S. Zhao, H. Yin, L. Du, and G. Yin, Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells, Journal of Materials Chemistry A, vol.400, issue.95, pp.3719-3743
DOI : 10.1039/c3ta14809b

B. Xiong, Y. Zhou, Y. Zhao, J. Wang, X. Chen et al., The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation Carbon, pp.181-92, 2013.

X. Wang and Y. Li, Liu Sh and Zhang L 2016 N-doped TiO 2 nanotubes as an effective additive to improve the catalytic capability of methanol oxidation for Pt, p.40

M. Shao, Q. Chang, J. Dodelet, and R. Chenitz, Recent Advances in Electrocatalysts for Oxygen Reduction Reaction, Chemical Reviews, vol.116, issue.6, pp.3594-57, 2016.
DOI : 10.1021/acs.chemrev.5b00462

X. Wang, L. Zou, H. Fu, Y. Xiong, Z. Tao et al., Noble Metal-Free Oxygen Reduction Reaction Catalysts Derived from Prussian Blue Nanocrystals Dispersed in Polyaniline, ACS Applied Materials & Interfaces, vol.8, issue.13, pp.8436-8480, 2016.
DOI : 10.1021/acsami.5b12102

N. Kakati, J. Maiti, S. H. Lee, S. H. Jee, B. Viswanathan et al., Anode Catalysts for Direct Methanol Fuel Cells in Acidic Media: Do We Have Any Alternative for Pt or Pt???Ru?, Chemical Reviews, vol.114, issue.24, pp.12397-429, 2014.
DOI : 10.1021/cr400389f

K. Shen, X. Chen, C. J. , and L. , 2016 Development of MOF-derived carbon-based nanomaterials for efficient catalysis ACS Catal, pp.5887-903

S. Zhao, H. Yin, L. Du, L. He, K. Zhao et al., Carbonized Nanoscale Metal???Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction, ACS Nano, vol.8, issue.12, pp.12660-12668
DOI : 10.1021/nn505582e

H. Yin, S. Zhao, W. J. Tang, H. Chang, L. He et al., Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High-Performance Capacitive Deionization of Saline Water, Advanced Materials, vol.109, issue.43, pp.6270-6276, 2013.
DOI : 10.1002/anie.201300711

M. Elimelech and W. Phillip, The Future of Seawater Desalination: Energy, Technology, and the Environment, Science, vol.42, issue.14, pp.712-719, 2011.
DOI : 10.1038/nnano.2010.34

M. P. Baran, N. E. Korsunskaya, T. R. Stara, Y. E. Venger, T. G. Kryshtab et al., Graded ZnS/ZnSxO1???x heterostructures produced by oxidative photolysis of zinc sulfide: Structure, optical properties and photocatalytic evolution of molecular hydrogen, Journal of Photochemistry and Photobiology A: Chemistry, vol.329, pp.213-233, 2016.
DOI : 10.1016/j.jphotochem.2016.07.003

R. Razavi, . Sh, and M. Loghman-estarki, Advance techniques for the synthesis of nanostructured zirconia-based ceramics for thermal barrier application Sol?Gel Based Nanoceramic Materials, pp.21-92, 2017.

J. D. Fidelus, W. Lojkowski, D. Millers, L. Grigorjeva, K. Smits et al., Zirconia based nanomaterials for oxygen sensors? generation, characterisation and optical properties Solid. State Phenom, pp.141-50, 2007.
DOI : 10.4028/www.scientific.net/ssp.128.141

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.430.798

J. D. Fidelus, W. Lojkowski, D. Millers, K. Smits, and L. Grigorjeva, Advanced nanocrystalline ZrO 2 for optical oxygen sensors IEEE Sens, pp.1268-72, 2009.
DOI : 10.1109/icsens.2009.5398385

K. Yueh, H. Cox, and B. , Luminescence properties of zirconium oxide films, Journal of Nuclear Materials, vol.323, issue.1, pp.57-67, 2003.
DOI : 10.1016/j.jnucmat.2003.08.025

R. Jia, W. Yang, Y. Bai, and L. , Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent, Optical Materials, vol.28, issue.3, pp.246-255, 2004.
DOI : 10.1016/j.optmat.2004.11.034

N. Korsunska, Structural and optical characterization of ZrO 2 and Y 2 O 3 -ZrO 2 nanopowders Materials Characterization, pp.59-67, 2015.

