Risk analysis for bank investments using PROMETHEE
Jean-Baptiste Rakotoarivelo, Pascale Zaraté, Marc Kilgour, Jérôme Velo

To cite this version:

HAL Id: hal-01517392
https://hal.archives-ouvertes.fr/hal-01517392
Submitted on 3 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 17004

The contribution was presented at ICDSST 2016:
https://ewgdss.wordpress.com/

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Risk analysis for bank investments using PROMETHEE

Rakotoarivelo Jean Baptiste¹,², Zaraté Pascale³
Kilgour Marc⁴, Vélo Jérôme²

¹ : IRIT – Toulouse University – 118 route de Narbonne 31062 Toulouse Cedex 9 – France
² : Université de Toamasina - Sis 5, rue Bir Hakeim, Camp Manguier BP : 591 – Toamasina 501 - Madagascar
³ : IRIT – Toulouse Capitole University – 2 rue du Doyen Gabriel Marty 31042 Toulouse Cedex 9 – France
⁴: Wilfrid Laurier University - 75 University Avenue West, Waterloo, Ontario N2L 3C5 Canada

Jean-Baptiste.Rakotoarivelo@irit.fr, Pascale.Zarate@irit.fr
mkilgour@wlu.ca, zjvelo@gmail.com
web-page: http://www.irit.fr/

ABSTRACT

This article aims at analyzing financial investments from a risk point of view. The analysis is carried out by specifying, first, several financial operations typical of banking on a smaller scale, such as investing and extending credit and, second, several types of risk inherent in these activities. The risks are grouped into four criteria, operational risk, financial risk, management risk and external risk. The analysis is conducted using the PROMETHEE multi-criteria decision methodology. Professionals in risk management are trying to better appreciate the complexity of the financial activities under study, and have used complex models to do so, but nonetheless many risks are still not well understood. This article contributes to the risk analysis, delivering results that will help many financial institutions to improve the management of their financial operations, including micro-finance.

Keywords: MCDM, Risk Analysis, Bank Investment, PROMETHEE
INTRODUCTION

Our goal is to analyze the risks faced by financial institutions, including not only primary banks but also credit institutions engaged in micro-finance. Their activities, mainly collecting deposits and distributing credit, impact most of the population in developing countries, as well as the poor in developed countries. Our work is based on the use of the Multi-Criteria methodology PROMETHEE to analyze the risks for offering finance or investing, and depends on a specification of risks. Our objective is to support decision makers in financial institutions.

The risks faced by financial institutions depend on their economic activities and the environment in which they operate. Based on a literature review, we defined different four different categories of risk, operational risk, financial risk, counterparty risk, and external risk [1] [2]. These four categories were then subdivided into 19 subcriteria, as shown in Table 1.

Table 1: Different types of studied risks

<table>
<thead>
<tr>
<th>Operational risk</th>
<th>Financial risk management</th>
<th>Counterparty risk</th>
<th>External risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of fraud</td>
<td>Currency risk</td>
<td>Liquidity risk</td>
<td>Country risk</td>
</tr>
<tr>
<td>Risk of Hold-up</td>
<td>Credit risk</td>
<td>Interest rate risk</td>
<td>Risk guarantee</td>
</tr>
<tr>
<td>Information risk</td>
<td>Risk Insider</td>
<td>Market risk</td>
<td>Concentration risk</td>
</tr>
<tr>
<td>Generic risk</td>
<td>Legal and regulatory risk</td>
<td>Solvency risk</td>
<td>Risk of recovery</td>
</tr>
<tr>
<td>Legal risk</td>
<td>Underwriting risk</td>
<td></td>
<td>Risk of exposure</td>
</tr>
</tbody>
</table>

The hierarchical structure defining the problem, given in Figure 1, clarifies the issues and shows the contribution of each element to the final decision. Eight alternatives, representing various financial operations, are shown on the right side of Figure 1. The criteria and subcriteria are the elements that should influence the choice of alternative. At this step the goal is to find the links among the criteria, the subcriteria, and the alternatives.

The hierarchical structure include four levels. Level 0 is the global objective, level 1 the criteria by which achievement of the global objective is assessed, level 2 the subcriteria of which the criteria are composed, and level 3 the alternatives that may be selected. In Figure 2,

Level 0 represents the aim to select a project from the set of all alternatives.
Level 1 represents the criteria for this analysis,
 \[C_1 = \text{operational risk} \]
 \[C_2 = \text{financial risk management} \]
 \[C_3 = \text{counterparty risk} \]
 \[C_4 = \text{external risks}. \]
Level 2 includes 19 sub-criteria, called SC1, SC2, \ldots, SC19.
Level 3 includes 8 alternatives, called ALT1, ALT 2, \ldots, ALT 9.
APPLICATION OF PROMETHEE

The problem shown in Figure 1 was analyzed using the MultiCriteria Decision Method PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations). PROMETHEE rests on pairwise comparisons of pairs of alternatives on every criterion \([3, 4, 5, 6]\). It associates with each criterion, \(j\), a relation \(P_j(a, b)\) reflecting the preference for alternative \(a\) relative to alternative \(b\) on criterion \(j\). The relation \(P_j\) contains all available information about the preferences of the decision maker on the criterion \(j\).

