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ABSTRACT
Various disciplines use models for different purposes. While
engineering models, including software engineering models,
are often developed to guide the construction of a non-
existent system, scientific models, in contrast, are created
to better understand a natural phenomenon (i.e., an already
existing system). An engineering model may incorporate
scientific models to build a system. Both engineering and
scientific models have been used to support sustainability,
but largely in a loosely-coupled fashion, independently de-
veloped and maintained from each other. Due to the in-
herent complex nature of sustainability that must balance
trade-offs between social, environmental, and economic con-
cerns, modeling challenges abound for both the scientific
and engineering disciplines. This paper offers a vision that
synergistically combines engineering and scientific models to
enable broader engagement of society for addressing sustain-
ability concerns, informed decision-making based on more-
accessible scientific models and data, and automated feed-
back to the engineering models to support dynamic adap-
tation of sustainability systems. To support this vision, we
identify a number of research challenges to be addressed
with particular emphasis on the socio-technical benefits of
modeling.

1. INTRODUCTION
Computer-based systems (CBSs) have contributed signif-

icant capabilities and tools needed to address sustainabil-
ity challenges [6]. Examples include computational model-
ing, large-scale data analysis, and sensor technology. We
use the term sustainability systems to refer to those CBSs
that support sustainable development [10], that is, develop-
ment without a negative global impact. Example sustain-
ability systems include smart grids, smart cities and homes,
(climate-)smart agriculture systems, and other CBSs used
for resource production, coordination, and management. In
contrast, GreenIT refers to those CBSs that have been de-
veloped with an explicit intent to minimize resources used
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for development and/or operation (e.g., applications that
minimize computational resources). Sustainability systems
differ from other types of systems in that their functional-
ity must explicitly balance the trade-offs between the social,
economic, and environmental pillars of sustainability [10],
thus involving complex decision-making and large volumes
of disparate data varying in temporal scale and modality.
Sustainability issues have been described primarily by sci-
entific models (e.g., mathematical models) that enable sci-
entists to understand the impact of changes in one or more
of these three pillars. Engineering models have been used
by (software) developers to construct CBSs that support
various aspects of sustainability systems, such as ecosystem
monitoring, power grid management, and climate-control in
smart buildings. This paper proposes a vision that posits
that in order to make sustainability systems more accessi-
ble and relevant, the scientific models used to understand
sustainability concerns must be integrated in a synergistic
fashion with the engineering models that are used to support
the sustainability systems.

As sustainability concerns gain increasing attention, there
is a growing demand for access to sustainability systems
by a broader range of stakeholders that have varying tech-
nical backgrounds (e.g., community leaders, policy mak-
ers, industrial organizations) to make well-informed deci-
sions based on common scientific models. Many of these
decisions need to dynamically manage the respective sus-
tainability systems. While progress has been made by lever-
aging modeling technology to manage the complexity of sus-
tainability systems [6, 3, 14], numerous software engineering
and modeling challenges remain. As the problem complex-
ity, size, and scope increase, stakeholders and their needs
change, and technological advances offer new options to ex-
ploit. Indeed, the next generation of development approaches
should support multiple dimensions of sustainability, rang-
ing from long-lasting dependable and dynamically adaptive
software, to green software that requires less computing and
fewer energy resources, to software that promotes sustain-
able, well-informed, human behavior (e.g., smart plugs and
appliances, Eco-Batteries to support the home [7]), and mar-
ket design and regulations that transition consumers to-
wards more energy-saving practices.

Towards this end, several key areas need to be addressed.
First, we need to address the challenges of modeling one or
more dimensions of sustainability, where we explicitly fo-
cus on facilitating the creation and adaptation of models
and the respective stakeholders (e.g., scientific, economic,
and social) gain increasing understanding of the needs and



their interaction with other areas. Second, we need to de-
velop technologies to support innovative decision support
techniques, integration of disparate data and models com-
ing from different stakeholders, and visualization of model
and data integration driven by user inquiries and respec-
tive interests [12], all of which must be guided by usability
and information access, rather than be limited by traditional
computing interfaces for technical wizards. Finally, new de-
velopment approaches and techniques are needed to tradeoff
and cope with the increasing demand of precision, trust, re-
liability, scalability, adaptation and context-awareness, and
timely acquisition and/or computation of information for
decision-making.

