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Abstract. Symbolic tree transducers are programs that transform data
trees with an infinite signature. In this paper, we show that the equivalence
problem of deterministic symbolic top-down tree transducers (DTop) can
be reduced to that of classical DTop. As a consequence the equivalence
of two symbolic DTop can be decided in NExpTime, when assuming
that all operations related to the processing of data values are in PTime.
This result can be extended to symbolic DTop with lookahead and thus
to deterministic symbolic bottom-up tree transducers.

1 Introduction

Data trees are widely used in various domains of computer science. They repre-
sent programs in compiler construction or program analysis, syntactic sentence
structure in computational linguistics, all or part of the database instances in
semi-structured databases, and structured documents in document processing.
The most widely used current formats for data trees are json (the Java Script
Object Notation) and xml (the eXtensible Markup Language).

We are interested in deciding the equivalence of programs that define trans-
formations on data trees. For instance, we may consider xslt programs defining
xml transformations or Linux installation scripts written in bash that change
the file system tree. Our approach is to compile a subclass of such programs into
classes of tree transducers for which equivalence is decidable. Here we present a
partial landscape of classical classes of tree transducers without data values [7, 8,
12], where inclusion is read from left to right:

MttDTopR
extended DTop
functional TopDTop

DBup
The class DTopR of deterministic top-down tree transducers with regular

lookahead by a deterministic bottom-up tree automaton is particularly well
behaved [8]. It is closed under composition, which makes it suitable for compilation
of programs, and its equivalence problem is decidable in NExpTime, by PTime
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reduction to the equivalence problem of the class DTop, for which equivalence is
decidable in NExpTime [14, 11, 17]. Furthermore, the class DTopR subsumes
three other classes of tree transducers with pairwise incomparable expressiveness,
which capture different aspects of programs: extended DTop with nested pattern
matching, functional top-down tree transducers (functional Top) that relax the
determinism requirement of DTop, and deterministic bottom-up tree transducers
DBup that operate the other way around. The more general class of macro tree
transducers (Mtt) is much more expressive (and includes lookaheads), but has
a long-standing open equivalence problem [9, 10, 18] and fails to be closed under
composition (though its linear size increase subclass has better properties).

In contrast to classical machines that operate on ranked trees over finite
signatures, what we need for program verification are generalised machines that
operate on data trees with infinite signatures. Most typically the data values
which label the nodes of data trees may be strings over some finite alphabet
or natural numbers. For dealing with data trees, the classical classes of tree
transducers were extended to symbolic classes [20, 19, 15], and similarly for other
kinds of finite state machines. The general idea is to use patterns for describing
infinitely many data values in a finite manner, and to allow the transducers to
apply transformations on the data values themselves.

We first illustrate by an example that the class of symbolic extended DTop
is relevant in practice. For this, we consider the following extended DTop, which
performs a routine cleanup and statistics task on a list of log files in a file system,
as illustrated in the example of Figure 1.

q〈nil〉 → cons〈 file〈“log”, “”〉, nil〉 (1)
q〈cons〈x1, x2〉〉 → cons〈qname〈x1〉, q〈x2〉〉 (2)
qname〈file〈“log”, x2〉〉 → file〈“stats.1”, fstats@@@x2〉 (3)
qname〈file〈x1 : “stats.”(“0”..“9”)+, x2〉〉 → file〈fincr@@@x1, fid@@@x2〉 (4)

Such transducers have nested patterns with variables x1, x2, . . . for matching
subtrees, expressions for matching data values such as “stats.”(“0”..“9”)+ or
cons, and applications of externally defined functions, such as fstats@@@x2, where
fstats is a string transformation that produces statistics from its input string (log
contents). It should be noted that symbolic functional Top are insufficient for
this example since rules such as (3) and (4), with nested patterns, cannot be
expressed in a top-down manner. In contrast, symbolic DBup offer an alternative
solution for this concrete example.

Veanes and Bjørner [20, 19] started the study of symbolic transducers. They
showed that equivalence is decidable for symbolic functional Top, if the corre-
sponding problems on data pattern and transformations are. In this paper, we
notice that the landscape of tree transducers above remains unchanged when
turning classes of classical tree transducers symbolic. Therefore, we can show that
the equivalence problem is decidable for the symbolic counterparts of all classes
in the landscape except for Mtt. To see this, note that any symbolic DTop
is a symbolic functional Top, so equivalence for symbolic DTop is decidable.
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Furthermore, equivalence for symbolic DTopRs can be reduced to equivalence of
symbolic DTop as in the classical case.

