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A general theory of photon-mediated energy and momentum transfer in N -body planar systems out of
thermal equilibrium is introduced. It is based on the combination of the scattering theory and the fluctuational-
electrodynamics approach in many-body systems. By making a Landauer-like formulation of the heat transfer
problem, explicit formulas for the energy transmission coefficients between two distinct slabs as well as the
self-coupling coefficients are derived and expressed in terms of the reflection and transmission coefficients of
the single bodies. We also show how to calculate local equilibrium temperatures in such systems. An analogous
formulation is introduced to quantify momentum transfer coefficients describing Casimir-Lifshitz forces out of
thermal equilibrium. Forces at thermal equilibrium are readily obtained as a particular case. As an illustration of
this general theoretical framework, we show on three-body systems how the presence of a fourth slab can impact
equilibrium temperatures in heat-transfer problems and equilibrium positions resulting from the forces acting on
the system.

DOI: 10.1103/PhysRevB.95.205404

I. INTRODUCTION

Fluctuations of the electromagnetic field are responsible
for momentum [1–3] and heat [4] exchanges. The pioneering
works of Casimir [1] and Casimir and Polder [2] were the first
showing that such fluctuations are at the origin of an attractive
force between two perfectly conducting infinite parallel planes
as well as between an atom and a plate. This effect was
theoretically predicted to exist even at thermal equilibrium,
at zero temperature, and in vacuum. A few years later, Lifshitz
[3] and subsequently Dzyaloshinskii, Lifshitz, and Pitaevskii
[5] developed a more general theory taking into account real
material properties and thermal effects. Much more recently,
a series of papers [6–9] were focused on the effect of the
absence of thermal equilibrium, showing that the presence of
different temperatures in the system cannot only qualitatively
modify the behavior of the force (e.g., changing its power-law
dependence on the distance) but also induce a repulsive force,
otherwise impossible for standard geometries such as two
parallel slabs. Starting from 1997, several experiments have
confirmed the theoretical predictions at thermal equilibrium,
both for configurations involving macroscopic bodies (mainly
in the plane-plane and sphere-plane geometries) [10–32] and
in the atom-plane configuration [33–39]. Recently, the force
between a BEC and a plane has also been successfully
measured out of thermal equilibrium [40], confirming the
theoretical predictions.
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Another phenomenon emerging as a consequence of
absence of thermal equilibrium is radiative heat transfer.
Using Rytov’s theory of fluctuational electrodynamics [41],
Polder and van Hove [4] showed that this energy-exchange
mechanism, limited in the far field (for distances much larger
than the thermal wavelength λT = h̄c/kBT , close to 8 μm at
room temperature) by the blackbody limit predicted by Stefan-
Boltzmann’s law, can overcome this value even by several
orders of magnitude in the near-field regime. In particular,
it was later shown that this amplification is particularly
pronounced for materials supporting surface modes such as
phonon polaritons [42,43]. The radiative heat transfer has been
experimentally investigated as well [44–59], in a range of
distances going from the nanometer region to several microns,
confirming the behavior predicted theoretically.

The recent theoretical history on both topics has seen
the development of a series of general theories for Casimir
forces [60–67], radiative heat transfer [68–73], or both in a
unified approach [74–80]. The theoretical frameworks, based
on a variety of approaches (scattering matrices, Green’s func-
tions, time-domain calculations, boundary-element method,
fluctuating surface, and volume currents), share the possibility
of addressing bodies of arbitrary geometries and optical
properties. Even if some of them can tackle the general
scenario of N bodies, so far only a few applications involving
more than two bodies have been considered. More specifically,
the heat transfer has been analyzed between three nanospheres
in the dipolar approximation [81,82], between three parallel
slabs [79,83–86], as well as in a configuration involving one
sphere between two slabs [73]. It has to be mentioned that the
radiative heat transfer in networks of more than two particles
has recently received a considerable attention, but only within
the dipolar approximation [87–95]. Concerning the Casimir
force, it has been discussed in the case of an atom between
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FIG. 1. Representation of the N -body system. The source fields and the total electric field in each region are also indicated.

two slabs [79], three parallel slabs [79], and very recently the
Casimir energy has been considered in the case of two and
three coupled cavities when the materials undergo a phase
transition from the metallic to the superconducting phase [96].

In this paper, we focus on a system composed of N

planar parallel slabs made of arbitrary materials. The N

slabs, as well as the external environment in which they are
immersed, have arbitrary temperatures. For this scenario, we
derive closed-form analytical expressions for the radiative heat
transfer and the Casimir force, both at and out of thermal
equilibrium. To this aim, we generalize the scattering-matrix
approach previously introduced for two [76,77] and three [79]
bodies. The analytical expressions we obtain clearly highlight
the nonadditive character of both momentum and energy
exchange. We then consider two numerical applications, one
for the Casimir force and one for heat transfer, on a system
made of four slabs. For the former, we show how the
equilibrium position of the central slab in a system of three
slabs is modified by the introduction and lateral shift of a
fourth one. For the latter, by fixing some of the temperatures
in the system, we discuss the distribution of the other
temperatures at local equilibrium as a function of the system
parameters.

The paper is structured as follows. In Sec. II, we present
our physical system and introduce the main notation and
definitions. Then, in Secs. III and IV, we formally derive
the expressions of the Poynting vector and the stress tensor,
respectively. In Sec. V, we give explicit expressions of the
scattering coefficients, while the energy transmission coeffi-
cients and the momentum transfer coefficients are computed
in Secs. VI and VII, respectively. Then, we present in Sec. VIII
our numerical applications to both Casimir force and radiative
heat transfer. We finally give some conclusive remarks in
Sec. IX.

II. MANY-BODY SYSTEMS

The system we address is composed of N planar slabs
orthogonal to the z axis and assumed to be infinite in the x

and y directions. Each slab is at equilibrium at temperature
Tj , thermalized by means of some external source, with
j = 1,2, . . . ,N . Let the temperature of the left environment
be T0 and that of the right environment be TN+1, which can
be seen as the equilibrium temperatures of two blackbodies at

infinity to which we assign the labels j = 0 and j = N + 1,
respectively. Hereafter we refer to this configuration as an
N -body system. This distribution of bodies defines N + 1
vacuum regions that we denote by γ = 0,1, . . . ,N . Moreover,
for j = 1, . . . ,N , the j th slab has thickness δj and is centered
at zj on the z axis, as shown in Fig. 1.

We want to compute energy and momentum fluxes across
a surface within any of the vacuum regions of the system. The
electric field at a point R = (x,y,z) and time t in region γ ,
which is created by the fluctuating currents inside the materials,
can be expressed as a Fourier expansion given by

Eγ (R,t) =
∫ ∞

−∞

dω

2π
e−iωt Eγ (R,ω), (1)

where ω is the frequency. We require that Eγ (R, − ω) =
Eγ ∗(R,ω) in order for the field Eγ (R,t) to be real, where
the asterisk denotes complex conjugation. In addition, the
components Eγ (R,ω) can be decomposed using a plane-wave
description [79], in such a way that a single mode of the field
is specified by the frequency ω, the component k = (kx,ky)
of the wave vector on the x–y plane, the two polarizations
p = TE,TM, and the direction of propagation along the z

axis which is denoted by φ. The latter can take two values:
φ = + indicating propagation to the right and φ = − that
indicates propagation to the left. The total wave vector reads
Kφ = (k,φkz), where the component kz is given by

kz =
√

ω2

c2
− k2, (2)

c being the speed of light in vacuum. We note that when
k = |k| � ω/c, the component kz is real and, therefore, the
wave is propagative. When k > ω/c, kz is imaginary and
the associated wave is evanescent. Evanescent waves are
nonpropagating modes of the field: for these modes φ indicates
the direction along which the amplitude of the wave decays.
Thus, taking this plane-wave decomposition into account, the
single-frequency component of the electric field can be written
as

Eγ (R,ω) =
∫

d2k
(2π )2

∑
p,φ

ei Kφ ·R ε̂φ(ω,k,p)Eγφ(ω,k,p),

(3)
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where Eγφ(ω,k,p) are the components of the electric field
in this decomposition and ε̂φ(ω,k,p) are the polarization
vectors. Besides, using the Maxwell equation ∇ × Eγ (R,t) =
−∂t Bγ (R,t), the magnetic field Bγ (R,t) can be obtained from
the electric field and hence, the Fourier components Bγ (R,ω)
can be expanded in terms of the plane-wave components Eγφ .

Each mode of the total field Eγφ in any region γ depends
on the fields generated by all the bodies as well as on the
background fields present in the left and right environments.
More specifically, the mode Eγφ in region γ results from
the source field modes that we denote (see Fig. 1) with
Ejφ = Ejφ(ω,k,p), j = 0, . . . ,N + 1. At this stage we ob-
serve that the fact of considering only parallel planar slabs
introduces a major simplification in the calculation. As a matter
of fact, the stationarity of the problem, as well as the transla-
tional invariance along the x and y axes safely allow us to state
that the frequency ω, the wave vector k, and the polarization
p are conserved in any scattering process. Moreover, thanks
to the cylindrical symmetry with respect to the z axis, any
reflection and transmission coefficient will depend only on the
modulus of the wave vector. As a result, the total field in each
region can be written as a linear combination of the form

Eγφ =
∑
j,η

L
γφ

jη Ejη, (4)

in terms of the coefficients L
γφ

jη = L
γφ

jη (ω,k,p). Hereafter,
if not otherwise explicitly stated, summations over indices
labeling bodies run from 0 to N + 1, including quantities
associated with the environmental fields. Equation (4) will
allow us in the following to relate the statistical properties
of the total field in each region, needed to calculate both the
Casimir force and the heat transfer, to the statistical properties
of the individual source fields, directly derived from the
fluctuation-dissipation theorem.