The PROMETHEE method allows decision makers to choose from several forms of criteria. Because there are many subcriteria in this problem, we simplify the analysis by choosing a Form 1 (“usual” form) criterion, in which the value of \(P_j(a, b)\) reflects whether alternatives \(a\) and \(b\) are judged as different. In Figure 2, the function \(H\) (with no parameters) reflects preference: whenever there is a difference, \(d\), between the ratings of alternatives \(a\) and \(b\), \(H(d) = 1\); if there is no difference, \(d = 0\), and \(H(0) = 0\), and the decision maker is indifferent.
This function reflects the general case including Maximizing and Minimizing criteria.

\[\forall(a, b), \forall j \ (\text{Critère}) : P_j(a, b) \]

\[d_j(a, b) = f_j(a) - f_j(b) \]

\[H(d) = \begin{cases}
0 & |d| = 0 \\
1 & |d| > 0
\end{cases} \]

\[H(d) : \text{Preference Function} \]

Figure 2: Preference Function: “Usual” Form

Table 2 below shows the weight values of the four criteria (C1 – C4) and the 19 subcriteria (SC1 – SC19) in the yellow-shaded columns, that were obtained in an earlier analysis using the AHP method [7]. The values of the project aggregations (shaded green) were obtained as the product of the weights of the corresponding criterion and sub-criterion. Because every criterion measures risk, we minimize all of them in order to find the best alternative.

<table>
<thead>
<tr>
<th>Criteria (Ci)</th>
<th>Weights</th>
<th>Subcriteria (SCi)</th>
<th>Weights Performance criterion</th>
<th>Product of Weights rounded to 2 decimal places</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Operational risk</td>
<td>[0.434]</td>
<td>SC1 Risk of fraud, SC2 Risk of Hold Up, SC3 Information risk, SC4 Generic risk, SC5 Legal risk</td>
<td>[0.126] [0.606] [0.141] [0.075] [0.052]</td>
<td>[0.06] [0.26] [0.06] [0.03] [0.02]</td>
</tr>
<tr>
<td>C2 Financial risk management</td>
<td>[0.366]</td>
<td>SC6 Currency risk, SC7 Credit risk, SC8 Insider risk, SC9 Legal and regulatory risk, SC10 Underwriting risk</td>
<td>[0.194] [0.417] [0.089] [0.163] [0.137]</td>
<td>[0.07] [0.15] [0.03] [0.06] [0.05]</td>
</tr>
<tr>
<td>C3 Counterparty risk</td>
<td>[0.128]</td>
<td>SC11 Liquidity risk, SC12 Interest rate risk, SC13 Market risk, SC14 Solvency risk</td>
<td>[0.238] [0.514] [0.133] [0.115]</td>
<td>[0.03] [0.06] [0.01] [0.01]</td>
</tr>
<tr>
<td>C4 External risk</td>
<td>[0.072]</td>
<td>SC15 Country risk, SC16 Risk guarantee, SC17 Concentration risk, SC18 Risk of recovery, SC19 Risk exposure</td>
<td>[0.489] [0.202] [0.155] [0.091] [0.063]</td>
<td>[0.04] [0.02] [0.01] [0.01]</td>
</tr>
</tbody>
</table>

Table 2: Criteria Weights
RESULTS

The analysis is based on the 19 subcriteria. All eight alternatives are scored on a continuous scale [0,1]. The score of each alternative is determined from a first analysis conducted with AHP (see [7]).

The results of the PROMETHEE I analysis are shown in Figures 4 and 5. Figure 4 shows the calculated preference flow of all alternatives, while Figure 5 gives the PROMETHEE network for all alternatives. It is easy to see that ALT7: Foreign Investment is the best and that ALT8: Public Investment is the worst.
CONCLUSIONS

This work aimed to analyze financial investments for banks or financial institutions using the Multi-Criteria Method PROMETHEE. It employs results obtained in a previous analysis conducted with the AHP method [7]. Our next objective is now to compare these two analyses.

One limitation of this work is that the preferences were evaluated by one individual whose expertise was based primarily on a literature review. Therefore these preferences, and the conclusions we drew from them, should be considered tentative. In order to validate these first steps, we intend to obtain real preferences from risk managers in real-world banking institutions.

Acknowledgement
The authors would like to thank the CIMI Excellence Laboratory, Toulouse, France, for inviting Marc Kilgour on a Scientific Expert position during the period May-June 2015.

REFERENCES