We then start studying the complexity of equivalence for classes of symbolic
tree transducers. Our main result is that equivalence for symbolic DTopRs
is in NExpTime, under the assumption that operations on patterns and data
transformations can be performed in PTime. If not, one needs to multiply the
worst case exponential time with the maximal time needed for such operations.
We obtain this result from a novel reduction from the equivalence of symbolic
DTop to the equivalence of classical DTop, using a weakened version of the
origin-equivalence in [3]. This reduction allows us to conclude that the equivalence
problem of symbolic DTop is indeed in NExpTime as for classical DTop (and
not in 2NExpTime as a naive analysis would lead to believe). Due to the
modularity of the construction, the equivalence testers obtained for DTopRs are
easy to prove correct, to analyse, and to implement.

2 Tree Automata and Transducers

Some familiarity with formal languages and automata theory, as covered for
instance in [5], is assumed.

Given a set S, we denote its cardinality by |S| and its powerset by 2S . The
set of Boolean values is written B = { 0, 1 }. N is the set of natural integers,
including zero. We write m..n the integer interval [m,n] ∩ N. We will denote
tuples (a0, a1, . . . , an) by a0〈a1, . . . , an〉 or simply as a0 if n = 0.

Let X = {x1, x2, x3, . . . } be a set of variables. For K > 0, we shall often
use the subsets XK = {x1, . . . , xK }. A ranked alphabet Σ is a (potentially
infinite) set disjoint from X paired with a function arΣ : Σ → N (or just ar where
Σ is clear from context). The set of ranked trees over Σ with variables in
X, denoted by TΣ(X), is the least set that contains X and all a〈t1, . . . , tn〉 where
a ∈ Σ, n = arΣ(a), t1, . . . , tn ∈ TΣ(X). TΣ(∅) is the set of ground Σ-trees,
also written TΣ . Notions of position, substitution, etc., are all defined as usual.

We next recall the definitions of deterministic top-down tree automata (Dtta)
and deterministic top-down tree transducers (DTop).

Definition 1. A quasi Dtta is a tuple A = (Σ,Q, qini, rhs) such that Σ is a
ranked alphabet, Q a finite set, qini ∈ Q, and rhs is a partial function that maps
pairs (q, a) ∈ Q×Σ to tuples of Qar(a). A Dtta is a quasi Dtta for which Σ is
finite, and thus so is rhs.

The elements of Q are called the states of A, qini its initial state. The rules
of A have the form q〈a〈x1, . . . , xn〉〉 → rhs(q, a), where rhs(q, a) is defined and
n = ar(a). Each state q of a quasi Dtta A recognises a tree language JqKA ⊆ T (Σ),
(or just JqK when A is clear from the context) defined by induction on the trees:
we have a〈t1, . . . , tn〉 ∈ JqK iff there is a rule q〈a〈x1, . . . , xn〉〉 → q1, . . . , qn and
tk ∈ JqkK for all k ∈ 1..n. The semantics of the automaton is JAK = JqiniK.

Bottom-up tree automata (Buta) are defined similarly and as usual, with
rules of the form a〈q1, . . . , qn〉 → q.
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Definition 2. A quasi DTop is a tuple M = (Σ,∆,Q, ax, rhs) such that Σ and
∆ are ranked alphabets, Q is a finite set, qini ∈ Q, and rhs is a partial function
that maps pairs (q, a) ∈ Q×Σ to T∆(Q×Xar(a)). A DTop is a quasi DTop for
which Σ and ∆ are finite, and thus rhs as well.

Σ and ∆ are called input and output alphabets; the other components are as
in automata. Each state q ∈ Q has as semantics a partial function JqK from TΣ
to T∆, defined by induction on terms t = a〈t1, . . . , tn〉 ∈ TΣ such that:

JqK(t) = rhs(q, a)
[
q′〈xk〉 ← Jq′K(tk)

∣∣ q′ ∈ Q, k ∈ 1.. ar(a)
]
. (5)

The transformation defined by M is the partial function JMK = JqiniK.

