opposite concentrated

point load forces are applied at antipodal points of the equator.
Fig. 40. Shell obstacle course. Pinched hemisphere problem description and data.



Fig. 41. Shell obstacle course. Sequence of T-meshes in physical space for pinched hemisphere for p ¼ 2.

Fig. 42. Shell obstacle course. Pinched hemisphere with p ¼ 5, NDOF = 1524: (a) T-
mesh in physical space and (b) displacement contours in direction of inward
directed point load on deformed configuration (scaling factor of 30 used).
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Fig. 43. Shell obstacle course. Pinched hemisphere displacement convergence.

Fig. 44. Shell obstacle course. Pinched cylinder problem description and data.
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The equator is otherwise considered to be free (see Fig. 40). An
example sequence of T-meshes is shown in Fig. 41. Due to symme-
try, only one quadrant is meshed. In this case, two quadratic
NURBS elements were employed in the through-thickness direc-
Fig. 45. Shell obstacle course. Sequence of T-meshes

Fig. 46. Shell obstacle course. Pinched cylinder with p ¼ 5, NDOF = 1260: (a) T-mesh in
factor of 3� 106 used).
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Fig. 47. Shell obstacle course. Pinched c
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tion (see [30]). Quadratic through quintic surface T-splines were
employed. A contour plot of the displacement on the deformed
configuration is shown in Fig. 42. Convergence of displacement un-
der the inward directed load for the various degrees is presented in
in physical space for pinched cylinder for p ¼ 2.

physical space and (b) displacement contours on deformed configuration (scaling
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ement convergence

dratic
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Fig. 43. As in the case of NURBS [30], the quadratic case converges
very slowly and higher-degree functions lead to much faster con-
vergence to the exact solution.
Fig. 48. Hemispherical shell with stiffener. Pr

Fig. 49. Hemispherical shell with stiffener. Initial T-mesh in physical space, N

27
5.2.2. Pinched cylinder
The pinched cylinder is subjected to equal and opposite concen-

trated forces at its midspan (see Fig. 44). The ends are supported by
oblem description from Rank et al. [39].

DOF = 360: (a) Coarse T-mesh in physical space and (b) detail of stiffener.



rigid diaphragms. This constraint results in highly localized defor-
mation under the loads. Only one octant of the cylinder is used in
the calculations due to symmetry. As in the case of the pinched
Fig. 50. Hemispherical shell with stiffener

Fig. 51. Hemispherical shell with stiffener. Detail of refinem

Fig. 52. Finest T-mesh in physical space (NDOF = 4248): (a) Vertical displacement conto
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hemisphere, two quadratic NURBS elements were utilized in the
through-thickness direction and quadratic through quintic degrees
of T-splines were utilized on the surface. An example sequence of
. Refined T-meshes in physical space.

ent for finest T-mesh in physical space (NDOF = 4248).

urs (scaling factor of 500 used) and (b) von Mises stress contours, detail of stiffener.



T-meshes is shown in Fig. 45. A contour plot of the displacement on
the deformed configuration is shown in Fig. 46. Convergence of the
displacement under the load is plotted in Fig. 47. It is well known
that, as long as the characteristic surface element dimension is
Displacement
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Fig. 53. Hemispherical shell with stiffener. Convergence of displacement
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large compared with the thickness, formulations which permit
transverse shear deformations typically closely approximate for-
mulations which satisfy the Kirchhoff constraint (i.e., zero trans-
verse shear) [31].
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and von Mises stress at various points to benchmark solution [39].



5.2.3. Hemispherical shell with a stiffener
The hemispherical shell with stiffener is subjected to gravity

loading and external pressure, with the bottom surface fixed in
the vertical direction (see Fig. 48). Only a quarter of the domain
is modeled due to symmetry. The initial T-mesh is constructed
using rational quadratic NURBS in the circumferential direction
and cubic NURBS in the other two directions and is shown in
Fig. 49. A series of refined T-meshes is shown in Fig. 50. We found
that no refinement was needed in the circumferential direction due
to the axisymmetry of the solution and the fact that an exact
geometry is employed (see Fig. 51). Fig. 52 shows the vertical dis-
placement and von Mises stress on the deformed configuration.

The Euclidean norm of the displacement and the von Mises
stress were calculated at points A–D, identified in the problem
description (Fig. 48). Results for sequences of T-meshes are plotted
in Fig. 53 along with results from Rank et al. [39] for their finest
simulation ðp ¼ 8Þ which we take as a reference. Good agreement
in the converged displacements and von Mises stresses is observed
for cases except for the von Mises stress at point A, in which case
the present result of the finest T-mesh employed is somewhat
higher than the result of Rank et al. [39].
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Fig. A.2. Plate with a hole: T-mesh in index space. Anchors are designated by red
circles.