Guided by these challenges, this vision paper describes the
key insights into how modeling can be used to support the
development of sustainability systems. Our overall objective
is to enable broader engagement of the community, facilitate
more informed decision-making, and directly use those deci-
sions to drive the automatic and dynamic adaptation of the
sustainability systems.

We observe that many of the foundational concepts used
for Model-Driven Engineering (MDE) need to be revisited
when considering sustainability systems. Instead of viewing
sustainability as yet another application domain, we need to
analyze the global nature of such systems to infer the dual
and complementary needs of engineering and scientific mod-
els. Then, we propose to use a model-driven feedback loop
that synergistically uses both the engineering models and
the scientific models to support the development and the
run-time management of sustainability systems. The engi-
neering models are used to develop and manage the soft-
ware infrastructure for a CBS for sustainability (e.g., smart
grid management). The scientific models are supported by
a multi-view scientific modeling infrastructure for captur-
ing the three pillars of sustainability using an Aggregator
to integrate multiple scientific models (that is, social and
economic models, in addition to the enviornmental models),
incorporate monitored data from both the environment and
the sustainable system, all of which are used to update the
engineering models that (dynamically) manage the sustain-
able system. The aim is to enable a stakeholder to select
specific sustainability “views” to explore (e.g., pose “what
if” scenarios across multiple dimensions with “zoom-in” and
“zoom-out”capabilities for fine-grained or global-level views,
respectively). The results of the science-based inquiries can
either be used to predict the impact (e.g., social, economic,
or environmental) of a behavior change in resource usage,
or used as input to the engineering models to dynamically
manage the sustainability system.

The remainder of this paper is organized as follows. Sec-
tion 2 characterizes the dual and complementary roles of
engineering and scientific models. Section 3 introduces our
vision of how the two kinds of models are intertwined for
the development and run-time management of sustainabil-
ity systems, and identifies several research challenges posed
by this new vision. Finally, Section 4 concludes the paper.

2. MODELING IN ENGINEERING AND SCI-
ENCES

Engineering models are mainly constructive. Engineers
use models to create abstractions of the complex systems
under development that do not usually exist at the time the

model is built. Several foundational concepts are used by en-
gineering modeling approaches to handle size and tame com-
plexity: decomposition and separation of concerns. MDE
can reduce the accidental complexity associated with de-
veloping complex software-intensive systems. A primary
source of such accidental complexity is the gap between the
high-level concepts used by domain experts to express their
specific needs and the low-level abstractions provided by
general-purpose programming languages [8, 9]. Manually
bridging this gap is costly, both in time and effort. MDE
approaches address this problem by automatically generat-
ing the major system artifacts from models. MDE models
focus on how system functionality and domain-specific con-
cepts are modeled relative to how their behavior may be
specialized for the respective domain. Domain-specific mod-
eling languages (DSMLs) provide a vocabulary and modeling
primitives to facilitate domain experts in developing models
describing the intended system behavior [9].

Current MDE approaches used for sustainability systems
(such as autonomic and self-adaptive systems) focus on the
mechanisms or computing infrastructure (e.g., agent-based
systems, self-* systems, architecture models, goal-based mod-
els, model-based testing, model-based code generation, model-
based reasoning). The designer of such an adaptive system
is faced with a challenging set of modeling and develop-
ment tasks. One approach to manage the complexity is
to use MDE to model the functional system, adaptation
logic mechanisms [16], and non-functional properties such
as performance and resource use. Model composition and
transformation techniques can be leveraged to support au-
tomated generation of the target sustainability system [14,
11]. Depending on the specific MDE approach used, mod-
els can be created manually, automatically created based on
requirements specifications, or a combination thereof.