III. RADIATIVE HEAT TRANSFER

We can now move toward an explicit expression of the
radiative heat transfer on each slab. To this aim, we should
first observe that our assumption of infinite extension of all
the slabs actually leads to a formally infinite flux. Of course,
the same issue applies to Casimir force as well. Nevertheless,
the translational invariance allows us to think in terms of flux
and force per unit surface. As discussed in detail in Ref. [77],
the transition from the calculation of the total flux (or force)
to the one per unit surface basically consists of omitting an
infinite Dirac delta δ(0) and its coefficient (2π )2 in the final
expressions.

Starting from the case of heat transfer, the energy flux per
unit surface in region γ is given by the averaged z component
of the Poynting vector Sγ (R,t), calculated at z = z̄γ , where
z̄γ is located in zone γ . In Cartesian components, we have〈

S
γ

i (R,t)
〉 = ε0c

2
∑
j,k

εijk

〈
E

γ

j (R,t)Bγ

k (R,t)
〉
, (5)

where 〈 · · · 〉 indicates symmetrized statistical average, εijk

is the Levi-Civita symbol with i,j,k = x,y,z, and ε0 is
the vacuum permittivity. In order to compute this quantity,
we introduce the correlation functions Cγφφ′ = Cγφφ′

(ω,k,p)

which are defined according to

〈Eγφ(ω,k,p)Eγφ′†(ω′,k′,p′)〉
= (2π )3δ(ω − ω′)δ(k − k′)δpp′Cγφφ′

, (6)

where the dagger denotes hermitian conjugate. Thus, using
Eqs. (5) and (6), after manipulating the polarization vectors,
the averaged z component of the Poynting vector takes the
form [79]

�γ ≡ 〈
Sγ

z (R,t)
〉

=
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p,φ,φ′

2ε0c
2 kz

ω
φ

× [
pwδφφ′ + 
ew(1 − δφφ′)]Cγφφ′
, (7)

where we have introduced the projectors on the propagating
and evanescent wave sectors 
pw and 
ew, respectively,
defined by


pw ≡ θ (ω − ck), 
ew ≡ θ (ck − ω), (8)

θ (x) being the Heaviside step function. We observe that, as a
consequence of Eq. (6), the energy flux �γ is stationary and
invariant under translations in the x–y plane. Notice that the
dependence on z in Eq. (7) is implicit through the correlation
functions of the total field in a particular region γ of the
system. Furthermore, we already have an expression [Eq. (4)]
connecting the total field in each region to the fields emitted
by the bodies and the environments. We now perform the
so-called local-thermal-equilibrium approximation, i.e., we
assume that each body radiates as it would do at equilibrium
at its own temperature, so that the modes of the source
fields corresponding to different bodies are not correlated to
each other. Denoting by Cjηη′ = Cjηη′

(ω,k,p) the correlation
functions of the source fields associated to body j , with
η,η′ = +,−, the assumption of local thermal equilibrium leads
to [79]

Cγφφ′ =
∑
j,η,η′

L
γφ

jη L
γφ′∗
jη′ Cjηη′

. (9)

In addition, for convenience, we introduce the coefficients
Kjηη′

φφ′ = Kjηη′
φφ′ (ω,k,p) defined according to

[
pwδφφ′ + 
ew(1 − δφφ′)]Cjηη′ ≡ h̄ω2Nj

2ε0c2kz

Kjηη′
φφ′ , (10)

where

Nj (ω) = nj (ω) + 1
2 ,

nj (ω) = (eh̄ω/kBTj − 1)−1,
(11)

kB is the Boltzmann constant, and h̄ the reduced Planck
constant. Taking into account the previous definitions, the
energy flux (7) becomes

�γ =
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p,j

h̄ωNjX
γ,j , (12)

where the coefficients Xγ,j = Xγ,j (ω,k,p) are given by

Xγ,j =
∑

φ,φ′,η,η′
φL

γφ

jη L
γφ′∗
jη′ Kjηη′

φφ′ . (13)
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We note that the dependence on the temperature in Eq. (12)
is explicit through the functions Nj and possibly implicit in
the optical properties (and thus in the scattering amplitudes) of
the bodies. We show in Appendix A that the above coefficients
always satisfy ∑

j

Xγ,j = 0. (14)

As a consequence, if all the bodies are thermalized at the same
equilibrium temperature, using Eq. (14) in Eq. (12) one sees
that the flux �γ vanishes in each region γ .

In view of Eq. (14), we observe here that
∑

j NjX
γ,j =∑

j njX
γ,j and, therefore, purely quantum contributions

associated to zero-point fluctuations do not participate in
the energy fluxes. Furthermore, since the net energy flux on
body j = 1, . . . ,N is given by �j = �j−1 − �j , taking into
account Eq. (14) this flux can be written as

�j =
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

∑
� 	=j

h̄ωn�,jT �,j , (15)

where we have introduced n�,j ≡ n� − nj and the energy
transmission coefficients T �,j = T �,j (ω,k,p) given by

T �,j = Xj−1,� − Xj,�, j = 1, . . . ,N. (16)

In this way, as can be seen from Eq. (15), energy fluxes
are described with a Landauer-like formalism in many-body
systems. The above energy transmission coefficients will be
computed in Sec. VI, where, in particular, it can be seen
that they satisfy the reciprocity relation T �,j = T j,�, with
j,� = 1, . . . ,N .

We highlight that as a consequence of Eq. (14) and the
definition (16), the energy transmission coefficients satisfy
the following remarkable property:

∑
� T �,j = 0. On one

hand, using this result one immediately obtains T j,j =
−∑

� 	=j T �,j . Since T �,j with � 	= j are positive quantities,
the coefficients T j,j are negative. On the other hand, consider
now a situation in which all the bodies are assumed to be
thermalized at T� = 0, except body j for which Tj > 0. Under
these conditions and according to the previous reasoning, from
Eq. (15), the net energy flux on body j can be expressed as

�j =
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

h̄ωnjT j,j . (17)

Notice that �j < 0. The above expression allows us to
interpret the coefficient T j,j as the self-emission amplitude
associated to body j , since it accounts for the radiation emitted
by this body in the presence of the rest of the system. In this
case, �j corresponds to the self-emission rate discussed in
Ref. [73].

IV. CASIMIR-LIFSHITZ FORCES

We now focus on the Casimir-Lifshitz forces acting on
the system. The formulation we introduce here is analogous
to the previous one for heat transfer, but now momentum
fluxes are the relevant quantities to be considered instead
of energy fluxes. Since energy and momentum fluxes are
quantities with different physical nature, however, a priori

one expects some differences to arise when comparing the two
descriptions. For instance, the momentum transfer coefficients
we introduce below are formally analogous to the energy
transmission coefficients, but the former are represented by
complex numbers while the latter are real. This fact is easy
to understand if one bears in mind that the energy quanta
h̄ω are always real, whereas the momentum component h̄kz

becomes imaginary for photons characterizing evanescent
fields. Another important difference is that nonvanishing
momentum fluxes occur even at thermal equilibrium and, as is
well known, purely quantum fluctuations contribute to these
fluxes as well. As a consequence, reciprocity will not hold for
these momentum transfer coefficients.

To describe Casimir-Lifshitz forces, let us consider the
Maxwell stress tensor Tγ (R,t) in a particular region γ of
the system, whose Cartesian components read

T
γ

ij (R,t) = ε0
[
E

γ

i (R,t)Eγ

j (R,t) + c2B
γ

i (R,t)Bγ

j (R,t)
]

− ε0

2
δij [|Eγ (R,t)|2 + c2|Bγ (R,t)|2] (18)

with i,j = x,y,z. The momentum flux in region γ is given by
the averaged component T

γ
zz(R,t) and takes the form [79]

Pγ ≡ 〈
T γ

zz(R,t)
〉

= −
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p,φ,φ′

2ε0
c2k2

z

ω2

× [
pwδφφ′ + 
ew(1 − δφφ′)]Cγφφ′
. (19)

As for the case of heat transfer, the above expression is obtained
by expanding the electric field in the plane-wave representation
(3), using Maxwell’s equations to obtain the magnetic field in
terms of the electric plane-wave components, manipulating the
polarization vectors, and introducing the correlation functions
with the help of Eq. (6). Moreover, also here we will take
into account the local-equilibrium approximation to write the
correlation functions of the total field in terms of the correlation
functions of the source fields. According to this, using Eqs. (9)
and (10), Eq. (19) can be rewritten as

Pγ = −
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p,j

h̄kzNjY
γ,j , (20)

where the coefficients Y γ,j = Y γ,j (ω,k,p) are given by

Y γ,j =
∑

φ,φ′,η,η′
L

γφ

jη L
γφ′∗
jη′ Kjηη′

φφ′ . (21)

The net force per unit area acting on body j = 1, . . . ,N

can be computed as P j = Pj − Pj−1, so that using Eq. (20)
we can write

P j =
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p,�

h̄kzN�W�,j , (22)

where we have introduced the previously mentioned momen-
tum transfer coefficients W�,j = W�,j (ω,k,p) defined by

W�,j = Y j−1,� − Y j,�, j = 1, . . . ,N. (23)
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In addition, the previous expression of the net pressure P j ,
Eq. (22), can be conveniently rewritten as

P j =
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

h̄kzNj

∑
�

W�,j

+
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

∑
� 	=j

h̄kzn�,jW�,j . (24)

Hence, in particular, we see that at thermal equilibrium at
temperature T = Tj , the functions n�,j in the second term of
Eq. (24) vanish and, therefore, the net pressure on body j

reduces to

P j
eq =

∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

h̄kzNj

∑
�

W�,j . (25)

The momentum transfer coefficients W�,j will be given
in Sec. VII. To obtain these coefficients (and the energy
transmission coefficients), in the next section we first introduce
the tools needed to solve the many-body scattering problem in
terms of single-body reflection and transmission coefficients.