Y. Nanostructured, ZrO 2 powder: peculiarities of light emission under electron beam excitation Phys, Status Solidi c, vol.11, pp.1417-1439

N. G. Petrik, D. P. Tailor, and T. Orlando, Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals, Journal of Applied Physics, vol.8, issue.9, pp.6770-6776, 1999.
DOI : 10.1103/PhysRevB.57.7027

Y. Sun and P. A. Sermon, Evidence of a metal-support interaction in sol-gel derived Cu-ZrO2 catalysts for CO hydrogenation, Catalysis Letters, vol.1, issue.3-4, pp.361-370, 1994.
DOI : 10.1007/BF00807115

V. P. Pakharukova, E. M. Moroz, D. A. Zyuzin, A. V. Ishchenko, L. Dolgikh et al., Structure of Copper Oxide Species Supported on Monoclinic Zirconia, The Journal of Physical Chemistry C, vol.119, issue.52, pp.28828-28863, 2015.
DOI : 10.1021/acs.jpcc.5b06331

S. Ran, A. J. Winnubst, D. Blank, H. R. Pasaribu, J. Sloetjes et al., Effect of Microstructure on the Tribological and Mechanical Properties of CuO-Doped 3Y-TZP Ceramics, Journal of the American Ceramic Society, vol.17, issue.6, pp.2747-52, 2007.
DOI : 10.1016/0955-2219(92)90066-M

N. Korsunska, T. Stara, L. Khomenkova, P. Yu, V. Kladko et al., Effect of Cu-and Y-codoping on structural and luminescent properties of zirconia based nanopowders ECS Trans, pp.313-322, 2015.

N. Korsunska, Structural and Luminescent Properties of (Y,Cu)-Codoped Zirconia Nanopowders, ECS Journal of Solid State Science and Technology, vol.4, issue.9, pp.4-103, 2015.
DOI : 10.1149/2.0021509jss

Y. Zhang, C. Ch, X. Lin, D. Li, X. Chen et al., CuO/ZrO2 catalysts for water???gas shift reaction: Nature of catalytically active copper species, International Journal of Hydrogen Energy, vol.39, issue.8, pp.3746-54, 2014.
DOI : 10.1016/j.ijhydene.2013.12.161

C. Ch, R. Ch, Y. Zhan, X. Lin, Q. Zheng et al., The significant role of oxygen vacancy in Cu/ZrO 2 catalyst for enhancing water-gas-shift performance, Int. J. Hydrog. Energy, vol.39, pp.317-341, 2014.

A. A. Altynnikov, L. T. Tsikoza, and V. Anufrienko, Ordering of Cu(II) ions in supported copper-titanium oxide catalysts, Journal of Structural Chemistry, vol.127, issue.2, pp.1161-1170, 2006.
DOI : 10.1007/s10947-006-0439-9

L. Kong, Q. Bi, Z. Sh, Q. Zh, Y. J. Liu et al., Effect of CuO on self-lubricating properties of ZrO2(Y2O3)???Mo composites at high temperatures, Journal of the European Ceramic Society, vol.34, issue.5, pp.1289-96, 2014.
DOI : 10.1016/j.jeurceramsoc.2013.11.027

L. Winnubst, S. Ran, E. A. Speets, and D. Blank, Analysis of reactions during sintering of CuO-doped 3Y-TZP nano-powder composites, Journal of the European Ceramic Society, vol.29, issue.12, pp.2549-57, 2009.
DOI : 10.1016/j.jeurceramsoc.2009.02.009

A. G. Sato, D. P. Volanti, D. M. Meira, S. Damyanova, E. Longo et al., Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion, Journal of Catalysis, vol.307, issue.2, pp.1-17, 2013.
DOI : 10.1016/j.jcat.2013.06.022

R. Zhou, X. Jiang, J. Mao, and X. Zheng, Oxidation of carbon monoxide catalyzed by copper-zirconium composite oxides, Applied Catalysis A: General, vol.162, issue.1-2, pp.213-235, 1997.
DOI : 10.1016/S0926-860X(97)00099-9

Z. Ma, C. Yang, W. Wie, W. Li, and Y. Sun, Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation, Journal of Molecular Catalysis A: Chemical, vol.231, issue.1-2, pp.75-81, 2005.
DOI : 10.1016/j.molcata.2004.12.026

L. Wang, Q. Liu, M. Chen, Y. Liu, Y. Cao et al., Catalysts Prepared by Oxalate Gel-Coprecipitation Technique, The Journal of Physical Chemistry C, vol.111, issue.44, pp.16549-57, 2007.
DOI : 10.1021/jp075930k