3 Symbolic Tree Automata and Transducers

In this section, we recall the definitions of symbolic Dtta and symbolic DTop
as in [15]. Symbolic machines are finite representations of potentially infinite
quasi Dtta and quasi DTop. They use descriptors to stand for the potentially
infinite sets and functions. Given a set S, we call a set D paired with a function
J.K : D → S as set of descriptors of elements of S. For instance, we can use the
set E of regular expressions e ∈ E over an alphabet A as descriptors of regular
languages JeK ⊆ A∗. Outside of the definitions, we shall often assimilate the
descriptors and their semantics.

Definition 3. A symbolic Dtta is a tuple A = (Σ,Φ,Q, qini, rhs) such that
(Φ,Q, qini, rhs) is a quasi Dtta with a finite set of rules, Φ is an alphabet of
descriptors for subsets of the alphabet Σ, with ar(a) = ar(ϕ) for any a ∈ JϕK
and ϕ ∈ Φ. For all a ∈ Σ and q ∈ Q, there exits at most one ϕ ∈ Φ such that
rhs(q, ϕ) is defined and a ∈ JϕK.

The elements of ϕ ∈ Φ are called (descriptors for) guards. A symbolic Dtta
A is a finite representation of a (potentially) infinite quasi Dtta A′ such that for
every rule r of form, q〈ϕ〈x1, . . . , xn〉〉 → q1, . . . , qn of A, and for every a ∈ JϕK,
there is a rule q〈a〈x1, . . . , xn〉〉 → q1, . . . , qn in A′. The semantics of A is defined
as that of A′: for all q ∈ Q, JqKA = JqKA′ . Symbolic Buta are defined similarly.

Definition 4. A symbolic Dtta is effective if it satisfies the following conditions,
which we always assume: (1) The set of guards Φ is closed under conjunction and
negation, i.e., there exists an algorithm computing some function ∧ : Φ× Φ→ Φ
such that Jϕ ∧ ϕ′K = JϕK ∩ Jϕ′K for all ϕ,ϕ′ ∈ Φ, and an algorithm computing
some function ¬ : Φ→ Φ such that J¬ϕK = Σ \JϕK. (2) There exists an algorithm
deciding membership a ∈ JϕK given a guard ϕ ∈ Φ and a label a ∈ Σ,

Definition 5. A symbolic DTop is a tuple M = (Σ,∆,Φ,F , Q, qini, rhs) such
that (Φ,F , Q, qini, rhs) is a quasi DTop with a finite set of rules, F is an alphabet
of descriptors for partial functions from the input alphabet Σ to the output
alphabet ∆, with ar(JfK(a)) = ar(f) for every a ∈ dom(f) and f ∈ F . The same
conditions on Σ, Φ and rhs apply as for symbolic Dtta above.
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Fig. 1. Log cleanup and statistics: input tree on the left, output on the right.

The elements of f ∈ F are called (descriptors for) data transformations. A
symbolic DTop M is a finite representation of a (potentially) infinite quasi
DTop M ′ = (Σ,∆,Q, ax, rhs′), such that for every rule q〈ϕ〈x1, . . . , xn〉〉 →
rhs(q, ϕ) of M , and for every a ∈ JϕK, there is a rule q〈a〈x1, . . . , xn〉〉 →
rhs(q, ϕ)[f ← JfK(a) | f ∈ F ] in M ′. The semantics of M is defined as that of
M ′: for all q ∈ Q, JqKM = JqKM ′ .

Definition 6. A symbolic DTop is effective (which is assumed in the remainder)
if the underlying Dtta is, and (1) There is an algorithm that computes the
value of the data transformation JfK(a) for a given f ∈ F and a ∈ Σ and returns
⊥ if it is not defined. (2) There is an algorithm that decides whether the image
of a data transformation JfK(Σ) is empty for a given f ∈ F .

In symbolic DTopR, a symbolic Buta on the transducer’s input signature Σ
first annotates the tree with its states P , and then the symbolic DTop transforms
the annotated tree on Σ × P .

Consider the logs of an application on a Unix-flavoured system. The log is a
text file named “log”, here containing “s” for every successful login, and “f” for
every failure. Every week, the old log is discarded and replaced by statistics: the
number of successful and failed logins (Figure 1). For this, we denote by fstats
the function counting the numbers n,m of occurrences of “s” and “f” in a string
(here a log’s contents), and outputting the string n“;”m. A fresh “log” is then
created. The older log’s statistics are named “stats.1”, “stats.2”, etc. so that higher
numbers indicate older stats. To model this with a symbolic DTopR, we represent
the contents of the logs folder by a list (cons and nil being the usual constructors)
of files, each file being a tree of the form file〈“filename”, “contents”〉. The input
and output alphabets are thus strings, along with file, cons and nil. The
guards will be a small subset of regular expressions on strings plus descriptors
matching cons and nil. The lookahead’s purpose is to check whether the filename
matches a stat file or not (which cannot be done in a top-down transducer’s
rule, in contrast to the extended rules (3) and (4)) and to annotate the file
nodes with its findings. Guards are regular expressions. The descriptor matching
a specific string is the string itself; ∗ matches everything; “stats.”(“0”..“9”)+ is
the descriptor matching stats filenames. The lookahead (LA) rules are