V. SCATTERING AND ELECTRIC FIELD COEFFICIENTS

Having introduced a formal method to compute the cou-
plings driving energy and momentum exchanges, a procedure
to relate such couplings to individual properties is required.
To this aim, below we start by considering a systematic way
to characterize many-body scattering processes in terms of
optical properties of the single constituents of the system.
Using this procedure, we subsequently determine the electric
field coefficients L

γφ

jη which are necessary to express energy
transmission and momentum transfer coefficients.

A. Many-body scattering coefficients

The scattering operators introduced in Refs. [77,79] for
two- and three-body systems, which for our geometry reduce
simply to coefficients, are a useful tool that permits us to
write physical quantities in a convenient way. Our aim here
is to introduce such coefficients for the N -body case we are
concerned with.

The many-body scattering coefficients take into account
the presence of different bodies at the same time and are
built in terms of the single-body reflection and transmission
coefficients denoted by ρ

j

φ = ρ
j

φ(ω,k,p) and τ j = τ j (ω,k,p),
respectively, where j labels the associated body. For the
reflection coefficients, φ = +,− specify the direction of
propagation or decay of the outgoing field (the incoming
field propagates or decays in the direction −φ), whereas the
transmission coefficients do not depend on φ. On one hand,
for j = 1, . . . ,N , these coefficients can be written as

ρ
j

φ = ρje
−ikz(δj +φ2zj ),

τ j = τj e
−ikzδj ,

(26)

with ρj = ρj (ω,k,p,δj ) and τj = τj (ω,k,p,δj ) depending
implicitly on the optical properties of the single body. For
the geometry under consideration and for isotropic media, the

latter take the form

ρj = rp,j

1 − e2ikzj δj

1 − r2
p,j e

2ikzj δj
,

τj =
(
1 − r2

p,j

)
eikzj δj

1 − r2
p,j e

2ikzj δj
.

(27)

Here the z component of the wave vector inside medium j

reads

kzj =
√

ω2

c2
εjμj − k2, (28)

and the vacuum-medium Fresnel reflection coefficients (for
p = TE,TM) are given by

rTE,j = μjkz − kzj

μjkz + kzj

, rTM,j = εj kz − kzj

εj kz + kzj

, (29)

where εj and μj are the dielectric permittivity and magnetic
permeability of body j , respectively. On the other hand, for
the blackbodies radiating the environmental fields (j = 0 and
j = N + 1) we set

ρ0
φ = ρN+1

φ = 0,

τ 0 = τN+1 = 0.
(30)

In addition, the correlation functions of the source fields,
including those of the environments, are defined in terms of the
previously introduced single-body reflection and transmission
coefficients. These correlation functions are given by [77]

Cjηη′ = h̄ω2Nj

2ε0c2kz

{
δηη′

[

pw

(
1 − ∣∣ρj

η

∣∣2 − ∣∣τ j
∣∣2)

+ 
ew
(
ρj

η − ρj∗
η

)] + (
1 − δηη′

)
× [


pw
(−ρj

ητ j∗ − ρ
j∗
η′ τ j

) + 
ew(τ j − τ j∗)
]}

.

(31)

Using this result, the coefficients Kjηη′
φφ′ introduced in Eq. (10)

can be easily computed and expressed as

Kjηη′
φφ′ = 
pwδφφ′

[
δηη′

(
1 − ∣∣ρj

η

∣∣2 − |τ j |2)
− (1 − δηη′ )

(
ρj

ητ j∗ + ρ
j∗
η′ τ j

)]
+ 
ew(1 − δφφ′)

[
δηη′

(
ρj

η − ρj∗
η

)
+ (1 − δηη′ )(τ j − τ j∗)

]
. (32)

In order to define the scattering coefficients for the N -body
case, consider a block of consecutive bodies having indexes
going from j to m (with j � m), and let us denote the sequence
of these bodies by j → m. The reflection and transmission
coefficients for this block, ρ

j→m

φ and τ j→m, representing the

analogues of ρ
j

φ and τ j for a single body, are given by

ρ
j→m
+ = ρ�→m

+ + (τ �→m)2uj→�−1,�→mρ
j→�−1
+ ,

ρ
j→m
− = ρ

j→�−1
− + (τ j→�−1)2uj→�−1,�→mρ�→m

− ,

τ j→m = τ j→�−1uj→�−1,�→mτ�→m, (33)
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where j < � � m and

uj→�−1,�→m =
∞∑

n=0

(ρj→�−1
+ ρ�→m

− )n

= (1 − ρ
j→�−1
+ ρ�→m

− )−1. (34)

The coefficient ρ
j→m
+ as expressed in Eq. (33), for example,

accounts for the reflection of a mode to the right due to bodies
j → m together; it has a direct contribution from the reflection
produced by bodies � → m, and a contribution that takes into
account that the mode is transmitted through bodies � → m,
undergoes multiple reflections within the cavity formed by
bodies j → � − 1 and � → m, is reflected to the right by
bodies j → � − 1, and finally leaves the cavity by trans-
mission through bodies � → m. Analogously, the coefficient
τ j→m given in Eq. (33) represents transmission through bodies
j → � − 1, multiple reflections between bodies j → � − 1
and � → m, and transmission through bodies � → m.

According to the above expressions, the many-body scatter-
ing coefficients can be equivalently computed in several ways
by choosing different allowed values of �. For convenience,
however, below we introduce a setup that is particularly useful
for the problem at hand. We rewrite these coefficients as

ρ
j→m
+ = ρ̂

j→m
+ e−ikz(δm+2zm),

ρ
j→m
− = ρ̂

j→m
− e−ikz(δj −2zj ), (35)

τ j→m = τ̂ j→m exp

⎛
⎝−ikz

m∑
�=j

δ�

⎞
⎠,

where from Eq. (33) we have, for m > j ,

ρ̂
j→m
+ = ρm + (τm)2ρ̂

j→m−1
+ uj→m−1,me2ikzdm−1 ,

ρ̂
j→m
− = ρj + (τj )2ρ̂

j+1→m
− uj,j+1→me2ikzdj , (36)

τ̂ j→m = τ̂ j→m−1uj→m−1,mτm,

and

uj→m−1,m = (1 − ρ̂
j→m−1
+ ρme2ikzdm−1 )−1,

(37)
uj,j+1→m = (1 − ρj ρ̂

j+1→m
− e2ikzdj )−1.

Here dj is the separation distance between the consecutive
bodies j and j + 1, given by

dj = zj+1 − zj − δj /2 − δj+1/2, (38)

and which corresponds to the width of region γ = j . Notice
that the above coefficients are to be taken as ρ̂

j

φ = ρj and
τ̂ j = τj for a single body.

B. Electric field coefficients

To obtain the expressions for the energy transmission and
momentum transfer coefficients, we have to determine first the
coefficients L

γφ

jη relating source fields to total fields in a given

region of the system. As stated by Eq. (4), the coefficients L
γφ

jη

account for the contribution of the field mode Ejη, emitted by
the source j in direction η, to the total field mode Eγφ in region
γ and direction φ. On this basis and using the many-body

scattering coefficients, we are able to directly write down some
useful relations between these coefficients that will allow us
to find L

γφ

jη . For instance, recalling that γ = 0, . . . ,N and
j = 0, . . . ,N + 1, we can write

L
γ−
jη = ρ

γ+1→N+1
− L

γ+
jη , j � γ,

L
γ+
jη = ρ

0→γ
+ L

γ−
jη , j > γ.

(39)

The first of these relations indicates that the contribution of the
source mode Ejη to the total mode Eγ− is proportional to the
contribution of the same source mode to the total mode Eγ+.
If the source is located on the left of the considered region
(j � γ ), the proportionality factor is the backward reflection
coefficient ρ

γ+1→N+1
− of the block formed by all the bodies on

the right of the region (see Fig. 1 for illustration). An analogous
reasoning applies to the second of Eqs. (39).

We now want to relate L
γ+
j− to L

γ+
j+ for j � γ . On one hand,

since the (left) environment j = 0 only radiates to the right,
the coefficient L

γ+
j− must vanish for j = 0. In addition, this

coefficient also vanishes for j = 1, because the field emitted
by this source to the left is not reflected back into the system but
is absorbed by the environment. On the other hand, for sources
such that 1 < j � γ , one realizes that a mode emitted to the
right by the source j is equivalent to a mode emitted by this
source to the left undergoing the following scattering process:
multiple reflections in the cavity formed by bodies 0 → j − 1
and body j , reflection to the right by bodies 0 → j − 1, and
transmission through body j . Taking this into account, we thus
can write

L
γ+
j− =

{
0, j = 0

ρ
0→j−1
+ u0→j−1,j τ jL

γ+
j+ , 0 < j � γ.

