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The main result of this article is a discrete Lawson correspondence between discrete CMC surfaces in R
3

and discrete minimal surfaces in S
3. This is a correspondence between two discrete isothermic surfaces.

We show that this correspondence is an isometry in the following sense: it preserves the metric coefficients
introduced previously by Bobenko and Suris for isothermic nets. Exactly as in the smooth case, this is a
correspondence between nets with the same Lax matrices, and the immersion formulas also coincide with
the smooth case.
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1. Introduction

The Lawson correspondence states [1] that for any minimal surface in S
3 there exists an isometric

constant mean curvature surface in R
3. It is an important tool for the investigation and construction of

CMC surfaces. In particular, it was a crucial tool for the classification of trinoids in [2] and for the
numerical construction of examples of CMC surfaces with higher topology in [3]. For the last purpose,
it was important to integrate it once and to formulate it terms of the corresponding frames [4] (see also
Theorem 3).

Although discrete CMC surfaces in R
3 have been known for a longtime already [5], as well as discrete

minimal surfaces in S
3 [6, 7], the discrete Lawson correspondence has remained a challenge. The main

problem was to define a proper discrete analogue of isometry.
The main result of this article is a discrete Lawson correspondence between discrete CMC surfaces

in R
3 and discrete minimal surfaces in S

3 formulated in Theorem 7. This is a correspondence between
two discrete isothermic surfaces. We show that it is an isometry in the following sense: it preserves the
metric coefficients for isothermic nets introduced previously in [8]. Exactly as in the smooth case, this is
a correspondence between nets with the same Lax matrices, and the immersion formulas also coincide
with the smooth case. As necessary intermediary results, we show that commuting Lax pairs generate
discrete CMC and minimal surfaces via an immersion formula as in the smooth case (Theorems 4 and
5), and, conversely, that all discrete CMC and minimal surfaces are generated by Lax pairs (Theorem 6).
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2 A. I. BOBENKO AND P. ROMON

Another approach to discrete isothermic surfaces in spaceforms via conserved quantities and discrete
line bundles has been proposed in [7, 9], encompassing constant mean curvature nets as a special case.
A Calapso transformation is defined therein, which generalizes the Lawson correspondence between the
relevant spaceforms and preserves geometric quantities. In contrast, our more pedestrian method focuses
on the immersion formulas which are proven to be identical as in the smooth case, and provide a more
explicit definition of the correspondence and its metric invariance. Still, both definitions agree, as we
prove in Remark 2.

We shall consider in this article only meshes with quadrilateral planar faces, known as quad-nets
or Q-nets for short (also called PQ-meshes), whose theoretical properties mimic those of their smooth
counterparts. In the particular case of nets indexed by Z

2, indices play the same role as coordinates of an
immersion, and specific choices of Q-nets correspond to specific parametrizations of surfaces.

Throughout the text, we will use the shift notation to describe the local geometry: when F is a net,
F = F0 = F(0, 0) will denote a base point, while F1, F2, F12 will stand for F(1, 0), F(0, 1), F(1, 1), so
that indices 1, 2 correspond to shift in the first and second variables, respectively. The same holds for any
vertex-based function. The edges of the face (F, F1, F12, F2) are labelled (0, 1), (1, 12), (12, 2) and (2, 0)

and the values of an edge-based function u will be denoted by u01, u1,12, etc. If (i, j) is a pair of indices
corresponding to an edge, dϕij is by definition ϕj − ϕi.

2. The smooth theory

2.1 Constant mean curvature surfaces in R
3

We recall here a well-known (see for example [5, 10] for more details) description of CMC surfaces in R
3

in terms of loop groups and quaternionic frames. The normalizations used in the present article coincide
with the normalizations in [5].

In the sequel, we identify the Euclidean three space R
3 with imaginary quaternions Im H, and

the standard imaginary quaternions with an orthonormal basis of R
3, and use the following matrix

representation:

i =
(

0 −i
−i 0

)
, j =

(
0 −1
1 0

)
, k =

(−i 0
0 i

)
, 1 =

(
1 0
0 1

)
. (1)

This results in the following matrix representation of vectors in R
3:

X = (X1, X2, X3) ←→
( −iX3 −iX1 − X2

−iX1 + X2 iX3

)
· (2)

Umbilic free CMC-surfaces are isothermic (conformal curvature line parametrization). Let (x, y) �→
F(x, y) be a CMC isothermically parametrized surface. Without loss of generality, one can normalize
the mean curvature H = 1 and the Hopf differential Q = 〈Fxx − Fyy + 2iFxy, N〉 = 1

2 . Let eu be the
corresponding conformal metric: 〈dF, dF〉 = eu(dx2+ dy2). It satisfies the elliptic sinh-Gordon equation

uxx + uyy + sinh u = 0. (3)

The quaternionic frame � is defined as a solution of the system

�x = U�, �y = V�, (4)
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where

U = 1

2

⎛
⎜⎝ − i

2
uy −λe−u/2 − 1

λ
eu/2

λeu/2 + 1

λ
e−u/2 i

2
uy

⎞
⎟⎠,

V = 1

2

⎛
⎜⎝

i

2
ux −iλe−u/2 + i

λ
eu/2

iλeu/2 − i

λ
e−u/2 − i

2
ux

⎞
⎟⎠. (5)

The matrices (5) belong to the loop algebra

gH[λ] = {ξ : S1 → su(2) : ξ(−λ) = σ3ξ(λ)σ3} , where σ3 = ik =
(

1 0
0 −1

)
,

and � in (4) lies in the corresponding loop group

GH[λ] = {φ : S1 → SU(2) : φ(−λ) = σ3φ(λ)σ3}. (6)

Here S1 is the set |λ| = 1.
The system (5) is the Lax representation for (3), where the parameter λ is called the spectral parameter.