Given the inherent uncertainty with these systems, both
from the environment and from the modeled systems, it is
difficult, if not impossible, to anticipate all possible condi-
tions that will occur at run-time [4]. One approach is to
use models at run-time to manage the system [2], includ-
ing self-healing and reconfiguration, and maintaining consis-
tency between the changing system and the corresponding
models [17] relative to specific environmental contexts [1].
In this case, the data provided by the sensors are automat-
ically fed back to the engineering models in order to adapt
the system at run-time.

Either used at design-time or at run-time, engineering
models focus on the system itself and its interactions with
the environment (e.g., communication with sensors and ac-
tuators). However, the interplay with broader information
coming from scientific models (e.g., analysis and predic-
tive models), regulations (e.g., economic, social and envi-
ronmental laws) and user models (e.g., preferences, strategic
choices, etc.) still pose many modeling challenges.

Scientific models are largely descriptive. Scientists also
use modeling to handle the complexity of the phenomena
under study. Of course, to be useful for communication,
models have to delicately balance abstraction with concrete
information, where assumptions on the world must be made
explicit and communicated in a language that can be un-
derstood by stakeholders [13]. A causal connection must be
made between the models and the real-world to ensure the
fidelity of the result when attempting to understand the phe-
nomena. The principle of substitution, often associated with



simulation, is important in this context so that scientists
have confidence in the model query results. Scientific mod-
els are used to explain and predict the behavior of real-world
phenomenon, which led the philosopher K. Popper1 to the
characterization of scientific theories as falsifiable models.
Scientists abstract away complex details, and typically the
models they construct only apply when considered within
certain boundaries that are of interest. Abstraction always
means that certain properties are omitted while (hopefully)
the relevant ones, with respect to the purpose of the model,
are captured in sufficient detail to fulfill the model’s purpose.
Whether a model is useful can therefore only be answered
with the knowledge about its purpose.

Recently, we conducted an empirical study to evaluate the
effectiveness of using DSMLs to support the simulation of a
water management system for use in a farming context [3].
DSMLs were effective in engaging the domain experts in
modeling both topological and behavioral concerns. Our in-
vestigation showed that by using DSMLs to raise the level of
abstraction of modeling to domain-specific concepts (rather
than programming elements), we were able to broaden the
use of MDE to a range of domain experts working with
the water management system. From the positive feedback
generated by these investigations, we identified additional
points that warrant further study in order to make the ex-
perience of adding abstraction through the use of modeling
techniques even more beneficial to the modeling process and
the resulting analysis capabilities. Areas for further work in-
clude improving tool usability, with customized support for
modeling and data analysis strategies that are more in line
with the domain user’s scientific inquiry process and percep-
tion of the system model; providence of the data and model.
The main conclusion of the work was that the current trends
in MDE are progressing in the right direction with increasing
support for modeling and managing complex systems.

3. SOCIO-TECHNICAL MODELING SHIFT
Computing and technology continue to play an increasing

role to support sustainability research. More sophisticated
ecosystem monitoring techniques have yielded petabytes of
data for scientists to analyze. As scientists build increas-
ingly more complex scientific models, additional challenges
are posed to the computing disciplines to make the data
and model-based analysis results more accessible and un-
derstandable to the scientists and other stakeholders, as well
as its integration into the engineering models for use in the
corresponding sustainability systems.

Figure 1 depicts an integrated approach where each model
provides feedback to the other. In this approach, engineer-
ing models are dynamically adapted by interpreting the re-
sulting impact on the sustainability system, while scientific
models are impacted by the use of the engineering mod-
els in a feedback loop that continuously adapts the system
to reflect the tradeoffs and changes in priorities among the
three pillars. Other stakeholders (e.g., individuals, commu-
nity leaders, policy makers, industrial organizations) can se-
lect specific (personalized) views of sustainability to explore
the impact of changes in social behavior, policies, and re-
source consumption (cf. Model Experiencing Environments
– MEEs – to support ”what-if” scenarios [12]).