(40)

Notice that ρ
0→j−1
+ vanishes when j = 1, so in this case, as

previously explained, Lγ+
j− vanishes as well. Following similar

arguments one can also deduce that

L
γ−
j+ =

{
τ juj,j+1→N+1ρ

j+1→N+1
− L

γ−
j− , γ < j � N

0, j = N + 1
. (41)

We highlight at this point that in virtue of properties (39),
(40), and (41), the coefficients L

γφ

jη are completely determined

if L
γ+
j+ and L

γ−
j− are explicitly known for j � γ and for

j > γ , respectively. Again, these coefficients can be easily
obtained using the many-body scattering coefficients; let us
focus on L

γ+
j+ for j � γ . We first note that when j = γ , the

contribution of mode Ej+ to the total field Eγ+ is simply
given by the factor accounting for multiple reflections in the
cavity formed by bodies 0 → γ and bodies γ + 1 → N + 1,
i.e., u0→γ,γ+1→N+1. When j < γ , in addition to the previous
factor, the contribution of mode Ej+ is affected by a factor
u0→j,j+1→γ τ j+1→γ that describes the scattering from region
j to the considered region γ . With this, we obtain

L
γ+
j+ = u0→γ,γ+1→N+1

{
u0→j,j+1→γ τ j+1→γ , j < γ

1, j = γ
.

(42)

205404-6



RADIATIVE HEAT TRANSFER AND NONEQUILIBRIUM . . . PHYSICAL REVIEW B 95, 205404 (2017)

Finally, by symmetry or by employing analogous arguments,
one arrives at the conclusion that

L
γ−
j− = u0→γ,γ+1→N+1

⎧⎨
⎩

1, j = γ + 1
uγ+1→j−1,j→N+1

×τ γ+1→j−1, j > γ + 1
.

(43)

We have determined the coefficients L
γφ

jη , so we are now able
to perform the calculation of energy and momentum fluxes.

VI. ENERGY TRANSMISSION COEFFICIENTS

In this section we determine the energy transmission coef-
ficients T �,j . To proceed, we introduce the set of coefficients
T̂ j

γ = T̂ j
γ (ω,k,p) defined by

T̂ j
γ ≡

j∑
�=0

Xγ,�, (44)

As discussed below, the energy transmission coefficients T �,j

can be fully determined in terms of T̂ j
γ . In Appendix A we

show that the coefficients T̂ j
γ take the form (j,γ = 0, . . . ,N)

T̂ j
γ = 
pw|τ j+1→γ |2(1 − |ρ0→j

+ |2)(1 − |ργ+1→N+1
− |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2|1 − ρ

0→j
+ ρ

j+1→γ
− |2

+ 
ew4|τ j+1→γ |2Im(ρ0→j
+ )Im(ργ+1→N+1

− )

|1−ρ
0→γ
+ ρ

γ+1→N+1
− |2|1−ρ

0→j
+ ρ

j+1→γ
− |2

, j<γ,

T̂ γ
γ = 
pw(1 − |ρ0→γ

+ |2)(1 − |ργ+1→N+1
− |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew4Im(ρ0→γ
+ )Im(ργ+1→N+1

− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

,

T̂ j
γ = 
pw|τ γ+1→j |2(1 − |ρ0→γ

+ |2)(1 − |ρj+1→N+1
− |2)

|1 − ρ
0→j
+ ρ

j+1→N+1
− |2|1 − ρ

0→γ
+ ρ

γ+1→j
− |2

+ 
ew4|τ γ+1→j |2Im(ρ0→γ
+ )Im(ρj+1→N+1

− )

|1−ρ
0→j
+ ρ

j+1→N+1
− |2|1−ρ

0→γ
+ ρ

γ+1→j
− |2

, j>γ,

(45)

whereas, in accordance with Eq. (14),

T̂ N+1
γ =

∑
�

Xγ,� = 0. (46)

We observe that these coefficients satisfy the symmetry
property

T̂ j
γ = T̂ γ

j , j,γ = 0, . . . ,N. (47)

Furthermore, the radiative heat transfer problem can be
equivalently formulated in terms of the coefficients T̂ j

γ .
According to the definition (44), the energy flux (12) can be
rewritten as

�γ =
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

N∑
j=0

h̄ωnj,j+1T̂ j
γ . (48)

Moreover, taking into account that the net energy flux on body
j = 1, . . . ,N is given by �j = �j−1 − �j , this flux becomes

�j =
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

N∑
�=0

h̄ωn�,�+1
(
T̂ �

j−1 − T̂ �
j

)
.

(49)
Thus, in view of Eqs. (48) and (49), we see that this formulation
is particularly useful when a sequence of consecutive bodies
in the system are thermalized at the same temperature; in this
case the functions n�,�+1 cancel out and the corresponding
terms do not contribute to the fluxes.

To establish the relation between T �,j and T̂ j
γ , we first can

write

Xγ,0 = T̂ 0
γ ,

Xγ,j = T̂ j
γ − T̂ j−1

γ , j = 1, . . . ,N,

Xγ,N+1 = −T̂ N
γ ,

(50)

where the first two relations follow directly from the definition
(44), and the last one is obtained using the fact that Xγ,N+1 =
T̂ N+1

γ − T̂ N
γ and Eq. (46). Thus, replacing Eq. (50) in the

definition of the energy transmission coefficients given by
Eq. (16) leads to the desired relation:

T 0,j = T̂ 0
j−1 − T̂ 0

j ,

T �,j = T̂ �
j−1 − T̂ �−1

j−1 − T̂ �
j + T̂ �−1

j ,

T N+1,j = −T̂ N
j−1 + T̂ N

j ,

(51)

where in these expressions j,� = 1, . . . ,N .
In addition, we highlight that Xγ,j = T̂ j

γ − T̂ j−1
γ vanish if

body j is removed from the system, which can be achieved
by letting ρ

j

φ → 0 and τ j → 1. Accordingly and in view
of Eq. (51), the associated transmission coefficient T �,j

also vanishes under these conditions, as expected, since this
coefficient represents the energy exchange channel between
bodies � and j . Moreover, taking into account the property
(47), from Eq. (51) one deduces that the energy transmission
coefficients satisfy the reciprocity relation T �,j = T j,� for
j,� = 1, . . . ,N .

Finally, we note that the contribution of the environmental
fields to the coefficients T̂ j

γ has to be evaluated by means of
Eqs. (30) separately for the cases j,γ = 0,N . In the remaining
coefficients T̂ j

γ , those for which j,γ = 1, . . . ,N − 1, the
contribution of the environmental fields can be straight-
forwardly evaluated since, for instance, ρ

0→j
+ = ρ

1→j
+ and

ρ
j+1→N+1
− = ρ

j+1→N
− . Once this is done, the many-body

scattering coefficients have to be expressed using Eqs. (35)
to remove the dependence of the reflection coefficients on
the positions zj and make explicit the dependence on the
separation distances dj (the whole system is invariant under
translations along the z axis).

VII. MOMENTUM TRANSFER COEFFICIENTS

In this section we determine the momentum transfer
coefficients W�,j introduced in Eq. (23). The procedure we
adopt here is close to that we followed in Sec. VI to obtain the
transmission coefficients T �,j .
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In analogy with Eq. (44), we now introduce the set of coefficients Ŵj
γ = Ŵj

γ (ω,k,p) defined as

Ŵj
γ ≡

j∑
�=0

Y γ,� − 1

2

∑
�

Y γ,�, (52)

which, in particular, leads to

ŴN+1
γ = 1

2

∑
�

Y γ,�. (53)

Moreover, in Appendix A we show that the set of coefficients Ŵj
γ take the form (j,γ = 0, . . . ,N)

Ŵj
γ = 
pw|τ j+1→γ |2(1 − |ρ0→j

+ |2)(1 + |ργ+1→N+1
− |2)

|1 − ρ
0→j
+ ρ

j+1→γ
− |2|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew4i|τ j+1→γ |2Im(ρ0→j
+ )Re(ργ+1→N+1

− )

|1 − ρ
0→j
+ ρ

j+1→γ
− |2|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

− ŴN+1
γ , j < γ,

Ŵγ
γ = 
pw(|ργ+1→N+1

− |2 − |ρ0→γ
+ |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew2iIm(ρ0→γ
+ ρ

γ+1→N+1∗
− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

Ŵj
γ = −
pw|τ γ+1→j |2(1 + |ρ0→γ

+ |2)(1 − |ρj+1→N+1
− |2)

|1 − ρ
0→j
+ ρ

j+1→N+1
− |2|1 − ρ

0→γ
+ ρ

γ+1→j
− |2

− 
ew4i|τ γ+1→j |2Re(ρ0→γ
+ )Im(ρj+1→N+1

− )

|1 − ρ
0→j
+ ρ

j+1→N+1
− |2|1 − ρ

0→γ
+ ρ

γ+1→j
− |2

+ ŴN+1
γ , j > γ,

ŴN+1
γ = 
pw(1 − |ρ0→γ

+ ρ
γ+1→N+1
− |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew2iIm(ρ0→γ
+ ρ

γ+1→N+1
− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

. (54)

On the other hand, from Eq. (52) we can write

Y γ,0 = Ŵ0
γ + ŴN+1

γ ,

Y γ,j = Ŵj
γ − Ŵj−1

γ , j = 1, . . . ,N,

Y γ,N+1 = −ŴN
γ + ŴN+1

γ .

(55)

Thus, using these relations, from Eq. (23) we get

W0,j = Ŵ0
j−1 + ŴN+1

j−1 − Ŵ0
j − ŴN+1

j ,

W�,j = Ŵ�
j−1 − Ŵ�−1

j−1 − Ŵ�
j + Ŵ�−1

j ,

WN+1,j = −ŴN
j−1 + ŴN+1

j−1 + ŴN
j − ŴN+1

j ,

(56)

where in these expressions j,� = 1, . . . ,N . This fully deter-
mines the coefficients W�,j in terms of Ŵj

γ .
As for the case of energy, the momentum fluxes can be

equivalently formulated in terms of the coefficients Ŵj
γ . Using

the definition (52), the momentum flux (20) can be rewritten
as

Pγ = −
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

N∑
j=0

h̄kznj,j+1Ŵj
γ

−
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

h̄kz(N0 + NN+1)ŴN+1
γ .