Theorem 1 The formulas

N̂ = −Ň = −�−1k�,

⎧⎪⎪⎨
⎪⎪⎩

F̂ = −�−1 ∂�

∂γ
− 1

2
N̂

F̌ = −�−1 ∂�

∂γ
+ 1

2
N̂ = F̂ + N̂

, (7)

where λ = eiγ , describe two parallel surfaces F̂, F̌ with constant mean curvature H = 1 and their Gauss
maps N̂ , Ň . Variation of γ is an isometry, and the corresponding one parameter family of CMC surfaces
is called the associated family. For γ = 0, i.e. λ = 1, the parametrizations of F̂ and F̌ are isothermic.

2.2 Constant mean curvature and minimal surfaces in S
3

The same Lax pair yields a CMC net in S
3 through the immersion formula obtained in [10]. We identify

S3 with unitary quaternions

X = (X1, X2, X3, X4) ←→
(−iX3 + X4 −iX1 − X2

−iX1 + X2 iX3 + X4

)
· (8)

If we gauge the frame into 
 =
(

eiγ /2 0
0 e−iγ /2

)
� = exp

(− γ

2 k
)
�, then for any pair λ1 = eiγ1 , λ2 = eiγ2

in the unit circle,

F = 
(λ1)
−1
(λ2), N = −
(λ1)

−1k
(λ2)
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4 A. I. BOBENKO AND P. ROMON

are an orthogonal pair of vectors in S
3. They describe a surface F with constant mean curvature

H = cot(γ1 − γ2) and its Gauss map N . In terms of the original frame the formulas look as follows:

F = �(λ1)
−1M�(λ2), N = −�(λ1)

−1kM�(λ2), (9)

where M = exp(
γ1−γ2

2 k).

Theorem 2 Let �(λ) be a solution of (4). Formulas (9) describe a surface F with constant mean curvature
H = cot(γ1−γ2) and its Gauss map N . The parametrization F(x, y) is isothermic if and only if λ2 = ±λ−1

1

(γ1 + γ2 ≡ 0 mod π ). In particular, for γ1 = −γ2 = π

4 one obtains an isothermically parametrized
minimal surface F with the conformal metric e−u and the Gauss map N , which is Christoffel dual of F.
Equivalently they can be treated as an isothermically parametrized minimal surface N with the Gauss
map F and the conformal metric eu.

2.3 The Lawson correspondence

As we have indicated already in Theorem 2, CMC surfaces in R
3 and minimal surfaces in S

3 corresponding
to the same Lax pair are isometric. This correspondence can be lifted to the frames without referring to
the Lax representation. The corresponding formulas were obtained in [4]. We will derive them from the
immersion formulas (7) and (9).

Theorem 3 Let F be an isothermically parametrized minimal surface in S
3 with the Gauss map N . Then

there exist surfaces F̂ and F̌ in R
3 with constant mean curvature H = 1 isometric to F and N respectively.

They and their Gauss maps N̂ and Ň are given by the following formulas:

dF̂ = F−1 ∗ dF, N̂ = F−1N = −NF−1

dF̌ = N−1 ∗ dN , Ň = −F−1N = NF−1. (10)

Here ∗ is the Hodge star defined by (∗fx = −fy, ∗fy = fx). The parametrization of surfaces F̂, F̌ given by
(10) inherited from the isothermic parametrization of F and N is not isothermic. Formulas (10) give the
surfaces from the associated family (7) corresponding to λ = λ2 = e−i π

4 .
Surfaces F, N in S

3 and surfaces F̂, F̌ in R
3 with the Gauss maps N̂ , Ň are described by the formulas

(9) and (7) with the same Lax matrices (5).

Proof. Follows from direct computation. In the minimal surface case (9) becomes

F = �(λ1)
−1M�(λ2), N = �(λ1)

−1M−1�(λ2), M =
(

e−i π
4 0

0 ei π
4

)
. (11)

Formulas for the Gauss maps follow immediately:

F−1N = �−1(λ2)M
−2�(λ2) = N̂(λ2).

Computations for dF̂ and dF̌ are slightly more involved,

dF̂ = −d(�)−1 ∂�

∂γ
−�−1 ∂d�

∂γ
= �−1

(
− ∂

∂γ
(Udx + Vdy)+ 1

2
[k, Udx + Vdy]

)
�.
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Calculating at λ2 = e−i π
4 , we get

dF̂ = e−u/2�−1(λ2)

((
0 ei π

4

−e−i π
4 0

)
dx +

(
0 −e−i π

4

ei π
4 0

)
dy

)
�(λ2). (12)

On the other hand from the formulas for surfaces in S
3, we obtain

dF = �−1(λ1) ((U(λ1)dx − V(λ1)dy)M +M(U(λ2)dx +M(λ2)dy))�(λ2),

which implies

∗ dF = �−1(λ1) ((V(λ1)M −MV(λ2))dx + (−U(λ1)M +MU(λ2))dy)�(λ2),

F−1 ∗ F = �−1(λ2)
(
(M−1V(λ1)M − V(λ2))dx + (−M−1U(λ1)M + U(λ2))dy

)
�(λ2)

A direct computation shows that the last expression coincides with (12). The identity for dF̌ follows in
the same way. �

3. Discrete CMC and minimal surfaces in R
3 and S

3

We will now define the discrete analogues of constant mean curvature and minimal surfaces, following
the Steiner formula approach of [11] and [6].