“stats.”(“0”..“9”)+〈〉 → pstats file〈pstats, p〉 → pstats file
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“log”〈〉 → p file〈p, p〉 → p

(“s” | “f”)∗〈〉 → p cons〈_, p〉 → p nil〈〉 → p

The label functions F are taken as, for instance, the class of rational functions,
which we can implement with word transducers with lookahead [6], satisfying all
requisite properties. We represent a constant function by the string it produces, the
identity by fid, and fincrement for the function taking strings of the form “stats.”k,
where k is the decimal representation of an integer, and yielding “stats.”(k + 1).
We start in state q:

q〈nil : p〉 → cons〈 file〈“log”, “”〉, nil〉 (1’)
q〈cons : p〈x1, x2〉〉 → cons〈qname〈x1〉, q〈x2〉〉 (2’)
qname〈file : p〈x1, x2〉〉 → file〈qlog〈x1〉, qstats〈x2〉〉 (3a)
qname〈file : pstats file〈x1, x2〉〉 → file〈qincr〈x1〉, qid〈x2〉〉 (4a)
qincr〈“stats.”(“0”..“9”)+ : pstats〉 → fincrement (3b)
qid〈∗ : p〉 → fid qstats〈∗ : p〉 → fstats qlog〈“log” : p〉 → “stats.1” . (4b)

4 Domain and Composition

To study problems like computation or equivalence on symbolic DTop, it is worth
considering those problems as extensions of their counterparts for DTop. Indeed,
most difficulties that previous papers [20, 19, 15] encountered are already relevant
for the composition, normalization, or equivalence problems in the finite-labelled
case [11, 16]. Most of those difficulties come from dealing with the domain of a
transducer’s transformation. Since these problems have been solved in DTop
and proofs in symbolic DTop are essentially identical, we shall only present
the results, a reference for the proofs in DTop, and the additional conditions
required of Φ and F for them to carry over to the symbolic case.

The first important results concern automata and their expressive power.
Symbolic Dtta which, as said before, we always assume to be effective, and have
the classical properties of Dtta (e.g. in [5]).

Lemma 7. (1) The class of languages described by symbolic Dtta is closed under
Boolean set operations. (2) If equivalence is decidable on Φ, then equivalence is
decidable on symbolic Dtta.

The second important result concerns the domains of symbolic DTop. Several
or no states can explore a particular subtree. We use previous results on DTop
[11] to see that this domain can be recognized by an automaton.

Lemma 8. Let M be a symbolic DTop. Then we can build a symbolic Dtta A
such that JAK = dom(JMK).

As pointed out in [15], and contrary to a claim in [20], symbolic DTop
are not closed under composition. To find a class closed under composition, a
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solution presented in the DTop case [11] is to consider transducers with domain
inspection: a symbolic DTop with inspection is a pair N = (M,A) of a
symbolic DTop M and a symbolic Dtta A. Its semantic is JNK = JMK|JAK,
the function of M restricted to the language of A. We know that DTop with
inspection are closed under composition [11]. This result extends to symbolic
DTop if the set of functions of F is itself closed under composition, and the
images of guards through functions of F form a suitable set of guards (i.e. they
satisfy the requirements for effectiveness).
Lemma 9. Let F be closed under composition, and N,N ′ be two effective
symbolic DTop with inspection using functions of F . Then we can build a
symbolic DTop with inspection N ′′ such that JN ′′K = JNK ◦ JN ′K.

The main intuition behind the generalisation of the classical results [1] is
presented in several papers [20, 19, 15]; roughly, a rule in N ′′ is the image of the
right-hand side of a rule ofN ′ by a state ofN . To obtain closure by composition for
symbolic DTop – or indeed for DTop, as the problem is fundamentally unchanged
by the alphabets – necessitates the use of either very strong restrictions, as in
[15], or the use of domain inspection, which we prefer here.