(57)

Since the net force per unit area acting on body j = 1, . . . ,N

is given by P j = Pj − Pj−1, we get

P j =
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

N∑
�=0

h̄kzn�,�+1
(
Ŵ�

j−1 − Ŵ�
j

)

+
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

h̄kz(N0 + NN+1)

× (
ŴN+1

j−1 − ŴN+1
j

)
. (58)

Again, in view of Eq. (58), we see that this formulation is
particularly useful when a sequence of consecutive bodies in
the system are thermalized at the same temperature.

We note that taking into account that

∑
�

W�,j = 2
(
ŴN+1

j−1 − ŴN+1
j

)
, (59)

at thermal equilibrium Eq. (58) becomes P
j
eq as given by

Eq. (25). Using Eq. (54) we immediately deduce that

N∑
j=1

(
ŴN+1

j−1 − ŴN+1
j

) = ŴN+1
0 − ŴN+1

N = 0, (60)

which proves that the sum of all the forces acting on the
bodies vanishes at thermal equilibrium. In addition, us-
ing that Re[w/(1 − w)] = (1 − |w|2)/(2|1 − w|2) − 1/2 and
Im[w/(1 − w)] = Im(w)/|1 − w|2, and the fact that kz = |kz|
for propagating waves and kz = i|kz| for the evanescent ones,
from Eqs. (54) and (59)

kz

∑
�

W�,j = 4Re

(
kzρ

0→j−1
+ ρ

j→N+1
−

1 − ρ
0→j−1
+ ρ

j→N+1
−

)

− 4Re

(
kzρ

0→j
+ ρ

j+1→N+1
−

1 − ρ
0→j
+ ρ

j+1→N+1
−

)
. (61)

Thus, using the above expression, the equilibrium force given
by Eq. (25) can be more easily calculated by performing a
rotation to the imaginary axis [5] ω → iξ . As a result, the
equilibrium force at temperature T = Tj is expressed as a
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summation over the Matsubara frequencies ξn = 2πkBT n/h̄,

P j
eq = − kBT

π

∞∑
n=0

′
∫ ∞

0
dk k

∑
p

√
ξ 2
n

c2
+ k2

×
[

ρ
0→j−1
+ ρ

j→N+1
−

1−ρ
0→j−1
+ ρ

j→N+1
−

− ρ
0→j
+ ρ

j+1→N+1
−

1−ρ
0→j
+ ρ

j+1→N+1
−

]
ω=iξn

,

(62)

where the prime in the summation means that the term with
n = 0 has to be multiplied by a factor 1/2, and all the terms
in square brackets are evaluated at ω = iξn. We remark that
this rotation to the imaginary axis can be performed to deal
with the equilibrium contribution to the total pressure, while
the thermal nonequilibrium contribution can be computed by
integrating over real frequencies. Analogously to what we said
for the coefficients T̂ j

γ , we emphasize here that the contribution
of the environmental fields to Ŵj

γ has to be evaluated with
Eqs. (30) separately for the cases j,γ = 0,N , and that the
many-body scattering coefficients have to be expressed using
Eqs. (35) to obtain Ŵj

γ in terms of the separation distances dj .

VIII. NUMERICAL APPLICATIONS

We now illustrate the previous formalism by considering
some examples dealing with radiative heat transfer and
Casimir-Lifshitz forces in many-body systems. We focus first
on temperature configurations leading to local heat transfer
equilibrium. Finally, the equilibrium position at which the net
force on a given body vanishes is studied by changing the
position of another body within the system. We emphasize
here that in the following numerical applications we always
consider the steady-state regime.

A. Radiative heat transfer

As an application of the formulation introduced for heat
transfer in many-body systems, we consider now the par-
ticular case N = 4. We are interested in showing how the
temperatures corresponding to local heat-transfer equilibrium
are modified in four-body systems, as compared with the three-
body case. Configurations with bodies at local equilibrium are
obtained by letting the temperatures of these bodies reach
the particular values for which the net energy flux on them
vanishes. Bodies at local equilibrium can thus be considered
as passive relays, since a thermostat in contact with each
of these bodies will not supply energy to the system under
global nonequilibrium conditions. In Appendix B we discuss
a procedure to obtain such equilibrium temperatures.

We analyzed a 4-body system in which two bodies are
silicon carbide (SiC) slabs and the other two are made of
hexagonal boron nitride (hBN). The permittivity of these polar
materials here are described by the Drude-Lorentz model

ε(ω) = ε∞
ω2

L − ω2 − i�ω

ω2
T − ω2 − i�ω

, (63)

with high frequency dielectric constant ε∞ = 6.7, lon-
gitudinal optical frequency ωL = 1.83 × 1014 rad/s, trans-
verse optical frequency ωT = 1.49 × 1014 rad/s, and

damping � = 8.97 × 1011 rad/s for SiC [97], while for hBN
we take [98] ε∞ = 4.9, ωL = 3.03 × 1014 rad/s, ωT = 2.57 ×
1014 rad/s, and � = 1.0 × 1012 rad/s.

Here we consider a setup in which three of these four bodies,
corresponding to a hBN-SiC-hBN configuration, are at fixed
positions while the position of the remaining SiC slab is varied
in two different arrangements. In the first case, bodies 1 and
3 are hBN slabs of width δ1 = δ3 = 200 nm, and bodies 2
and 4 are SiC slabs of widths δ2 = 200 nm and δ4 = 5 μm,
respectively. We then fix the separation distances d1 = 200 nm
(between bodies 1 and 2) and d2 = 200 nm (between bodies
2 and 3), and vary the position of body 4 which is specified
by the separation distance d3 (between bodies 3 and 4). The
temperature of body 1 is set to T1 = 400 K, those of bodies
3 and 4 are fixed to T3 = T4 = 300 K, and the temperature
T2 of body 2 is allowed to reach the value for which the body
attains local equilibrium. In Fig. 2(a), we show the equilibrium
temperature T2 = T

eq
2 of body 2 as a function of the separation

distance d3. It is observed how body 2 cools down when body 4
is approached at short separation distances. In the second case,
bodies 2 and 4 are hBN slabs of width δ2 = δ4 = 200 nm,
whereas bodies 1 and 3 are made of SiC and have widths
δ1 = 5 μm and δ3 = 200 nm, respectively. In this case, we
vary the separation distance d1 and fix the separation distances
d2 = d3 = 200 nm. The temperatures are taken such that
T1 = T2 = 400 K, T4 = 300 K, and the temperature T3 of body
3 is that for which the body reaches local equilibrium. In
Fig. 2(b), the equilibrium temperature T3 = T

eq
3 of body 3 is

shown as a function of the separation distance d1. We observe
now that body 3 heats up when body 1 is brought closer to
the three-body structure. In Fig. 2(a) [Fig. 2(b)] we also show
the equilibrium temperature T

eq
2,3B [T eq

3,3B] of the intermediate
body in the three-body system obtained by removing body
4 [body 1]. For symmetry reasons, these two three-body
equilibrium temperatures coincide, T

eq
2,3B = T

eq
3,3B. Notice that

at large d3 in Fig. 2(a), the equilibrium temperature T
eq

2 does
not converge to T

eq
2,3B, since also in far field the properties of

the fourth body influence the other components of the system.
A similar behavior is observed in Fig. 2(b) at large d1. In
all cases (also in those considered below), the left and right
environmental temperatures are fixed to T0 = T5 = 300 K.

We now repeat the same two previous experiences but
allowing the SiC slab whose position is varied to attain
local equilibrium as well. Hence, now two bodies in the
four-body system act as passive relays. For the first case,
in Fig. 3(a) we plot the equilibrium temperatures T2 = T

eq
2

and T4 = T
eq

4 as a function of the separation distance d3 with
fixed T1 = 400 K and T3 = 300 K. In the second case, the
equilibrium temperatures T

eq
1 and T

eq
3 are shown in Fig. 3(b)

as a function of d1 with fixed T2 = 400 K and T4 = 300 K.
The equilibrium temperature of the intermediate body in the
three-body configuration is also included in the plots.