Let (F, N) be a pair of edge-parallel maps from Z
2 to R

4, with planar faces, where either

• F lies in R
3 and N takes values in S

2, or,

• F and N lie in S
3 and F⊥N at each vertex.

The map N is treated as the Gauss map of F. Since N is planar and constrained to a sphere, its faces are
circular, and so are those of F, by parallelism. Note that circular implies planar.

The area A( f ) of a planar face f being a quadratic form in its coordinates, we define the mixed area
A( f , f ′) of two edge-parallel faces to be the polar form applied to f , f ′:

A( f , f ′) = 1

4
(A( f + f ′)−A( f − f ′))

where A( f ) = A( f , f ). This allows us to write a Steiner formula for the area of the parallel face f +εf ′ as

A( f + εf ′) = A( f )+ 2εA( f , f ′)+ ε2A( f ′) .

Applying this formula to the mesh pair (F, N) on the face f , we identify the mean and Gaussian curvature
by A(F( f )+ εN( f )) = (1− 2εHf + ε2Kf )A(F( f )), so that

Hf = −A(F( f ), N( f ))

A(F( f ))
and Kf = A(N( f ))

A(F( f ))
.

Definition 1 A circular Q-net (F, N), with F, N as above, is of constant mean curvature H �= 0 (CMC)
if Hf = H on all faces f . It is minimal if Hf vanishes identically.
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6 A. I. BOBENKO AND P. ROMON

Such a net is automatically Koenigs (see [8]), i.e. it possesses a Christoffel dual F∗ such that (i) F∗ is
edge-parallel to F and (ii) A(F, F∗) vanishes identically. Indeed, if (F, N) has constant mean curvature
H (resp. is minimal), then F∗ = F + 1

H N (resp. F∗ = N) is the dual. Being Koenigs and circular is
equivalent for F to be discrete isothermic. Discrete isothermic nets were originally defined in [12] as nets
with factorizable cross ratios, i.e. the cross ratio cr(F, F1, F12, F2) is of the form A/B, with A depending on
the first coordinate and B on the second. Such functions A, B are called edge labellings and are uniquely
defined up to a common factor.

In [8, 13], a discrete analogue of conformal metric was introduced for discrete isothermic surfaces.
It was shown that Koenigs nets possess a function s : Z

2 → R
+ defined at vertices, called the (discrete

conformal) metric coefficient. Consider black and white sublattices of Z
2 so that every elementary quad

contains two vertices of each displaced diagonally.
The conformal factor s is defined up to a so called black-white rescaling: s �→ λs at black points and

s �→ μs at white points. In particular, s relates the net to its Christoffel dual:

F∗i − F∗ = 1

sis
(Fi − F), i = 1, 2. (13)

Moreover, for discrete isothermic nets the edge labelling1 is linked to the discrete conformal factor s and
the edge lengths as follows (see [8, 13]):

A = ‖F1 − F‖2

ss1
, B = ‖F2 − F‖2

ss2
. (14)

One can approximate smooth isothermic surfaces by discrete isothermic surfaces [14]. Probably this
is also the case with minimal and CMC surfaces, although this is not yet proven.

4. Loop group description

Here following [5], we present the loop group description of discrete CMC surfaces in R
3. We will show

also that discrete CMC surfaces in S
3 are described by the same discrete Lax representation and the

immersion formula (9) of the smooth case.

4.1 Discretization in the loop group

As in the smooth case, we consider a frame � : Z
2 → GH[λ]. The discrete Lax pair U(λ) = �1(λ)�(λ)−1,

V(λ) = �2(λ)�(λ)−1 are maps from the edges into the loop group. By analogy with the smooth
immersions U(λ), V(λ) are defined of the following form: on each edge,

U(λ) = 1

α(λ)

(
a −λu− λ−1u−1

λu−1 + λ−1u ā

)
,

V(λ) = 1

β(λ)

(
b −iλv + iλ−1v−1

iλv−1 − iλ−1v b̄

)
, (15)

1 Edge labellings are unique up to global multiplication of A and B by a constant. The choice mentioned here is canonical.

Downloaded from https://academic.oup.com/integrablesystems/article-abstract/2/1/xyx010/4344752/Discrete-CMC-surfaces-in-mathbb-R-3-and-discrete
by Universite Paris-Est Marne-La-Vallee user
on 05 October 2017



DISCRETE CMC SURFACES IN R
3 AND S

3: A DISCRETE LAWSON CORRESPONDENCE 7

where complex valued a, b and real valued u, v do not depend on λ, u, v are positive and α(λ) and β(λ)

are real such that the determinants are equal to 1:

α(λ)2 = |a|2 + λ2 + λ−2 + u2 + u−2, β(λ)2 = |b|2 − λ2 − λ−2 + v2 + v−2. (16)

Furthermore, α and β on the opposite edges coincide, i.e. they are edge labelling for the first and second
indices respectively.

We will now focus on a single quad (F, F1, F12, F2), and let U , V be the Lax matrices associated to
the edges (F, F1) and (F, F2) respectively; for the sake of simplicity, we will mark with a prime the
corresponding quantities on the opposite edges (F2, F12) and (F1, F12): U ′, V ′, a′, u′, etc. In particular
�12 = U ′�2, �12 = V ′�1. Note that α′ = α and β ′ = β.

The Lax pair satisfies

V ′(λ) U(λ) = U ′(λ) V(λ) (17)

on any quad and gives rise to a frame �(λ) : Z
2 → GH[λ].