1See http://plato.stanford.edu/entries/popper/
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Figure 1: Intertwined use of engineering and scien-
tific models

At the core of the approach is the Aggregator concept. Its
objective is threefold: i) to ensure the fusion of the various
heterogeneous data sources (scientific models, open data,
personal expectations, and information collected from the
sensors); ii) to adapt the scientific models accordingly and to
provide specific views accessible to a broader public; and iii)
to (automatically) update the engineering models accord-
ing to science-informed decisions taken from the scientific
models, open data and (personal or community) preferences.
Next, we elaborate each of the three objectives and finish by
raising additional orthogonal challenges.

3.1 Model and data fusion to support informed
decision

A sustainability system requires consideration of the many
trade-offs between the numerous scientific models when look-
ing for potential solutions, where solutions may involve changes
to one or more of the three pillars of sustainability, as well as
the sustainability system itself. For example, when consid-
ering power consumption and power production from mul-
tiple sources (e.g., wind, solar, nuclear, water), policy ana-
lysts may use the Aggregator to explore several scenarios in-
volving the respective scientific models and the sensors from
the sustainability systems to determine what to do during
a drought season with record high temperatures. The Ag-
gregator analysis may suggest how to adjust cost models
and/or legislate temporary laws during the drought season
(e.g., impose fines for washing cars or watering lawns). In
addition, the feedback from the Aggregator to the smart grid
system may be to harness more power from solar sources, de-
crease demand from water-based sources, and reroute power
to high-demand areas to ensure that hospitals and other care
facilities have sufficient resources to run air-conditioning,
among other needs.

3.2 Personalizing sustainability for broader en-
gagement

A key insight to our vision is that sustainability approaches
must be user-centric, focusing on individuals’ interests, back-



ground, and objectives. According to OPOWER2, “What’s
at stake are tomorrow’s energy consumers. To thrive for
another century, utilities must capture their attention and
exceed their expectations. It starts with the customer expe-
rience.” To effectively address sustainability, the customer
has to understand and share the vision of the providers, and
vice versa. Previously, we proposed the concept of Model
Experiencing Environments (MEEs) [12] as an approach to
support complex model and data integration, while offering
customizable interfaces for accessing model analysis results
and their visualizations. In this paper, the Aggregator is
intended to support the different types of model and data
integration needed by a MEE, where a MEE interface and
visualization support is customizable according to a given
user and his respective interests. The objective of MEEs
is to enable different types of stakeholders to “experience”
models according to their perspectives and level of interests
and needs. A MEE can be used as an educational medium
for enabling children and others to learn about the impact of
their individual actions and decisions (e.g., what is the im-
pact of taking 4-minute showers instead of 15-minute show-
ers over a year long period on water consumption for the
household? for the town?). MEEs can also be used to study
the effects of collective behavior by a community (e.g., what
is the impact on environmental resources by decreasing red
meat consumption down to once per week?). For land use
or environmental policy analysts, MEEs can be used to pose
more sophisticated “what if?” scenarios to understand the
impact of specific policies or legislation. MEEs empower
users to better understand the cause and effects of individ-
ual and global actions and decisions. MEEs aim at making
the complexity of the scientific models, the data and model
fusion process, the distributed nature of the data, and the
resolution of temporal and spatial differences between the
models transparent to the MEE user, thus enabling them to
focus on the science questions.

3.3 Feedback to engineering models for dy-
namic adaptation

Each of the social, economic and environmental pillars
must have their respective information captured in a (domain-
specific) analysis and predictive models. New integration
techniques are needed to support a systematic, well-defined
approach to integrate these disparate models to enable well-
informed decisions and functionality to be provided by sus-
tainability systems. This push furthers the challenge of the
globalization of modeling languages [5], to support a techni-
cal coordination between the scientific and engineering mod-
els into the control loop of adaptive systems. When the Ag-
gregator is integrating the scientific models, it must consider
the temporal and spatial dependencies, as well as the gran-
ularity of the model and sensor data from the sustainability
system. Updates to the engineering models for the sustain-
ability system must consider the type of user engaged with
the system. That is, an individual power consumer will not
be allowed to effect change to the power distribution system.
But the management of a power generation company may
use the MEE interface to explore different“what if?” scenar-
ios to determine the most reliable and cost-effective strategy
for delivering power to their customers. The results of the

2http://www2.opower.com/moments-that-matter-whitepaper

analysis may propose dynamic updates to the sustainability
system via the feedback link from the Aggregator.