5 Deciding Equivalence

In this section, we show that, given a few basic properties on label transformations
(mostly that equivalence is decidable for label transformations) the equivalence
problem for symbolic DTop is decidable, regardless of linearity, by reducing that
problem to equivalence for DTop, which is known to be decidable. This method
does not involve any external SMT solver, unlike [20, 19].

There are two basic observations behind this reduction. First, although Σ, Φ
and F may well be infinite, only a finite number of predicates and transformations
are actually used in a symbolic DTop (or indeed, any pair of symbolic DTop).
These finite subsets of Φ and F will serve as finite input and output signatures in
our reduction. Second, for two symbolic DTop to be equivalent, they generally
need to use the same input label to produce some output label: two symbolic
DTop using the same function on different input nodes will, in general, produce
a different output (see Fig.2).

To be more specific, we introduce a notion of origin similar to the syntactic
alignments of [2] and the origins of [3], and a weakened version of the origin
equivalence in [3]. We assimilate, in a given tree, the nodes to their addresses
according to the Dewey notation. For instance, in Figure 1, the node 1 is labelled
by file, and the node 12 in the input is labelled by “ssfsffs”. Let us consider
a symbolic DTop M , as well as a tree t in its domain. For each node π of the
tree JMK(t), the node at π is created by examining a node µ of t using a rule
of M . This input node is unique (see for example Prop. 52 of [2]) and we call
it the origin node of π for JMK(t). In the symbolic case, we can also track the
function f |ϕ used to transform the label of µ into the label of π through a rule
of guard ϕ, and call it the origin function of π. In Figure 1, the origin of 12 in
the output is 12 in the input, and the origin function is fstats, via rule (4b).
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Definition 10. Two equivalent symbolic DTop M,N are weak-origin-equivalent
iff for all t ∈ domJMK, for any node π of JMK(t), the origin nodes of π for M and
N are identical, or its origin functions for M and N are constant of same value.

Lemma 11. If two symbolic DTop are equivalent, they are weak-origin-equivalent.

Intuitively, if M and N are not weak-origin equivalent then, for some tree t,
an output node π comes from two different nodes µ and λ in the input using non-
constant functions. By changing the label of µ without changing the label of λ, we
change JMK(t) and not JNK(t), thus proving that M and N are not equivalent.

We now present the reduction from equivalence of symbolic DTop to that of
DTop. Let M = (Φ,Σ,F , ∆, P, pini, R) and N = (Φ,Σ,F , ∆,Q, qini, S) be two
symbolic DTop. We build their DTop representations, the DTop M and N .
Strictly speaking we should writeMM,N and NM,N , as the construction is specific
to the pair of transducers under consideration, and the same applies to the
representation of each component of the transducers – Φ, Σ, etc – which we
define below. In this section we assimilate descriptors ϕ, f and their semantics
JϕK, JfK to lighten the notations.

We make the following additional equivalence-testing assumptions: for
all ϕ,ψ ∈ Φ, it is decidable whether ϕ = ψ. For all f, g ∈ F and all ϕ ∈ Φ, it is
decidable whether there exists some c ∈ ∆ such that f(ϕ) = {c}, and this c is
computable; and it is decidable whether f |ϕ = g|ϕ.

The finite information relevant to the behaviour of symbolic DTop is which
guards are satisfied. Thus we let Π = { gd(r) | r ∈ R ∪ S } ⊆ Φ be the subset of
guards actually used by either of the two transducers. The finite alphabet Σ
representing Σ is defined as Σ = 2Π . The representation of a ∈ Σ is

a = {π ∈ Π | a ∈ π } ∈ Σ . (6)

The representation of a guard ϕ ∈ Π is ϕ = {Π ′ ⊆ Π | ϕ ∈ Π ′ } ⊆ Σ. The
representation of an input tree t ∈ T (Σ) is defined inductively as

a(t1, . . . , tn) =
{

(a, b)(u1, . . . , un)
∣∣ b ∈ B, ui ∈ ti,∀i

}
∈ T (Σ × B) , (7)

where the addition of the bit b, called obit (origin bit), will be used to store
just enough information about origins to ensure weak origin equivalence between
M and N . Accordingly, the representation of a label transformation f
restricted to ϕ, with obit b is defined as

f |ϕ, b =
{
c if f(ϕ) = {c}, and
(f |ϕ, b) otherwise.