This commutation property yields

uu′ = vv′ (18)

b′a− ba′ = i(u′v + uv′ − u′−1v−1 − u−1v′−1) (19)

b̄u′ − b′u = i(āv′ − a′v) (20)

b̄u′−1 − b′u−1 = i(a′v−1 − āv′−1) (21)

As noticed in [5, (4.23)], equation (18) is equivalent to the existence of a vertex function w such that

u = ww1, u′ = w2w12, v = ww2, v′ = w1w12 (22)

The function w turns out to be essentially the discrete conformal metric s, as we will show in the next
section.

4.2 Discrete CMC nets in Euclidean three space

Let �(λ) be a frame defined from commuting Lax pairs as above, and let λ = eiγ ∈ S
1 be a spectral

parameter. We define two nets F̂, F̌ and a unit Gauss map N̂ as follows:

N̂ = −�−1k�,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F̂ = −�−1 ∂�

∂γ |γ=0

− 1

2
N̂

F̌ = −�−1 ∂�

∂γ |γ=0

+ 1

2
N̂ = F̂ + N̂ ,

(23)

where all the matrices are evaluated at γ = 0 (i.e. λ = 1).

Theorem 4 [5]
The pair (F̂, N̂) given by (23) is a CMC net in R

3 with H = 1. On any quad, the discrete conformal
metric s is given by
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8 A. I. BOBENKO AND P. ROMON

ss1 = −u2 and ss2 = v2, (24)

and the cross ratio cr(F̂, F̂1, F̂12, F̂2) is equal to −β(1)2/α(1)2. The edge lengths are equal

‖F̂1 − F̂‖2 = 4u2

α(1)2
= − 4ss1

|a|2 + 2− ss1 − s−1s−1
1

,

‖F̂2 − F̂‖2 = 4v2

β(1)2
= 4ss2

|b|2 − 2+ ss2 + s−1s−1
2

.

F̌ and F̂ are Christoffel dual discrete isothermic nets.

Proof. Note that [5] use a slightly different, albeit equivalent notation. For the sake of completeness
and compatibility with the spherical case, we shall sketch the proof here using our notations. Note: all
λ-dependent quantities are evaluated at λ = 1, and we shall not write the variable λ for greater legibility,
so α stands for α(1), etc.

Evaluating the edge vectors, one obtains

F̂1 − F̂ = −�−1U−1

(
U̇ − 1

2
[k, U]

)
�, F̂2 − F̂ = −�−1V−1

(
V̇ − 1

2
[k, V]

)
�, (25)

N̂1 − N̂ = −�−1U−1[k, U]�, N̂2 − N̂ = −�−1V−1[k, V]�, (26)

where U̇ the derivative at γ = 0, and similar formulas for F̌. Because α and β have an extremum at λ = 1,
U̇ = u−u−1

α
i and V̇ = − v+v−1

β
j. Since [k, U] = − 2(u+u−1)

α
i and [k, V] = 2(v−v−1)

β
j, parallelism between

the nets F̂, N̂ (and thus F̌) is clear, as are the lengths of the edges. We also derive the proportionality
factors

dF̌01 = −u−2 dF̂01, dF̌02 = v−2 dF̂02,

and using (22)

dF̌01 = − dF̂01

w2w2
1

, dF̌02 = dF̂02

w2w2
2

·

That proves that F̂ is Koenigs with Christoffel dual F̌ and a discrete conformal metric given by s = ±w2

(see [8] for details). The sign can be chosen constant in one direction and alternates in other direction.
The claim about the cross ratios is proven by direct computation using the quaternionic formulas for

cross ratios (see [5]). �

As noted in the proof, the choice of λ = 1 for the spectral parameter in (23) is crucial. Other values of
the spectral parameter, as in the smooth case (see Theorem 1), will not satisfy the parallelism condition
between the edges, nor the planarity of the faces, so that these nets are neither circular nor Koenigs.
Such nets retain interesting properties, in particular they are edge-constraint nets, as defined in [15].
Edge-constraint nets are quadrilateral nets F with non-necessarily planar faces, and vertex normals N
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such that, on any edge e = (FFi), the average of the normals at the endpoints is orthogonal to the edge:
Fi − F ⊥ N + Ni.

For edge-constraint nets the mean curvature can also be defined via the Steiner formula. For that
purpose, the area functional for non-planar quads is defined by projecting along the direction orthogonal
to the diagonals of the quad (N , N1, N12, N2) of the normals. It has been shown in [15] that all surfaces
of the associated family (i.e. those defined by (23) with unitary λ) possess constant mean curvature. We
refer the reader to this article for more details.

4.3 Discrete CMC and minimal nets in the three sphere

As in the case of smooth CMC surfaces, the same Lax pair leads yields a discrete CMC surface in

S
3 through the immersion formula (9). We gauge again the frame into 
 =

(
eiγ /2 0

0 e−iγ /2

)
� =

exp
(− γ

2 k
)
�, and define, for any pair λ1 = eiγ1 , λ2 = eiγ2 in the unit circle,

F = 
(λ1)
−1
(λ2), N = −
(λ1)

−1k
(λ2)

which are an orthogonal pair of vectors in S
3. Equivalently,

F = �(λ1)
−1M�(λ2), N = −�(λ1)

−1kM�(λ2), (27)

where M =
(

ei
γ2−γ1

2 0

0 e−i
γ2−γ1

2

)
= exp(

γ1−γ2
2 k).