To get insight into the physical mechanism responsible
for the heat transfer in the system, we calculate the energy
transmission coefficients T 1,3 in the (k,ω) plane for two of the
previous SiC-hBN-SiC-hBN configurations, corresponding
to near and far fields, as shown in Fig. 4. According to
the Landauer formalism, this coefficient can be interpreted
as the coupling efficiency of modes between bodies 1 and
3. In Figs. 4(a) and 4(c), the transmission coefficients are
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FIG. 2. Equilibrium temperatures in four-body systems. (a) Equi-
librium temperature of body 2 as a function of the separation distance
d3 with fixed T1 = 400 K and T3 = T4 = 300 K. Bodies 1 and 3
are hBN slabs of width δ1 = δ3 = 200 nm, whereas bodies 2 and
4 are made of SiC and have widths δ2 = 200 nm and δ4 = 5 μm,
respectively. The rest of the separation distances are fixed to
d1 = d2 = 200 nm. (b) Equilibrium temperature of body 3 as a
function of the separation distance d1 with fixed T1 = T2 = 400 K
and T4 = 300 K. Bodies 2 and 4 are hBN slabs of width δ2 = δ4 =
200 nm, whereas bodies 1 and 3 are made of SiC and have widths
δ1 = 5 μm and δ3 = 200 nm, respectively. The rest of the separation
distances are fixed to d2 = d3 = 200 nm. In (a) and (b), we also show
the equilibrium temperature of the intermediate body in a three-body
system: T

eq
2,3B is obtained by removing body 4 in (a) and T

eq
3,3B is

obtained by removing body 1 in (b). In both cases the environmental
temperatures are fixed to T0 = T5 = 300 K.

shown in the near-field regime for TM and TE polarizations,
respectively. For TM polarization [Fig. 4(a)], we observe
symmetric (low energy) and antisymmetric (high energy)
surface phonon-polaritons supported by the SiC samples and
an intermediate branch corresponding to a hybridized surface
resonance due to the coupling between the two layers. We
highlight that these branches are attenuated by the presence
of the intermediate hBN slab. For TE polarization [Fig. 4(c)],
the coupling mechanism is radically different, since in this
case the system does not support surface waves. However,
as shown by the plot of the transmission coefficient, the
efficiency of coupling is also important for this polarization.
The contribution of TE-polarized waves to the transfer mainly
results from frustrated modes which are associated to guided
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FIG. 3. Equilibrium temperatures in four-body systems. Mate-
rials, geometry, and background temperature are the same as in
Fig. 2, but now the temperatures of two bodies are allowed to reach
equilibrium conditions. (a) Equilibrium temperatures of bodies 2 and
4 as a function of the separation distance d3 with fixed T1 = 400 K
and T3 = 300 K. (b) Equilibrium temperatures of bodies 1 and 3
as a function of d1 with fixed T2 = 400 K and T4 = 300 K. For
comparison, the equilibrium temperature of the intermediate body
in the three-body configuration is also included in the plots.

modes in the first SiC layer. Accordingly, the number of
branches in Fig. 4(c) increases with the thickness of body
1. On the other hand, in far-field regime the transfer is due
to guided modes in the cavity formed by the first and the
third layer. The associated energy transmission coefficients are
shown in Figs. 4(b) and 4(d) for the two polarizations. Finally,
we remark that Wien’s frequencies ωW (T ) = 2.82kBT /h̄ indi-
cating the frequencies around which heat exchange occurs are
given by ωW (300 K) = 1.11 × 1014 rad/s and ωW (400 K) =
1.48 × 1014 rad/s for the temperatures of the thermostated
bodies.

B. Casimir-Lifshitz force

We now consider an application of the formalism to the case
of the Casimir-Lifshitz force in a four-body system. Here we
restrict ourselves to the case of thermal equilibrium. Our aim is
to show how the equilibrium position of one of the intermediate
bodies in the four-body setup is modified by changing the
position of one of the external bodies. By equilibrium position
we mean the location of the body at which the net Casimir-
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FIG. 4. Transmission coefficients T 1,3 in the (k,ω) plane for the four-body configuration corresponding to Fig. 2(b) and Fig. 3(b). White
dashed lines indicate the light line ω = ck. The upper panel corresponds to TM polarization and the lower one to TE polarization. Bodies 1 and 3
are SiC slabs of width δ1 = 5 μm and δ3 = 200 nm, respectively, whereas bodies 2 and 4 are made of hBN and have widths δ2 = δ4 = 200 nm.
In (a) and (c) we set d1 = 100 nm, while in (b) and (d) we take d1 = 100 μm. In all cases d2 = d3 = 200 nm. The horizontal lines indicate the
longitudinal and transverse optical frequencies ωL = 1.83 × 1014 rad/s and ωT = 1.49 × 1014 rad/s for SiC, respectively.

Lifshitz force on it vanishes. Such an equilibrium position is,
however, unstable, because of the purely attractive character
of the forces acting on the body.

To be more precise, we consider a four-body system in
which bodies 1 and 3 are SiC slabs of width δ1 = δ3 = 100 nm,
and bodies 2 and 4 are gold (Au) slabs of width δ2 = 100 nm
and δ4 = 10 μm, respectively. To describe the permittivity of
Au we have used a Drude model

ε(ω) = 1 − ω2
P

ω(ω + i�)
, (64)

with plasma frequency ωP = 1.37 × 1016 rad/s and dissipa-
tion rate � = 5.32 × 1013 rad/s. We stress here that our theory
can in principle be applied to obtain predictions using any
description of optical properties, such as for example the
plasma model in the case of metals (see Ref. [99] and refs.
therein). We then fix the positions of bodies 1 and 3 and
compute the net pressure P 2

eq acting on body 2 as a function of
the position z2 of this body for a given location of the fourth
slab. We perform this operation for different positions of body
4, which are specified by the separation distance d3 between
bodies 3 and 4. Moreover, the bodies are accommodated in
such a way that the gaps between bodies 1 and 2 and between
2 and 3 accomplish d1 + d2 = 1 μm. We measure the position
z2 with respect to the center of the cavity formed by bodies 1
and 3. In this way, if the fourth body is absent, by symmetry,

the equilibrium position of body 2 is precisely at z2 = 0, the
center of this cavity. The resulting net pressure P 2

eq is shown
in Fig. 5 (the temperature is set to T = 300 K). In the inset of
Fig. 5, we also plot the variation of the equilibrium position
with respect to the case in which body 4 is not present, �z2, as
a function of the separation distance d3. As shown in the plot,
in the specific configuration we consider, the presence of the
additional fourth gold slab is able to modify the equilibrium
position of more than 40 nm in the best case, i.e., when d3 = 0,
slab 4 being in contact with slab 3.

IX. CONCLUSIONS

In this work we have introduced a general theoretical
framework to investigate the radiative heat transfer and the
Casimir-Lifshitz force both at and out of thermal equilibrium
between bodies separated by vacuum gaps in arbitrary planar
many-body systems. A Landauer-like formulation of the heat
transfer problem has been carried out and the correspond-
ing energy transmission coefficients have been explicitly
expressed in terms of reflection and transmission properties
of the different layers. Similar explicit expressions have been
derived for coefficients related to momentum transfer.

We have applied this theory to investigate both heat
exchanges and interacting forces at thermal equilibrium in
systems made of three parallel slabs when a fourth slab
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FIG. 5. Net pressure P 2
eq acting on body 2 in a four-body

configuration at thermal equilibrium (T = 300 K). This pressure is
shown as a function of the position of body 2, z2, for several separation
distances d3 with fixed d1 + d2 = 1 μm. Bodies 1 and 3 are SiC slabs
of width δ1 = δ3 = 100 nm, and bodies 2 and 4 are gold slabs of
width δ2 = 100 nm and δ4 = 10 μm, respectively. The inset shows
the variation of the (unstable) equilibrium position of body 2 when
d3 is varied. This variation �z2 is measured with respect to the
equilibrium position, at z2 = 0, in the three-body configuration in
which body 4 is removed.

is brought close to them. We have shown that near-field
interactions can significantly impact heat and momentum ex-
changes within these systems demonstrating so the potential of
many-body interactions to tune these exchanges. In particular,
we have numerically proved that varying the position of the
fourth slabs allows us to actively tune both the equilibrium
temperatures of the system in the case of radiative heat transfer
and the mechanical equilibrium position when dealing with
Casimir-Lifshitz forces.

Our results show that N -body systems are indeed promising
candidates for any application where energy- and momentum-
exchange manipulation is desired. In particular, the presence of
a higher number of degrees of freedom paves the way to a finer
control of both effects. Because of the nonadditivity of both
phenomena, a full N -body theory such as the one discussed
here is mandatory in order to correctly predict the dependence
of heat transfer and force on the system parameters.
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APPENDIX A: COEFFICIENTS T̂ j
γ and Ŵ j

γ

Here we first deduce the expressions for the set of
coefficients Xγ,j and Y γ,j introduced by Eqs. (13) and (21),
respectively. After that we will compute the coefficients T̂ j

γ

and Ŵj
γ given by Eqs. (44) and (52), respectively.

For convenience, we now introduce two auxiliary media
“beyond” the external blackbodies labeled with j = −1 and
j = N + 2, whose associated reflection and transmission
coefficients satisfy

ρ−1
φ = ρN+2

φ = 0,

τ−1 = τN+2 = 1.
(A1)

Introducing these innocuous media can be seen as a trick
for fictitiously providing a first-neighbor symmetry around
the environmental fields. Hence, we see that ρ

1→j
+ = ρ

0→j
+ =

ρ
−1→j
+ and ρ

j→N
− = ρ

j→N+1
− = ρ

j→N+2
− . This allows us to

rewrite the coefficients L
γ+
j− and L

γ−
j+ in such a way that from

Eqs. (39) and (40) we get

L
γ−
jη = ρ

γ+1→N+1
− L

γ+
jη , j � γ,

L
γ+
j− = ρ

−1→j−1
+ τ ju−1→j−1,jL

γ+
j+ , j � γ,

(A2)

while from Eqs. (39) and (41) we have

L
γ+
jη = ρ

0→γ
+ L

γ−
jη , j > γ,

L
γ−
j+ = ρ

j+1→N+2
− τ juj,j+1→N+2L

γ−
j− , j > γ.