Fig. A.1. Plate with a hole: T-mesh in physical space.
6. Conclusions

T-splines represents an extension of NURBS technology that
permits local refinement, watertight merging of patches, and a
solution to the trimmed surface problem. These features are highly
desirable in a design context and T-splines have recently become
available in two NURBS-based design systems, namely, Maya [45]
and Rhino [46]. In this paper we have explored T-splines as a basis
for isogeometric analysis. The same features that make T-splines
attractive for design, make it attractive for analysis. We have ap-
plied bivariate and trivariate T-splines of various degrees to ele-
mentary problems of fluid and structural mechanics and in all
cases they performed well. As far as surface modeling goes, we be-
lieve T-splines technology provides a nearly complete basis for
analysis.

Existing T-spline surface modeling tools need to output all par-
aphernalia necessary to perform analysis. Presumably, this is not a
major task and may be available soon. Outstanding issues concern
efficient refinement strategies and treatment of so-called extraor-
dinary points. These issues need to be researched from an analysis
perspective. The main issue facing three-dimensional analysis is
model generation. There is probably no unique solution to this
problem judging from the variety of mesh generation procedures
currently used in finite element analysis. Different types of proce-
dures may suit different classes of analysis problems. An ambitious
challenge would be to generate a trivariate T-spline representation
preserving a given T-spline surface representation. A less ambi-
tious, but nevertheless still very challenging task would be to gen-
erate a trivariate T-spline that approximates a given T-spline
surface to a specified accuracy. Solutions of these problems would
represent important advances in eliminating the engineering de-
sign-to-analysis bottleneck. For a particularly promising technol-
ogy based on the concept of polycube splines, see [35,50]. T-
splines also need to be thoroughly researched and compared with
traditional finite element methodology on a wider variety of anal-
ysis applications.
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Appendix A. T-spline data for plate with a hole

In this appendix, we explicitly tabulate the T-spline parapher-
nalia for a simple example. Namely, we fully describe all of the
attributes of the quadratic T-mesh of a rectangular plate with a cir-
cular hole illustrated in Fig. A.1. The mesh is built from the T-mesh
described in Fig. A.2. The knot values for the two parametric direc-
tions as well as the locations of anchors in parametric space are de-
scribed in Fig. A.3. Table A.1 lists the local knot vectors associated
with each of the basis functions for the T-mesh while Table A.2 lists
the control points and weights to build the plate with a hole.

Appendix B. Patch merging with T-splines

In this appendix we explain the concept of patch merging using
two simple examples. In these two examples, we merge two qua-
dratic NURBS patches such that the final geometry is C0- and C1-
continuous, respectively. The T-spline local refinement algorithm



Table A.1
Local knot vectors for T-spline basis functions.

Anchor ta Horizontal local knot vector N1
a Vertical local knot vector N2

a

t1 0;0; 0;0:5f g 0;0; 0;1f g
t2 0;0; 0:5;0:5f g 0;0; 0;1f g
t3 0;0:5;0:5;1f g 0;0; 0;0:5f g
t4 0:5; 0:5;1;1f g 0;0; 0;0:5f g
t5 0:5;1;1;1f g 0;0; 0;0:5f g
t6 0;0; 0;0:5f g 0;0;1;1f g
t7 0;0; 0:5;0:5f g 0;0;1;1f g
t8 0;0:5;0:5;1f g 0;0; 0:5;1f g
t9 0:5; 0:5;1;1f g 0;0; 0:5;1f g
t10 0:5;1;1;1f g 0;0; 0:5;1f g
t11 0;0:5;0:5;1f g 0;0:5;1;1f g
t12 0:5; 0:5;1;1f g 0;0:5;1;1f g
t13 0:5;1;1;1f g 0;0:5;1;1f g
t14 0;0; 0;0:5f g 0;1;1;1f g
t15 0;0; 0:5;0:5f g 0;1;1;1f g
t16 0;0:5;0:5;1f g 0:5;1;1;1f g
t17 0:5; 0:5;1;1f g 0:5;1;1;1f g
t18 0:5;1;1;1f g 0:5;1;1;1f g

Table A.2
Control points and weights for plate with a hole.

Anchor ta Control point Pa Weight wa

t1 �1;0f g 1
t2 �1;0:41421f g 0.85355
t3 �0:70711; 0:70711f g 0.85355
t4 �0:41421;1f g 0.85355
t5 �1:375;3:25f g 1
t6 �2:5; 0f g 1
t7 �2:5; 0:75f g 1
t8 �1:20231;1:20231f g 0.92678
t9 �0:59537;1:80926f g 0.92678
t10 0;1:75f g 1
t11 �2:8125;2:8125f g 1
t12 �1:375;3:25f g 1
t13 0;3:25f g 1
t14 �4;0f g 1
t15 �4;2f g 1
t16 �4;4f g 1
t17 �2;4f g 1
t18 0;4f g 1
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Fig. A.3. Plate with a hole: T-mesh in parameter space. Repeated knot lines are
expanded to emphasize the connection between parameter and index space.
Anchors are designated by red circles.
used in this merging as well as more details on patch merging algo-
rithms in the context of T-splines may be found in [44].