Theorem 5 The pair (F, N) given by (27) is a discrete isothermic CMC surface in S
3 if, and only if,

λ2 = ±λ−1
1 (γ1 + γ2 ≡ 0 mod π ). Its mean curvature is equal to

H = Re λ2
1

Im λ2
1

= cot(2γ1) = cot(γ1 − γ2) .

Its Christoffel dual is F∗ = F+ 1
H N if H �= 0, and F∗ = N if H = 0. On any quad the discrete conformal

metric s of F is given by

ss1 = −u2

√
H2

1+ H2
and ss2 = v2

√
H2

1+ H2
if H �= 0,

ss1 = −u2 and ss2 = v2 if H = 0,

(28)

and the cross ratio is equal to −β2/α2 evaluated at λ1. The edge lengths satisfy, when H �= 0,

‖ dF01‖2 = 4u2 sin2(2γ1)

α2
= 4|ss1|

α2H
√

1+ H2
= 4|ss1|(
|a|2 + u2 + u−2 +

√
H2

1+H2

)
H
√

1+ H2

,

‖ dF02‖2 = 4v2 sin2(2γ1)

β2
= 4|ss2|

β2H
√

1+ H2
= 4|ss2|(
|b|2 + v2 + v−2 −

√
H2

1+H2

)
H
√

1+ H2

, (29)
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10 A. I. BOBENKO AND P. ROMON

and for minimal nets,

‖ dF01‖2 = 4u2

α2
= − 4ss1

|a|2 − ss1 − s−1s−1
1

, ‖ dF02‖2 = 4v2

β2
= 4ss2

|a|2 + ss2 + s−1s−1
2

· (30)

Proof. It is given by direct computation. Let us check that the edges of F and N are parallel.

F1 − F = �(λ1)
−1U(λ1)

−1(MU(λ2)− U(λ1)M)�(λ2),

N1 − N = −�(λ1)
−1U(λ1)

−1(kMU(λ2)− U(λ1)Mk)�(λ2).

Note that, given two unitary matrices U1, U2 in SU(2), U2 − U1 is a real multiple of kU2 − U1k iff
their diagonals coincide. Applying it to U1 = U(λ1)M, U2 = MU(λ2), we conclude in particular that
α(λ1) = α(λ2); so by (16), Re λ2

2 = Re λ2
1. The case λ2 = ±λ1 leads to constant maps. The case

λ2 = ±λ−1
1 leads to non-trivial discrete surfaces. Let us focus on λ2 = λ−1

1 , i.e. γ2 + γ1 = 0. We have
then

MU(λ2)− U(λ1)M = −2u sin(2γ1)

α
i and − kMU(λ2)+ U(λ1)Mk = 2

α
(u−1 + u cos(2γ1))i,

and similarly

MV(λ2)− V(λ1)M = 2v

β
sin(2γ1)j and − kMV(λ2)+ V(λ1)Mk = 2

β
(v−1 − v cos(2γ1))j

which proves the parallelism of the corresponding edges. If we set F∗ = F+ 1
H N , with H = cot(2γ1) �= 0,

then

dF∗01 = dF01 + tan(2γ1) dN01 = − u−2

cos(2γ1)
dF01 = −u−2

√
1+ H2

H2
dF01,

dF∗02 = dF02 + tan(2γ1) dN02 = v−2

cos(2γ1)
dF02 = v−2

√
1+ H2

H2
dF02.

We infer the existence of a discrete conformal metric s, as in the proof of Theorem 4. Note that

s = ±w2 4

√
H2

1+ H2
·

When γ1 = π/4, H = 0; we set F∗ = N and obtain

dN01 = −u−2 dF01 and dN02 = v−2 dF02.

For all values of H, this proves that F∗ is a Christoffel dual of F, and therefore (F, N) has constant mean
curvature H.
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To compute quaternionic cross ratio we assume that �(λ1) = 1 and use U ′V = V ′U :

cr(F, F1, F12, F2) = (F − F1)(F1 − F12)
−1(F12 − F2)(F2 − F)−1

= (U (λ1)
−1MU(λ2)−M)U(λ2)

−1(V ′(λ1)
−1MV ′(λ2)−M)−1

=
(
−2u sin(2γ1)

α
i

)(
2v′

β
sin(2γ1)j

)−1 (
−2u′ sin(2γ1)

α
i

)(
2v

β
sin(2γ1)j

)−1

= −β2

α2

uu′

vv′
1 = −β2

α2
1.

Formulas (29, 30) follow directly from the quaternionic formulas for the corresponding edges derived
above. �

5. From discrete minimal and CMC surfaces to the Lax pair

We have seen that the (same) frame � integrating the Lax pair in (15), gives rise to CMC or minimal
quad-nets in R

3 and S
3. We shall now prove the converse.

Theorem 6 For any Q-net of constant mean curvature in R
3 or S

3, or minimal in S
3, there exists a Lax

pair satisfying (15), such that the immersion formula (23) or (27) holds.

We will prove this theorem in several steps. First we identify geometric quantities s, A, B and algebraic
quantities u, v, α, β appearing in the corresponding descriptions (13, 14) and (15, 16). We will further
denote the edges by dF̂0i = Fi − F.

Let us start with the case of discrete CMC surfaces F̂ with H = 1. Its Christoffel dual is given by
F̌ = F̂∗ = F̂+N̂ . The corresponding edges are related by (13), where s is the conformal metric coefficient
of F̂. We assume that s alternates its sign along the first direction and does not change the sign along
the second direction, i.e. s1s < 0, s2s > 0. Geometrically this means that the quads (F̂, F̂1, F̌1, F̌) are
crossing trapezoids, and the quads (F̂, F̂2, F̌2, F̌) are embedded trapezoids.