(A3)

In view of Eqs. (A2) and (A3), on the one hand, for
j � γ the coefficients L

γφ

jη are all proportional to L
γ+
j+ , the

proportionality factor being a function of the many-body
scattering coefficients. On the other hand, for j > γ these
coefficients are all proportional to L

γ−
j− . This fact allows us

to simplify the summations in Eqs. (13) and (21), so that
the coefficients Xγ,j and Y γ,j can be more easily obtained
separately for j � γ and j > γ . In doing so and after replacing
the coefficients Kjηη′

φφ′ using Eq. (32), from Eq. (13) and for
j � γ one gets

Xγ,j = 
pw
∣∣Lγ+

j+
∣∣2

(1 − |ργ+1→N+1
− |2)[1 − |ρj

+|2 − |τ j |2 − ρ
−1→j−1∗
+ τ j∗u−1→j−1,j∗(ρj

+τ j∗ + ρ
j∗
− τ j )

− ρ
−1→j−1
+ τ ju−1→j−1,j (ρj

−τ j∗ + ρ
j∗
+ τ j ) + |ρ−1→j−1

+ τ ju−1→j−1,j |2(1 − |ρj
−|2 − |τ j |2)]

− 
ew
∣∣Lγ+

j+
∣∣2

2iIm(ργ+1→N+1
− )[ρj

+ − ρ
j∗
+ + ρ

−1→j−1∗
+ τ j∗u−1→j−1,j∗(τ j − τ j∗)

+ ρ
−1→j−1
+ τ ju−1→j−1,j (τ j − τ j∗) + |ρ−1→j−1

+ τ ju−1→j−1,j |2(ρj
− − ρ

j∗
− )], j � γ. (A4)

Now, according to the definition of the many-body reflection coefficients, Eq. (33), we can write ρ
−1→j
+ = ρ

j
+ +

(τ j )2u−1→j−1,j ρ
−1→j−1
+ . Using this, it is then not difficult to recognize the terms leading to 1 − |ρ−1→j

+ |2 in the contribution of
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propagating waves in square brackets in Eq. (A4) and 2iIm(ρ−1→j
+ ) in the terms corresponding to the evanescent sector. Moreover,

recalling that u−1→j−1,j = (1 − ρ
−1→j−1
+ ρ

j
−)−1, the remaining terms can be grouped with the common factor |τ ju−1→j−1,j |2 in

such a way that

Xγ,j = 
pw
∣∣Lγ+

j+
∣∣2

[1 − |ρ−1→j
+ |2 − |τ ju−1→j−1,j |2(1 − |ρ−1→j−1

+ |2)](1 − |ργ+1→N+1
− |2)

+ 
ew
∣∣Lγ+

j+
∣∣2

4[Im(ρ−1→j
+ ) − |τ ju−1→j−1,j |2Im(ρ−1→j−1

+ )]Im(ργ+1→N+1
− ), j � γ. (A5)

Following a similar procedure for the case j > γ , Eq. (13) can be computed to give

Xγ,j = −
pw
∣∣Lγ−

j−
∣∣2

(1 − |ρ0→γ
+ |2)[1 − |ρj→N+2

− |2 − |τ juj,j+1→N+2|2(1 − |ρj+1→N+2
− |2)]

− 
ew
∣∣Lγ−

j−
∣∣2

4Im(ρ0→γ
+ )[Im(ρj→N+2

− ) − |τ juj,j+1→N+2|2Im(ρj+1→N+2
− )], j > γ. (A6)

As noted previously, the coefficients Y γ,j can be obtained adopting a strategy analogous to the previous one, which for brevity
we do not include here. In summary, using Eqs. (A2) and (A3) to write the coefficients L

γφ

jη and (32) for the coefficients Kjηη′
φφ′ ,

the summations in Eq. (21) can be evaluated yielding

Y γ,j = 
pw
∣∣Lγ+

j+
∣∣2

[1 − |ρ−1→j
+ |2 − |τ ju−1→j−1,j |2(1 − |ρ−1→j−1

+ |2)](1 + |ργ+1→N+1
− |2)

+ 
ew
∣∣Lγ+

j+
∣∣2

4i[Im(ρ−1→j
+ ) − |τ ju−1→j−1,j |2Im(ρ−1→j−1

+ )]Re(ργ+1→N+1
− ), j � γ, (A7)

and

Y γ,j = 
pw
∣∣Lγ−

j−
∣∣2

(1 + |ρ0→γ
+ |2)[1 − |ρj→N+2

− |2 − |τ juj,j+1→N+2|2(1 − |ρj+1→N+2
− |2)]

+ 
ew
∣∣Lγ−

j−
∣∣2

4iRe(ρ0→γ
+ )[Im(ρj→N+2

− ) − |τ juj,j+1→N+2|2Im(ρj+1→N+2
− )], j > γ. (A8)

We now focus on the coefficients T̂ j
γ . The above expressions for Xγ,j , Eqs. (A5) and (A6), can be made more explicit by

evaluating them with Eqs. (42) and (43), which leads to

Xγ,j = 
pw

[
|τ j+1→γ |2(1 − |ρ−1→j

+ |2)

|1 − ρ
0→j
+ ρ

j+1→γ
− |2

− |τ j→γ |2(1 − |ρ−1→j−1
+ |2)

|1 − ρ
−1→j−1
+ ρ

j→γ
− |2

]
1 − |ργ+1→N+1

− |2
|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew

[
|τ j+1→γ |2Im(ρ−1→j

+ )

|1 − ρ
0→j
+ ρ

j+1→γ
− |2

− |τ j→γ |2Im(ρ−1→j−1
+ )

|1 − ρ
−1→j−1
+ ρ

j→γ
− |2

]
4Im(ργ+1→N+1

− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

, j < γ,

Xγ,γ = 
pw

[
1 − |ρ−1→γ

+ |2 − |τ γ |2(1 − |ρ−1→γ−1
+ |2)

|1 − ρ
−1→γ−1
+ ρ

γ
−|2

]
1 − |ργ+1→N+1

− |2
|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew

[
Im(ρ−1→γ

+ ) − |τ γ |2Im(ρ−1→γ−1
+ )

|1 − ρ
−1→γ−1
+ ρ

γ
−|2

]
4Im(ργ+1→N+1

− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

,

Xγ,γ+1 = − 
pw(1 − |ρ0→γ
+ |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

[
1 − |ργ+1→N+2

− |2 − |τ γ+1|2(1 − |ργ+2→N+2
− |2)

|1 − ρ
γ+1
+ ρ

γ+2→N+2
− |2

]

− 
ew4Im(ρ0→γ
+ )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

[
Im(ργ+1→N+2

− ) − |τ γ+1|2Im(ργ+2→N+2
− )

|1 − ρ
γ+1
+ ρ

γ+2→N+2
− |2

]
,

Xγ,j = − 
pw(1 − |ρ0→γ
+ |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

[
|τ γ+1→j−1|2(1 − |ρj→N+2

− |2)

|1 − ρ
γ+1→j−1
+ ρ

j→N+1
− |2

− |τ γ+1→j |2(1 − |ρj+1→N+2
− |2)

|1 − ρ
γ+1→j
+ ρ

j+1→N+2
− |2

]

− 
ew4Im(ρ0→γ
+ )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

[
|τ γ+1→j−1|2Im(ρj→N+2

− )

|1 − ρ
γ+1→j−1
+ ρ

j→N+1
− |2

− |τ γ+1→j |2Im(ρj+1→N+2
− )

|1 − ρ
γ+1→j
+ ρ

j+1→N+2
− |2

]
, j > γ + 1,

(A9)
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where we have used that

τ j→γ = τ juj,j+1→γ τ j+1→γ ,

u0→j,j+1→γ u−1→j−1,j

uj,j+1→γ u−1→j−1,j→γ
= 1, (A10)

for the case j < γ , the relations

τ γ+1→j = τ γ+1→j−1uγ+1→j−1,j τ j ,

uγ+1→j−1,j→N+1uj,j+1→N+2

uγ+1→j−1,j uγ+1→j,j+1→N+2
= 1, (A11)

for the case j > γ + 1, and introduced the Fabry-Pérot denominators using Eq. (34). We note that the first relations of Eqs. (A10)
and (A11) follow from Eq. (33), the definition of the many-body transmission coefficients, while the second ones can be obtained
working out Eqs. (33) and (34). Moreover, by inspection of Eq. (A9), we observe that Xγ,j are always written as the difference
of two terms. Remembering the relation Xγ,j = T̂ j

γ − T̂ j−1
γ , which is a consequence of the definition (44) for j > 0, allows us

to identify T̂ j
γ as

T̂ j
γ = 
pw|τ j+1→γ |2(1 − |ρ−1→j

+ |2)(1 − |ργ+1→N+1
− |2)

|1 − ρ
0→j
+ ρ

j+1→γ
− |2|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew4|τ j+1→γ |2Im(ρ−1→j
+ )Im(ργ+1→N+1

− )

|1 − ρ
0→j
+ ρ

j+1→γ
− |2|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

, j < γ, (A12)

and

T̂ γ
γ = 
pw (1 − |ρ−1→γ

+ |2)(1 − |ργ+1→N+1
− |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew 4Im(ρ−1→γ
+ )Im(ργ+1→N+1

− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

. (A13)

In fact, the previous identification can be made except for an additive function of γ that cancels out when computing the
difference Xγ,j = T̂ j

γ − T̂ j−1
γ . However, since the above expressions lead to T̂ 0

γ = Xγ,0, in agreement with (44), such an
additive contribution is actually zero. Analogously, from Eq. (A9) we see that

T̂ j
γ = 
pw|τ γ+1→j |2(1 − |ρ0→γ

+ |2)(1 − |ρj+1→N+2
− |2)

|1 − ρ
0→j
+ ρ

j+1→N+2
− |2|1 − ρ

0→γ
+ ρ

γ+1→j
− |2

+ 
ew4|τ γ+1→j |2Im(ρ0→γ
+ )Im(ρj+1→N+2

− )

|1 − ρ
0→j
+ ρ

j+1→N+2
− |2|1 − ρ

0→γ
+ ρ

γ+1→j
− |2

, j > γ, (A14)

where we have rewritten the denominators using Eq. (34) and

u0→γ,γ+1→N+1uγ+1→j,j+1→N+2

u0→j,j+1→N+2u0→γ,γ+1→j
= 1. (A15)

Finally, since τN+1 = 0, the coefficient τ γ+1→j vanishes at j = N + 1 and hence, from Eq. (A14) we get T̂ N+1
γ = 0. According

to the definition of these coefficients, the fact that T̂ N+1
γ = ∑

j Xγ,j = 0 shows that Eq. (14) indeed holds. Thus, after removing
the dependence on the auxiliary media j = −1 and j = N + 2, from Eqs. (A12), (A13), and (A14), we obtain Eqs. (45) and
(46).