Suppose we wish to merge two quadratic NURBS patches whose
T-meshes are shown in Fig. B.1a and b. For a C0 merge, we first lo-
cally refine the last column of the T-mesh in Fig. B.1a and the first
column of the T-mesh in Fig. B.1b as demonstrated in Fig. B.2. Fol-
lowing this refinement step, we adjust, if necessary, the control
points associated with the last column of the T-mesh in Fig. B.2a
and the first column of the T-mesh in Fig. B.2b such that they are
equal. This ensures that the boundaries of the two geometries
match and completes the C0 merging of the two quadratic patches.

The final geometry can be represented by the single T-mesh gi-
ven in Fig. B.3 with appropriately chosen control points. These con-
trol points are inherited from the original two patches and this
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Fig. B.2. Local refinements of T-meshes from Fig. B.2 to arrive at matching patches. Control points of anchors designated by stars are adjusted such that the boundaries of the
two geometries match.
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Fig. B.3. Merged C0 geometry represented by a single T-mesh.

Table B.1
Inheritance diagram for the single T-mesh given in Fig. B.3. The anchors in the first column inherit the control points of the anchors in the second column. Analogously, the
anchors in the second-to-last column inherit the control points of the anchors in the last column.

Anchor in Fig. B.3 Anchors in Fig. B.2 Anchor in Fig. B.3 Anchors in Fig. B.2

v1 t1 v18 u11

v2 t2 v19 u12

v3 t3 v20 t9

v4 t4 and u1 v21 t10

v5 u2 v22 t11

v6 u3 v23 t12 and u13

v7 u4 v24 u14

v8 t5 v25 u15

v9 t6 v26 u16

v10 t7 v27 t13

v11 t8 and u5 v28 t14

v12 u6 v29 t15

v13 u7 v30 t16 and u17

v14 u8 v31 u18

v15 t17 and u9 v32 u19

v16 t18 and u21 v33 u20

v17 u10
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Fig. B.4. Elongation of T-meshes from Fig. B.1.
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Fig. B.5. Local refinements of T-meshes from Fig. B.4 to arrive at matching patches.
Control points of anchors designated by stars are adjusted such that the boundaries
of the two geometries match.
inheritance is described in Table B.1. Note that during the merging
process, the original geometry may be slightly altered as to arrive
at a watertight geometry. In this particular case, a C0 line is created.

Alternatively, suppose we wish to merge the two quadratic
NURBS patches shown in Fig. B.1a and b such that the new geom-
etry is C1-continuous and is represented by a single T-spline patch.
For this case, the given patches must be first extended such that
there is an overlap region. To create the overlap region, we extend
the patch in Fig. B.1a to the right such that the length of the final
knot interval of this patch is equal to the length of the second knot
interval of the patch in Fig. B.1b. Similarly, we extend the patch in
Fig. B.1b to the left such that the length of the first knot interval of
this patch is equal to the length of the second to last knot interval
of the patch in Fig. B.1a. The result of such an extension is shown in
Fig. B.4. To preserve the original geometry on the two elongated
patches, the location of new control points must be recomputed
to be consistent with the extension of the parametric domain.

Following this elongation, we locally refine the final two col-
umns of the T-mesh in Fig. B.4a and the first two columns of the
T-mesh in Fig. B.4b as demonstrated in Fig. B.5. Then, we adjust,
33
if necessary, the control points associated with the second to last
column of the T-mesh in Fig. B.5a and the first column of the T-
mesh in Fig. B.5b such that they are equal and the control points
associated with the last column of the T-mesh in Fig. B.5a and
the second column of the T-mesh in Fig. B.5b such that they are
equal. The geometry represented by these two T-meshes is now
globally C1-continuous. Note, by construction, there is an overlap
between the resulting T-spline patches. The final geometry can
be represented by the single T-mesh given in Fig. B.6 with appro-
priately chosen control points by removing two repeated columns
of control points.

The above merging process, while originally designed for sew-
ing bicubic T-spline patches, is extendable to patches of arbitrary
order and dimension. For a Cn merging, nþ 1 columns of control
points on one patch must correspond to nþ 1 columns of control
points on the other patch.

The procedures for smoothly merging more topologically com-
plex configurations is more complicated. These will be described in
future work.
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