Comparing the analytic formulas of Theorem 4 with the edge length formulas (14), we obtain the
following identification:

u2 = −s1s, v2 = s2s

α(1) = 2√−A
, β(1) = 2√

B
. (31)

Let us compute the angle between an edge dF̂0i of a discrete CMC surface and its unit normal N̂ .
Since dF̂01 and dF̂∗01 are parallel (though in opposite directions) and the other sides have length 1, one
derives

〈dF̂01, N̂〉 = 1

2

(
‖ dF̂01‖ + ‖ dF̂∗01‖

)
‖ dF̂01‖ = 1

2
A(s1s− 1), (32)

and similarly,

〈dF̂02, N̂〉 = 1

2

(
‖ dF̂02‖ − ‖ dF̂∗02‖

)
‖ dF̂02‖ = 1

2
B(s2s− 1). (33)

Here we have used (13, 14).
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12 A. I. BOBENKO AND P. ROMON

We will use the following technical lemma, which can be easily checked.

Lemma 1 The commutation property (17) for all λ is equivalent to the condition uu′ = vv′ (equation
(18)), together with the commutation property for matrices and its derivative evaluated only at λ = 1:

V ′(1)U(1) = U ′(1)V(1) and V̇ ′(1)U(1)+ V ′(1)U̇(1) = U̇ ′(1)V(1)+ U ′(1)V̇(1).

It is also equivalent to uu′ = vv′ together with the commutation property evaluated at two values λ, λ−1,
provided λ /∈ ±1,±i.

The following lemmas prove the existence and uniqueness of the Lax pair for a given quad of a
discrete CMC surface.

Lemma 2 (R3 version) Let Q = (F̂, F̂1, F̂12, F̂2) be a CMC-1 quad in R
3 with Gauss map (N̂ , N̂1, N̂12, N̂2).

Let � be any frame for N̂ , namely N̂ = −�−1k� (such a frame at the point F̂ is determined up to U(1)

action). Then there exist U(λ), V(λ), U ′(λ), V ′(λ) satisfying (17), and thus generating the quad, together
with its Gauss map by formulas (23).

Proof. In the following, U , α, etc. will denote the usual quantities evaluated at λ = 1, and we will write
specifically U(λ) when considering the loop.

As we have demonstrated above (geometric) CMC-1 quad Q in R
3, together with its Gauss map

determines α, β, u, v, u′, v′ so only a, b remain to be found.2 The Lax matrix U can be determined uniquely
from �, through equation (25):

� dF̂01�
−1 = −2u

α
iU = 2iu

α2

(
u+ u−1 ā

a −(u+ u−1)

)
.

Indeed, the length of the edge is |2u/α| by (31), so that a is here only to fix the directions in the (i, j)
plane, provided the coordinate along the (−k) axis (i.e. the projection of dF̂01 along N̂) is

2u

α

u+ u−1

α
.

This fact follows from (32). So that a is now fixed, though it depends on the � gauge. Similarly, dF̂02

determines V and b.
Let us now check that �1 and �2 defined through U and V are frames for N̂1 and N̂2 respectively. By

property of the Koenigs net, N̂1 − N̂ = −(1+ u−2) dF̂01, and, conjugating by �, we need to check that

−U−1kU + k = − 2

α

u2 + 1

u
iU

which holds due to the specific form of U , and similarly for V . From �1 and �2, we derive U ′, V ′ as
above, with their specific form.

2 Although |a| and |b| are given by (16).
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Having defined all their coefficients, the Lax matrices are fully determined, and there remains only
to check the commutation property (17) for all λ. This can be done using Lemma 1.

By (31) uu′ = vv′ holds. Comparing the cross ratio written in terms of U , V , U ′, V ′ and its known
value −β2/α2 proves the commutation for λ = 1 (reverse the proof of Theorem 4). This shows also that
N̂12 = −�−1

12 k�12, where �12 = V ′U� = U ′V�. The derived commutation property is a consequence
of the additive commutation relation

dF̂01 + dF̂1,12 = dF̂02 + dF̂2,12 .

For simplicity, we apply it to G = F̂ + 1
2 N̂ = −�−1 ∂�

∂γ |γ=0
, which is a well-defined quad, and hence

closes:

0 = �(dG01 + dG1,12 − dG02 − dG2,12)�
−1

= V−1V̇ + V−1U ′−1U̇ ′V − U−1U̇ − U−1V ′−1V̇ ′U
= U−1V ′−1(U ′V̇ + U̇ ′V − V ′U̇ − V̇ ′U),

where we use twice the commutation at order zero.
We have thus determined the Lax matrices (uniquely, once a frame � at F̂ is set). The CMC-1 quad

they generate is the one we started from. Note that, although we have started as usual with the lower
left vertex, this choice plays no role, and we might have fixed �1, �2 or �12 and recovered the rest
similarly. �

Lemma 3 (S3 version) Let Q = (F, F1, F12, F2) be a CMC or minimal quad in S
3 with Gauss

map (N , N1, N12, N2). Let (φ, φ′) be any frame at the vertex F, i.e. any couple in SU(2) such that
F = φ′−1Mφ and N = −φ′−1kMφ (such a pair is determined up to U(1) action). Then there exist
U(λ), V(λ), U ′(λ), V ′(λ) satisfying (17), and thus generating the quad, together with its Gauss map by
formulas (27).