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.620.2930

M. Bhagwat, A. V. Ramaswamy, A. K. Tyagi, and V. Ramaswamy, Rietveld refinement study of nanocrystalline copper doped zirconia, Materials Research Bulletin, vol.38, issue.13, pp.1713-1737, 2003.
DOI : 10.1016/S0025-5408(03)00201-0

T. Konstantinova, I. Danilenko, V. Glazunova, G. Volkova, and O. Gorban, Mesoscopic phenomena in oxide nanoparticles systems: processes of growth, Journal of Nanoparticle Research, vol.65, issue.3, pp.4015-4038, 2011.
DOI : 10.1007/s11051-011-0329-8

M. Lakusta, I. Danilenko, T. Konstantinova, and G. Volkova, Influence of Obtaining Conditions on Kinetics of the Initial Sintering Stage of Zirconia Nanopowders, Nanoscale Research Letters, vol.43, issue.1, p.238, 2016.
DOI : 10.1186/s11671-016-1452-3

O. Gorban, I. Danilenko, S. Gorban, G. Volkova, V. Glazunova et al., photosensitive composites: influence of synthesized routes on structure and properties, Photochem. Photobiol. Sci., vol.109, issue.4, pp.53-62
DOI : 10.1039/C6PP00196C

J. Málek, L. Bene?, and M. , Powder diffraction data and Rietveld refinement of metastable t-ZrO 2 at low temperature Powder Diffraction, pp.96-98, 1997.

R. Srinivasan, D. Angelis, R. J. Ice, G. Davis, and B. , Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source, Journal of Materials Research, vol.3, issue.06, pp.1287-92, 1991.
DOI : 10.1111/j.1151-2916.1989.tb06154.x

A. Benedetti, G. Fagherazzi, and P. , Preparation and Structural Characterization of Ultrafine Zirconia Powders, Journal of the American Ceramic Society, vol.63, issue.5, pp.467-476, 1989.
DOI : 10.1111/j.1151-2916.1989.tb06154.x

F. Huang and J. Banfield, Size-Dependent Phase Transformation Kinetics in Nanocrystalline ZnS, Journal of the American Chemical Society, vol.127, issue.12, pp.4523-4532, 2005.
DOI : 10.1021/ja048121c

M. A. Pugachevskii, V. G. Zavodinskii, and A. Kuz-'menko, Dispersion of zirconium dioxide by pulsed laser radiation Tech. Phys, pp.254-262, 2011.

A. G. Bagmut, I. A. Bagmut, and N. A. Reznik, Formation of ZrO 2 cubic phase microcrystals during crystallization of amorphous films deposited by laser ablation of Zr in an oxygen atmosphere Solid State Phys, pp.1221-1225, 2016.

R. Marin, G. Sponchia, E. Zucchetta, P. Riello, F. Enrichi et al., -Doped Zirconia Powders, Journal of the American Ceramic Society, vol.408, issue.8, pp.2628-2663, 2013.
DOI : 10.1111/jace.12363

URL : https://hal.archives-ouvertes.fr/hal-01009205

M. D. Glinchuk, P. I. Bykov, and B. Hilczer, Specific features of oxygen-ionic conduction in oxide nanoceramics Solid State Phys, pp.2199-204, 2006.

M. Kilo, C. Argirusis, G. Borchardt, and R. Jackson, Oxygen diffusion in yttria stabilised zirconia???experimental results and molecular dynamics calculations, Phys. Chem. Chem. Phys., vol.81, issue.56, pp.2219-2243, 2003.
DOI : 10.1039/B300151M

N. Mahato, A. Banerjee, A. Gupta, O. Sh, and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science, vol.72, pp.141-337, 2015.
DOI : 10.1016/j.pmatsci.2015.01.001

I. Markevich, A. Zhuk, T. Stara, B. Yu, and K. , About the origin of center responsible for Cu-related blue emission band in ZnS:Cu, Journal of Luminescence, vol.145, pp.71-74
DOI : 10.1016/j.jlumin.2013.07.024

A. Baidullaeva, B. M. Bulakh, B. K. Dauletmuratov, B. R. Dzhumaev, N. E. Korsunskaya et al., Influence of dislocations generated by laser radiation on electrophysical properties and luminescence of p-type CdTe Sov, pp.450-452, 1992.