(8)

The representation of a rule r ∈ R∪S, of the form r = q〈ϕ〈x1, . . . , xn〉〉 → t,
is given by the set r of all classical rules

q〈(ρ, b)〈x1, . . . , xn〉〉 → t
[
f ← (f |ϕ, b)

∣∣ f ∈ F] , (9)

for all b ∈ B, ρ ∈ ϕ. Letting R =
⋃
r∈R r and S =

⋃
s∈S s, we finally have

M = (Σ,∆,P, pini, R) and N = (Σ,∆,Q, qini, S).
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This representation is built so that the following holds: let t be a tree of
dom(JMK), a node π in JMK(t), its origin node µ and its origin function f |ϕ. Then
for any tree u ∈ t, the node π in JMK(u) is c if f(ϕ) = {c}, (f |ϕ, b) otherwise,
with b the obit under µ in u. This leads to the following result.

Theorem 12. Let M,N be two symbolic DTop, as above. Then JMK = JNK if
and only if JMK = JNK.

Proof. First, we consider domain equality: the domain of M is the set of all the
representations of trees of dom(JMK). Hence M and N are of same domain if
and only if M and N are of same domain. Let us now assume that the domains
are the same. Suppose M and N are not equivalent; let t be an input tree such
that u = JMK(t) 6= JNK(t) = v. We consider an address π that exists both in u
and v but where the label at π differs in u and v. In M the origin node of π is µ;
the origin function is f |ϕ. In N the origin node of π is λ; the origin function is
g|ψ. Since the label at π differs in u and v, there must be a difference of origin
node or functions.

If f |ϕ 6= g|ψ, they can’t be constants of same value, otherwise the label at π
would be the same in u and v. This means that their representations will differ
in M and N . Hence for any t′ ∈ t, the label at π would differ in JMK(t′) and
JNK(t′). Hence JMK 6= JNK.

If f |ϕ = g|ψ, then µ 6= λ, and f |ϕ can’t be a constant, otherwise the label
at π would be the same in u and v. We pick t′ a representation of t where the
obit under µ is 1, and the obit under λ is 0. The label at π in JMK(t′) would be
(f |ϕ, 1), but the label at π in JNK(t′) would be (f |ϕ, 0). Hence JMK 6= JNK.

Conversely, suppose M and N are not equivalent; let t′ be an input tree such
that u′ = JMK(t′) 6= JNK(t′) = v′. We consider an address π′ that exists both in
u′ and v′ but where the label at π′ differs in u′ and v′. In M the origin node of π′
is µ′, and in N the origin node of π′ is λ′. Thus, µ′ and λ′ are also the origin node
of π′ in M and N for all t such that t′ ∈ t. If µ′ 6= λ′, we remark that the label of
the nodes at π′ cannot be the same constant c. This combined with the disparity
of node origins means that M and N are not weak-origin-equivalent, and thus
not equivalent. If µ′ = λ′, then the label at π′ in u′ and v′ are representations of
different functions (or constants) f |ϕ and g|ϕ. There is at least one value a ∈ ϕ
such that f(a) 6= g(a). We pick a tree t such that t′ ∈ t and the label at µ′ in t is
labeled a. The node π′ in JMK(t) is labeled f(a), while the node π′ in JNK(t) is
labeled g(a). Hence JMK 6= JNK.

Corollary 13. Under the equivalence-testing assumptions above, the equivalence
problem for symbolic DTop is reducible to the equivalence problem on DTop, in
ExpTime in the worst case, plus, at worst, an exponential number of operations
in Φ and F .

Proof. Given that the construction of DTop representations in Thm. 12 is
effective, we can build them and decide the equivalence of the representations.

The exact complexity of this algorithm relies on the complexity of the various
operations related to the equivalence-testing assumptions (computing intersec-
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◦

◦◦

◦

•◦

◦

••
τ1 τ2

Fig. 2. Using obits to deduce origins. We represent the obits with colours: ◦ are
nodes of obit 0, • are nodes of obit 1. We apply two transformations τ1 and τ2 on
an input tree (here in the middle): τ1 replaces its right leaf by a copy of the left one,
while τ2 replaces its left leaf by a copy of the right one. Without the obits, these
two transformations would look identical. However, as seen above, the obits allow a
distinction between τ1 and τ2 for some input tree.

tions, deciding function equivalence) in these sets, but also on the precise number
of intersections and negations we have to perform in Φ. To compute these represen-
tations, we build all guards ϕ such that for some label a, ϕ = (

⋂
π∈a π)\(

⋃
π′ 6∈a π

′),
and decide function equivalence on these ϕ for the functions used in M and
N . In the case where guards are all disjoint, the reduction to DTop is actually
polynomial. In practice, it can be expected that few intersections actually need
to be computed. The representations a can also be made more parsimonious by
taking into account only tests that actually apply during the run, which can be
done as in the construction of Lem. 8.