Proof. The proof goes along the same lines as in Lemma 2, with a few specificities; in particular, whereas
in R

3 scaling allows us to freely set the mean curvature to 1, in S
3, we use the mean curvature to determine

λ1 = eiγ1 , λ2 = eiγ2 as in theorem 5: γ1 = −γ2 = 1
2 arccotH (γ1 = π/4 if H = 0), γ1 being taken in

[0, π/2]. A (geometric) CMC-H quad Q in S
3, together with its Gauss map, comes with a discrete

conformal metric s and canonical edge labellings A, B, such that the edge lengths in both directions are
Ass1 and Bss2 respectively. This allows us to determine u, v by

u2 = −ss1

√
1+ H2

H2
= − ss1

cos(2γ1)
, v2 = ss2

√
1+ H2

H2
= ss2

cos(2γ1)
if H �= 0, (34)

u2 = −ss1, v2 = ss2 if H = 0,

and similarly u′, v′. We set positive α, β such that

α2 = −4 sin2(2γ1)

A cos(2γ1)
, β2 = 4 sin2(2γ1)

B cos(2γ1)
if H �= 0, (35)

α2 = − 4

A
, β2 = 4

B
if H = 0.

Downloaded from https://academic.oup.com/integrablesystems/article-abstract/2/1/xyx010/4344752/Discrete-CMC-surfaces-in-mathbb-R-3-and-discrete
by Universite Paris-Est Marne-La-Vallee user
on 05 October 2017



14 A. I. BOBENKO AND P. ROMON

In the following, we will favour the notations in terms of γ1:

φ′ dF01φ
−1 = U(λ1)

−1MU(λ2)−M = U(λ1)
−1

(
−2u sin(2γ1)

α
i

)

= 2u sin(2γ1)

α

1

α

(
i(λ1u+ λ−1

1 u−1) ā
a −i(λ1u−1 + λ−1

1 u)

)

We recognize the length of the edge, which proves incidentally that the right-hand side matrix is uni-
modular, and so is U(λ1). As in R

3, a is given by the (i, j) component, provided the (1, k) component is
correct. The latter is equivalent to the following two conditions:

1. the angle θ between dF01 and N satisfies

cos θ = 〈dF01, N〉
‖ dF01‖ =

1

α
(u−1 + cos(2γ1)u) , (36)

2. the angle χ between dF01 and F satisfies

cos χ = 〈dF01, F〉
‖ dF01‖ = −

u sin(2γ1)

α
· (37)

Geometric derivation of cos θ is analogous to (32). In particular in the CMC case H = cot(2γ1) �= 0
the dual isothermic surface of F is F + 1

H N , and (32) is modified to

2

H
cos θ = ‖ dF01‖ + ‖ dF∗01‖ = ‖ dF01‖(1+ 1

s1s
) = √s1sA(1+ 1

s1s
).

Substituting (34) and (35) we arrive at (36).
Identity (37) follows directly from ‖F‖ = ‖F1‖ = 1:

cos χ = 〈F, dF01〉 = −1

2
‖ dF01‖2 = −u sin(2γ1)

α
.

Along the other coordinate, we have v and non-crossing trapezoids, but the reasoning is analogous, and
fixes b.

Setting �(λ1) = φ′ and �(λ2) = φ, we check that N1 = −�1(λ1)
−1kM�1(λ2), where �1(λi) =

U(λi)�(λi). Indeed, this amounts to reversing the Proof in Theorem 5. We have the analogous result for
N2, which allows us to compute a′, b′ and therefore U ′(λ) and V ′(λ).

To prove (17) we reverse the calculation in the Proof of Theorem 5, which shows that V ′(λ1)U(λ1) =
U ′(λ1)V(λ1).

To prove the analogous result at λ2, we consider the symmetric (see (8)) surface F−1 with the normal
N−1. This exchanges λ1 with λ2 while preserving all the metric and affine properties. We conclude with
Lemma 1. �
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Proof of the theorem.
The same strategy works for the Euclidean and spherical nets, so we will describe it in the Euclidean case.
We start by constructing the Lax pair on one quad Q = (F̂, F̂1, F̂12, F̂2). For any choice of compatible frame
�, i.e. N̂ = −�−1k� at the base vertex, we can find a (unique) Lax pair generating Q, according to the
Lemmas 2 or 3. This in turn determines a Lax pair on adjacent faces, which generates the corresponding
quads, and therefore the whole Q-net.

This reasoning holds provided that we do not obtain a contradiction when the Gauss map is given at
more than one vertex. For example, once Q = (F̂, F̂1, F̂12, F̂2) has been constructed, we may construct
the adjacent quad Q1 = (F̂1, F̂11, F̂112, F̂12) by starting with N̂1 or with N̂12. However the two quads
constructed this way must agree, because N̂1 fully determines N̂12 (knowing the corresponding edge), see
Lemma 2. �

As a consequence, we have the following integrability result

Corollary 1 A discrete CMC Q-net in S
3 or R

3 is determined, uniquely up to congruence, by its mean
curvature H, its discrete conformal metric s and its edge labellings A, B.

6. The discrete Lawson correspondence

The results shown above allow us to define a discrete Lawson correspondence between Q-nets in S
3

and R
3.

Theorem 7 Let F be a minimal Q-net in S
3 with discrete conformal metric s. Then there exists a constant

mean curvature Q-net F̂ in R
3 with constant mean curvature H = 1 and the same discrete conformal

metric s. More generally, this correspondence takes any Q-net of constant mean curvature H lying in the
sphere of curvature κ to a Q-net of constant mean curvature H ′ in the sphere of curvature κ ′, provided
H2 + κ = H ′2 + κ ′. The Euclidean case corresponds to κ ′ = 0. Additionally, the two Q-nets F and F̂ are
given by formulas (27) and (23) with the same Lax matrices U(λ) and V(λ).