Now we turn our attention to the coefficients Ŵj
γ given by Eq. (52). Evaluating Eqs. (A7) and (A8) with Eqs. (42) and (43)

leads to

Y γ,j = 
pw

[
|τ j+1→γ |2(1 − |ρ−1→j

+ |2)

|1 − ρ
0→j
+ ρ

j+1→γ
− |2

− |τ j→γ |2(1 − |ρ−1→j−1
+ |2)

|1 − ρ
−1→j−1
+ ρ

j→γ
− |2

]
1 + |ργ+1→N+1

− |2
|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

+
ew

[
|τ j+1→γ |2Im(ρ−1→j

+ )

|1 − ρ
0→j
+ ρ

j+1→γ
− |2

− |τ j→γ |2Im(ρ−1→j−1
+ )

|1 − ρ
−1→j−1
+ ρ

j→γ
− |2

]
4iRe(ργ+1→N+1

− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

, j < γ,

Y γ,γ = 
pw

[
1 − |ρ−1→γ

+ |2 − |τ γ |2(1 − |ρ−1→γ−1
+ |2)

|1 − ρ
−1→γ−1
+ ρ

γ
−|2

]
1 + |ργ+1→N+1

− |2
|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

+
ew

[
Im(ρ−1→γ

+ ) − |τ γ |2Im(ρ−1→γ−1
+ )

|1 − ρ
−1→γ−1
+ ρ

γ
−|2

]
4iRe(ργ+1→N+1

− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

,

(A16)
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Y γ,γ+1 = 
pw(1 + |ρ0→γ
+ |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

[
1 − |ργ+1→N+2

− |2 − |τ γ+1|2(1 − |ργ+2→N+2
− |2)

|1 − ρ
γ+1
+ ρ

γ+2→N+2
− |2

]

+ 
ew4iRe(ρ0→γ
+ )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

[
Im(ργ+1→N+2

− ) − |τ γ+1|2Im(ργ+2→N+2
− )

|1 − ρ
γ+1
+ ρ

γ+2→N+2
− |2

]
,

Y γ,j = 
pw(1 + |ρ0→γ
+ |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

[
|τ γ+1→j−1|2(1 − |ρj→N+2

− |2)

|1 − ρ
γ+1→j−1
+ ρ

j→N+1
− |2

− |τ γ+1→j |2(1 − |ρj+1→N+2
− |2)

|1 − ρ
γ+1→j
+ ρ

j+1→N+2
− |2

]

+ 
ew4iRe(ρ0→γ
+ )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

[
|τ γ+1→j−1|2Im(ρj→N+2

− )

|1 − ρ
γ+1→j−1
+ ρ

j→N+1
− |2

− |τ γ+1→j |2Im(ρj+1→N+2
− )

|1 − ρ
γ+1→j
+ ρ

j+1→N+2
− |2

]
, j > γ + 1,

where, as before, we have used Eq. (A10) for j < γ , Eq. (A11) for j > γ + 1, and introduced the Fabry-Pérot denominators
employing Eq. (34). Since, in accordance with Eq. (52), we can write Y γ,j = Ŵj

γ − Ŵj−1
γ for j > 0, by inspection of Eq. (A16)

we identify

Ŵj
γ = 
pw|τ j+1→γ |2(1 − |ρ−1→j

+ |2)(1 + |ργ+1→N+1
− |2)

|1 − ρ
0→j
+ ρ

j+1→γ
− |2|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew4i|τ j+1→γ |2Im(ρ−1→j
+ )Re(ργ+1→N+1

− )

|1 − ρ
0→j
+ ρ

j+1→γ
− |2|1 − ρ

0→γ
+ ρ

γ+1→N+1
− |2

+ f (γ ), j < γ,

(A17)

and

Ŵγ
γ = 
pw (1 − |ρ−1→γ

+ |2)(1 + |ργ+1→N+1
− |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew 4iIm(ρ−1→γ
+ )Re(ργ+1→N+1

− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

+ f (γ ), (A18)

where f (γ ) is to be found. Due to the fact that the above expressions for j = 0 reduce to Ŵ0
γ = Y γ,0 + f (γ ), in accordance with

Eq. (52) we see that f (γ ) = − 1
2

∑
j Y γ,j . Furthermore, the particular case j = γ + 1 can be computed as Ŵγ+1

γ = Y γ,γ+1 + Ŵγ
γ ,

yielding

Ŵγ+1
γ =− 
pw|τ γ+1|2(1 + |ρ0→γ

+ |2)(1 − |ργ+2→N+2
− |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2|1 − ρ

γ+1
+ ρ

γ+2→N+2
− |2

− 
ew4i|τ γ+1|2Re(ρ0→γ
+ )Im(ργ+2→N+2

− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2|1 − ρ

γ+1
+ ρ

γ+2→N+2
− |2

− 1

2

∑
j

Y γ,j + g(γ ), (A19)

where

g(γ ) = 
pw 2(1 − |ρ0→γ
+ ρ

γ+1→N+1
− |2)

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

+ 
ew 4iIm(ρ0→γ
+ ρ

γ+1→N+1
− )

|1 − ρ
0→γ
+ ρ

γ+1→N+1
− |2

. (A20)

By comparison of the previous expression for Ŵγ+1
γ with Ŵj

γ = Y γ,j + Ŵj−1
γ for j > γ + 1, from Eq. (A16) we infer that

Ŵj
γ = −
pw|τ γ+1→j |2(1 + |ρ0→γ

+ |2)(1 − |ρj+1→N+2
− |2)

|1 − ρ
0→j
+ ρ

j+1→N+2
− |2|1 − ρ

0→γ
+ ρ

γ+1→j
− |2

− 
ew4i|τ γ+1→j |2Re(ρ0→γ
+ )Im(ρj+1→N+2

− )

|1 − ρ
0→j
+ ρ

j+1→N+2
− |2|1 − ρ

0→γ
+ ρ

γ+1→j
− |2

− 1

2

∑
j

Y γ,j + g(γ ), j > γ, (A21)

where we have arranged the denominators in the first two terms using Eq. (A15). Moreover, evaluating Eq. (A21) at j = N + 1
yields ŴN+1

γ = − 1
2

∑
j Y γ,j + g(γ ), since the coefficient τ γ+1→j vanishes when j corresponds to an environmental field. Thus,

this result and Eq. (53) readily lead to the identification

ŴN+1
γ = 1

2

∑
j

Y γ,j = 1

2
g(γ ). (A22)

Finally, removing the dependence on the auxiliary media j = −1 and j = N + 2, from Eqs. (A17), (A18), (A21), and (A22),
we obtain Eq. (54).
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APPENDIX B: TEMPERATURE CONFIGURATIONS
OF LOCAL HEAT TRANSFER EQUILIBRIUM

Here we present a method to find temperature configura-
tions in the N -body system for which a given number of bodies
within the system are allowed to reach local heat transfer
equilibrium. Such configurations are defined by the fact that
the net energy flux on these bodies vanishes.

We start by noting that, using Eqs. (14) and (16), the net
energy flux (15) can be rewritten as

�j =
∫ ∞

0

dω

2π
h̄ω

∑
�

n�(ω)Q�,j (ω), (B1)

where

Q�,j (ω) =
∫ ∞

0

dk

2π
k

∑
p

T �,j (ω,k,p). (B2)

Assuming that the transmission coefficients do not depend on
temperature, expression (B1) is convenient for our purpose
because each term of the sum over � depends only on one of
the temperatures T�.

In order to determine the local equilibrium configurations,
consider that m bodies are not thermalized with a bath, so
that their temperatures can evolve to reach a configuration
of local heat transfer equilibrium, while N − m bodies have
fixed temperature. The temperatures of the environments are

assumed fixed as well. To proceed, we introduce the vectors

x = (
T�1 ,T�2 , . . . ,T�m

) ∈ Rm,

f = (
��1 ,��2 , . . . ,��m

) ∈ Rm,
(B3)

where �1,�2, . . . ,�m are the bodies that are not thermalized
with a bath (not necessarily consecutive). Thus, the local equi-
librium condition is given by xe satisfying f (xe) = 0, which
corresponds to the solution of a nonlinear system of equations.
It is possible, however, to obtain such a configuration solving
linear systems of equations by means of an iterative procedure,
as briefly discussed below.

The linear expansion of f (x) around the point x0 is given
by

f (x) ≈ f (x0) + J (x0)�x, (B4)

where �x = x − x0 and J (x) = D f (x) is the associated
Jacobian matrix. Since from (B1) we can write

∂�j

∂T�

=
∫ ∞

0

dω

2π
h̄ω

∂n�(ω)

∂T�

Q�,j (ω), (B5)

the components Jij of the Jacobian take the form (i,j =
1, . . . ,m)

Jij =
∫ ∞

0

dω

2π
h̄ω

∂n�j
(ω)

∂T�j

Q�j ,�i (ω). (B6)

Therefore, solving for �x the linear system of equations
− f (x0) = J (x0)�x, the equilibrium temperatures are ob-
tained as xe = �x + x0. Starting from a given point x0, the
process can be iterated using xe as the new initial value.
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