On a second order differential inclusion modeling the FISTA algorithm

Abstract : In this paper we are interested in the differential inclusion 0 ∈x ¨(t)+ b /t x _(t)+∂F (x(t)) in a finite dimensional Hilbert space Rd, where F is a proper, convex, lower semi-continuous function. The motivation of this study is that the differential inclusion models the FISTA algorithm as considered in [18]. In particular we investigate the different asymptotic properties of solutions for this inclusion for b > 0. We show that the convergence rate of F (x(t)) towards the minimum of F is of order of O(t− 2b/3) when 0 < b < 3, while for b > 3 this order is of o(t−2) and the solution-trajectory converges to a minimizer of F. These results generalize the ones obtained in the differential setting ( where F is differentiable ) in [6], [7], [11] and [31]. In addition we show that order of the convergence rate O(t− 2b/3) of F(x(t)) towards the minimum is optimal, in the case of low friction b < 3, by making a particular choice of F.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01517708
Contributeur : Vasileios Apidopoulos <>
Soumis le : jeudi 14 septembre 2017 - 18:14:57
Dernière modification le : samedi 16 septembre 2017 - 01:04:47

Fichier

FistaInc2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01517708, version 2

Collections

Citation

Vassilis Apidopoulos, Jean-François Aujol, Charles Dossal. On a second order differential inclusion modeling the FISTA algorithm. 2017. 〈hal-01517708v2〉

Partager

Métriques

Consultations de la notice

83

Téléchargements de fichiers

22