Proof. The construction is a direct consequence of the previous theorems, but to see it clearly, we shall
state a slightly modified version of Theorems 5 and 6.

Let us start with the claim about Q-nets in spheres with different curvatures. Any Lax pair as defined
in (15), and any choice λ1 = eiγ1 of the spectral parameter gives rises to an constant mean curvature Q-net
(Fγ1 , N) in the sphere of curvature κ = sin2(2γ1), obtained as a a scaled up version of the spherical net
F defined in Theorem 5:

Fγ1 = 1

sin(2γ1)
F = 1

sin(2γ1)
�(λ1)

−1M�(λ−1
1 ),

and N remains the same. The mean curvature is H = cos(2γ1). If γ1 = π/4, this is the minimal Q-net in S
3.

By the same reasoning according to Theorems 5 and 6 there exists infinitely many other CMC Q-nets
(Fγ ′1 , N) of constant mean curvature H ′ = cos(2γ ′1) in the sphere of curvature κ ′ = sin2(2γ ′1) with the
same coefficients u, v in the Lax pair.

One checks easily that

H ′2 + κ ′ = cos2(2γ ′1)+ sin2(2γ ′1) = 1 = H2 + κ .
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The most general case, where H2 + κ �= 1 is obtained from the latter by direct scaling. Finally, since the
discrete conformal metric coefficient is defined geometrically up to general factor (see Section 3), the
coincidence of the Lax matrix coefficients u, v is equivalent to the preservation of the discrete conformal
metric coefficient s.

The case of κ ′ = 0 is dealt in exactly the same way, except that the immersion formula in Theorem 4
is used for R

3. We note now that the factorization formulas (24) and (28) for minimal nets in S
3 and

CMC-1 nets in R
3 coincide. The coincidence of the coefficients u, v implies that the discrete conformal

metric factors s determined from these formulas are identical, in the same way as, in the smooth case,
both surfaces are isometric. �

Remark 1 Furthermore, the Q-net in R
3 is the limit of the spherical CMC nets, when the radius of the

sphere increases to infinity, keeping the point 1 fixed. Indeed, let γ1 tend to zero. Then H = cos(2γ1)

goes to 1, and

F − 1 = �(λ1)
−1M�(λ−1

1 ) = (�+ γ1�̇+ o(γ1))
−1(1+ γ1k + o(γ1))(�− γ1�̇+ o(γ1))− 1

= γ1(−2�−1�̇+�−1k�)+ o(γ1)

so

1

sin(2γ1)
(F − 1) ∼ γ1

2γ1

(−2�−1�̇+�−1k�
) = −�−1�̇+ 1

2
�−1k� = F̂ .

Remark 2 At last, let us remark that this definition of the Lawson correspondence coincides with the
seemingly very different one proposed in [7, 9], based on the Calapso transform and the conserved
quantities formalism. We will not go into the details of the latter, but we will show that both defi-
nitions agree. Indeed, and despite their very different formulations, it suffices to show that the mean
curvature, the discrete conformal metric and the labellings change in the same way. We conclude with
Corollary 1.

Let H = cos(2γ1) and H ′ = cos(2γ ′1) be the two corresponding mean curvatures as defined above.
Since u, v are common to both immersions, and ss1 = −u2H (resp. ss2 = v2H), then r = sH−1/2

takes the same values for both surfaces. The Reader may check that this vertex function r is the one
used in [9, Sections 3 and 4.2], which is invariant under the Calapso transform. The edge labellings are
−α(γ1)

−2, β(γ1)
−2 and −α(γ1)

−2, β(γ1)
−2, up to a multiplicative constant c. From (16), we see that

α
(
γ ′1
)2 − α(γ1)

2 = cos
(
2γ ′1

)− cos(2γ1) = H ′ − H,

and similarly β(γ ′1)
2 − β(γ1)

2 = H − H ′. Choosing c = −1, the edge labelling satisfy

a′01 =
1

α′2
= 1

α2 + H ′ − H
= 1

1
a01
+ H ′ − H

= a01

1+ (H ′ − H)a01
,

and similarly a′02 = a02
1−a02(H−H ′) , which is again the prescribed behaviour of the Calapso transform.

Therefore both correspondences agree.
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Conclusion and open questions

In this article, we have established a discrete Lawson isometry between discrete isothermic minimal
surfaces in S

3 and discrete isothermic CMC surfaces in R
3. The isometry is understood in the sense

that both corresponding isothermic surfaces have the same discrete conformal metric coefficient. It is
appealing to lift this correspondence to the level of frames as in the smooth case (Theorem 3). However
the isothermic parametrizations in (10) do not correspond: an isothermic surface in S

3 corresponds to a
CMC surface from the associated family.

One way to reach that, and an important achievement by itself, would be to introduce geometrically a
discrete metric for the associated families in R

3 and S
3 that generalizes the conformal metric coefficient

s of isothermic surfaces. It should be the same for the whole associated family. On the level of the Lax
representation, it is the coefficient w in this article. The next step then would be to find a discrete analogue
of (10).

Some progress in this direction has been achieved in [15] where the associated family in R
3 was

described as edge-constraint net with non-planar faces (see Section 4.2). The curvatures were defined
there but not the conformal metric. Here we are dealing with discrete isothermic surfaces in non-isothermic
parametrization. Let us mention that such triangulated surfaces were recently introduced in [16].
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