3.4 Additional Socio-Technical Concerns
Several additional areas need to be considered to facili-

tate the socio-technical modeling shift. Approaches should
include resource usage analytics techniques to enable re-
searchers to examine complex relationships between mod-
els and variables, using the power of predictive analytics to
understand behavior patterns and the impact of one pillar
with respect to the other pillars. New approaches should in-
tegrate ideas from behavioral science to produce persuasive
solutions to engage individuals; therefore, going beyond the
traditional one-size-fits-all solutions. Such a scenario may
involve thousands or millions of people, data security, and
anonymity to preserve customer privacy, all of which need
to be planned from the very early stages of development. Fi-
nally, the proposed models, languages and techniques need
to be able to handle the voluminous amount of disparate
data coming from a wide variety of sources. In the era of
Big Data, reducing large-scale problems to a scale (along
multiple dimensions, such as information volume, visualiza-
tion, and software complexity) that humans can comprehend
and act upon is fundamental [15].

4. CONCLUSIONS
This paper addresses the role of modeling for sustainabil-

ity systems. We are convinced that models will play an es-
sential role in integrating complex information and promot-
ing a broader engagement of various stakeholders into the
control loop of adaptive systems responsible for specific sus-
tainability concerns (e.g., resource management systems).

We examine how models are used by engineers and scien-
tists. While both communities have made great advances in
modeling ever more complex problems, and also increased
the sophistication of how models can be used, analyzed, and
executed, we postulate that effectively using the modeling
efforts from both communities in a more coordinated and
collaborative fashion offers the potential to address impor-
tant challenges in the development of sustainability systems.

In this paper we envision an approach where MDE is
used to support both the integration of the various hetero-
geneous models through a unified modeling framework, and
the socio-technical coordination through the use of different,
specifically tailored, DSMLs. The social coordination is in-
tended to support the involvement and collaboration of vari-
ous stakeholders (e.g., engineers, scientists, decision makers,
general public), and the technical coordination is intended
to ensure the consistency and impact analysis between the
various models as well as the automatic consideration into
the control loop of adaptive systems.

To achieve this vision, we identify several key challenges
for the MDE community, including the integration of het-
erogeneous models, the need for personalizing specific views
and domain-specific concepts for different stakeholders, and
the automatic adaptation of engineering models from scien-
tific models. Finally, we discuss the necessity to integrate
both large scale simulation of analysis models and proba-
bilistic analysis of predictive models.
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A. Solberg, V. Dehlen, and G. Blair. An
aspect-oriented and model-driven approach for
managing dynamic variability. In MODELS’08.

[12] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel,
B. Cheng, P. Collet, B. Combemale, R. France,
R. Heldal, J. Hill, J. Kienzle, M. Sch”ottle,
F. Steimann, D. Stikkolorum, and J. Whittle. The
Relevance of Model-Driven Engineering Thirty Years
from Now. In MODELS’14. Springer.

[13] A. Quarteroni. Mathematical models in science and
engineering. Notices of the AMS, 56(1):10–19, 2009.

[14] B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu.
Model-driven engineering for autonomic provisioned
systems. In COMPSAC’08.

[15] J. Thomas and K. Cook, editors. Illuminating the
Path: Research and Development Agenda for Visual
Analytics. IEEE Press, 2005.

[16] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and
B. Becker. Model-driven architectural monitoring and
adaptation for autonomic systems. In ICAC’09. ACM.

[17] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and
B. Becker. Incremental model synchronization for
efficient run-time monitoring. In Models in Software
Engineering, volume 6002 of LNCS, pages 124–139.
Springer Berlin Heidelberg, 2010.