In any case, we can express the number of states and rules in M and N
independently of Φ and F : the states are unchanged, and the number of rules
increases, at worst, exponentially.

Lemma 14. For M,N two symbolic DTop, their DTop representations M and
N are DTop with an exponential number of rules and the same number of states.

Since the problem of DTop equivalence is NExpTime [13], a naïve approach
to calculating the complexity of symbolic DTop equivalence would yield a
2NExpTime algorithm, plus an exponential number of operations in Φ and F .
However, upon finer analysis, the complexity of DTop equivalence is tied to
the height of a counter-example between two non-equivalent transducers. This
height is, in the worst case scenario, exponential in the number of states in the
studied DTop. Since representations do not create new states, the height of the
counter-examples is unchanged, and the exponentials do not compound.

Theorem 15. The equivalence problem for symbolic DTop is in NExpTime,
plus, at worst, an exponential number of operations in Φ and F .

5.1 Extension to symbolic DTopR

We want to extend our results from symbolic DTop to the wider class of symbolic
DTopR. This class is relevant for several reasons. The first is that it is more
expressive than the class of symbolic DTop with inspection, and subsumes other
relevant classes, such as single-valued symbolic DTop [20, 19]. It also possesses
interesting properties. Notably, just as it was the case for DTopR [8], the class
of symbolic DTopR is closed under composition.
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We want to study the equivalence problem of symbolic DTopR. For DTop,
the addition of a regular lookahead does not prevent the equivalence problem
from being decidable, as it is polynomially reduced to equivalence on plain DTop
(see [17]). This result can be carried over to the symbolic case, with the same
method: annotating with both lookaheads.

Lemma 16. One can polynomially reduce the equivalence problem of symbolic
DTopR to the equivalence problem of symbolic DTop with inspection.

This reduction in polynomial time can be combined with our previous results
(Cor. 13 and Thm. 15) to provide the following complexity result:

Theorem 17. Under the assumptions of Cor. 13, the equivalence problem for
symbolic DTopR is decidable in NExpTime, plus, at worst, an exponential
number of operations in Φ and F .

This result is quite useful, as several DTop classes are fragments of the class
of DTopR, and their decidability and complexity results can thus be transposed
to the symbolic case. Notably, DBup and nondeterministic functional Top can
be expressed as DTopR.

Corollary 18. Under the assumptions of Thm. 13, the equivalence problem for
deterministic symbolic bottom-up tree transducers and nondeterministic symbolic
functional top-down tree transducers is decidable.

6 Conclusion

The algorithm presented here provides a novel approach to deciding equivalence
for symbolic DTop, and supports non-linear symbolic DTop, by reduction to
DTop equivalence. Note that decidability of equivalence for DTopR [17] works in
a comparable way: rather than finding a normal form, the two regular lookaheads
are “harmonized” into one, then the problem is reduced to DTop equivalence.
The methods presented in this paper also apply to symbolic DTopR without a
critical jump in complexity.

Our method does not involve the computation of a normal form, which
is a rather classical technique to decide transducer equivalence [4, 11], with
applications to learning. It is interesting to see if normal forms could be defined
for symbolic DTop. This looks challenging, however, as it seems more general
than finding normal forms for DTopR, which remains an open problem.

A first possible extension of our model would be to allow the lookahead to
have registers, i.e. to memorize some data from the bottom of the tree to annotate
the upper part of the tree with it. Under reasonable restrictions, it is likely that
we might adapt our methods to reduce the equivalence problem for these objects
to the same problem on DTopR, thus providing a decidability result.

Furthermore, we would like to find out whether this kind of reduction can be
applied to more general classes of transducers such as macro tree transducers
(with linear size increase), for which equivalence is decidable [10]. If so, then the
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decidability results can fairly easily be lifted to symbolic generalisations of the
class, at the cost of a few exponential blowups in complexity.

As a final mention, the inversion problem is interesting for symbolic transfor-
mations on words and trees, and is relevant to the applications we consider.
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