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Abstract — Shell-type structures were and are being analysed using the Finite Element Method with
2D shell-type elements. However, for laminates a full 3D solution is required since the complexity of the
material behaviour law. The Proper Generalized Decomposition can obtain 3D solutions while keeping
the 2D complexity of 2D shell approaches. However, the PGD fails when dealing with complex geome-
tries. We propose a technique, based on the Domain Decomposition technique, that is able to generate
complex geometries from easier ones. Numerical examples show the performance of the method.
Keywords — Proper Generalized Decomposition; Domain Decomposition;
Hibridigizable Discontinuous Galerkin; Complex geometry.

1 Introduction

In order to simulate the behaviour of shell-type of structures, specific shell-type elements were introduced
to the Finite Element Method (FEM) framework [1]. This approach permits to simplify the 3D problem to
a 2D problem thanks to the used of several simplificative hypotheses. However, they are unable to provide
the full 3D solution which is required when composite laminates are used and complex behaviours are
involved. The Proper Generalized Decomposition (PGD) [3] is a solver for partial differential equations
which permits to obtain a full 3D solution for laminates [4, 5, 6], by using a separated representation
of the space. For instance, the previous 3D problem can be decomposed in a series of 2D problems
(in-plane) and 1D problems (out-of-plane). Additionally, the PGD also permits to introduce different
model parameters, such as material properties or forces, among others, as extra coordinates. See [7] for
an extensive analysis of this aspect. However, the PGD-based approach, despite of its efficiency when
solving this kind of problems, fails when complex geometries are used. One possibility to solve complex
geometries consist of subdividing the full geometry in easier ones. A suitable technique for this purpose
is the Domain Decomposition (DD) technique. The subdomains generated with the DD technique are
coupled via artificial (internal) boundaries. A full description of the Domain Decomposition method can
be found in [8].

In this contribution we propose the use of a Domain Decomposition (DD) approach in order to
subdivide the complex structure into simple subdomains and "glue" them via a stabilized approach based
on the ideas of the Hibridigizable Discontinuous Galerkin (HDG) method [9]. That is, we use a version of
the DD method that weakly imposes the continuity in the solution and also weakly equilibrates the normal
fluxes along the interfaces. Each subdomain is solved using the PGD solver with parametric Dirichlet
boundary conditions over the internal boundaries. Therefore, when solving the problem that couples
all subdomains, the solution for each subdomain is available and only a post-processing of the solution
will be required. Therefore, the "gluing" algorithm is independent of the nature of the problem of each
subdomain. For instance, we can solve some subdomains with an in-plane out-of-plane approach while
the others without space separation. This is possible due to the fact that the input data to the "gluing"
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algorithm is the solution of each subdomain explicitly depending on the solution at the interfaces.

2 Problem model

The problem model consists of the 2D heat equation. We denote the temperature field as u, the flux
field as q, and the source therm as f . All these fields being defined in the domain Ω ⊂ R2, of boundary
denoted by ∂Ω. Prescribed fluxes denoted by q̄ are imposed on ΓN , while given temperatures denoted
by ū are prescribed over the complementary part of the boundary ΓD. The diffusion problem takes the
following weak form:

Find u ∈ (V +{w}) : ∀v ∈V∫
Ω

∇v · k∇u dΩ =
∫

Ω

v f dΩ+
∫

ΓN

v q̄ ·n dΓ
(1)

where V = {v : v ∈ H1(Ω),v|ΓD = 0} and w is a particular temperature field satisfying the Dirichlet
boundary conditions, k is the diffusion coefficient and n is the outwards normal vector. In this case, we
suppose that the domain Ω is complex to be solve with the PGD under a space separated representation.
Therefore, the domain Ω will be subdivided in a set of non-overlapped subdomains suitable to be solve
with the PGD. The process will be described in section 3.

3 Domain Decomposition

The DD technique allows to solve the global problem defined in the domain Ω by solving smaller prob-
lems defined in a set of subdomains Ωi⊂Ω such that Ω=∪N

i=1Ωi, where N is the number of subdomains.
In this particular implementation we consider the case of non-overlapping subdomains, then Ωi∩Ω j = /0,
i 6= j. In literature [8] we can find a variety of different methods for the DD technique based on the
boundary conditions applied over the internal (artificial) boundaries created to "glue" the subdomains.
In our situation we will use a version based on the HDG method [9] which permits non-conforming
discretizations for each subdomain (ui) and along the interface (û).

The PGD allows to construct a parametric solution, depending on the Dirichlet boundary conditions
along the internal interfaces, in each subdomain. Let us assume for a while that we have already avail-
able the solutions ui(x,y, ãi), where ãi is a vector containing the parameters that defines solution at the
interface for the subdomain i. Therefore, we have also available the fluxes crossing the internal bound-
aries q

i
(x,y, ãi) depending on the same set of parameters. We also assume that there exist a projection Πi

which projects the parameters û controlling the field û = B û (being B a hierarchical polynomial basis),
which defines the solution along the internal interface, over the parameters that controls the solution, also
along the internal interface, viewed from each subdomain i as follows:

ãi = Πiû (2)

Under these assumptions, we can write that the solution and the flux field at each subdomain depends
on û: ui(x,y, û) and q

i
(x,y, û). Then, the only unknown is the field û defined only along the internal

boundaries. In order to evaluate û, taking the ideas used in the HDG [9], we define the following global
problem defined along all internal interfaces.

Find û(x,y) ∈ V̂ such that ∀µ ∈ V̂ :

N

∑
i=1

∫
Γint

i

µ
(

q
i
·ni + τ(ui− û)

)
dΓ = 0 (3)

where V̂ = {µ : µ ∈ H0(Γint)}, Γint = ∪Γint
i , ni is the outwards normal vector of the subdomain i and

τ = 1 is a user defined parameter. The first term in (3) (q
i
· ni) tries to balance the fluxes crossing the

interfaces, while the second term (τ(ui− û)) can be seen as a stabilization term. This last term is useful
for non-conforming discretizations between the interface and each subdomain. Note that in the particular
case in which the discretizations coincide, the stabilization term vanishes since ui|Γi ≡ û|Γi . Even if the
problem is linear (1), since the parametric solution at each subdomain ui is obtained with the PGD, the
problem defined in (3) will lead to a non-linear algebraic system of equations which will be solved using
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the Newton-Rahpson method. The non-linearity comes due to the fact that the PGD solution is compose
by products of functions depending on ãi. Note that since the analytical expressions for both ui and q

i
are known, the tangent matrix has also an analytical expression, easing the resolution of the non-linear
problem.

4 The PGD with parametric Dirichlet boundary conditions

As indicated before, the solution for the problem defined in (1) will be evaluated with the DD technique
introduced in section 3. Thus, we need to solve the problem defined in (1) extended only over the
domain Ωi and for any possible Dirichlet boundary condition over the internal boundaries. In order to
avoid unnecessary calculations, the basis used to define the Dirichlet boundary conditions will be also
B and the coefficients ãi will be evaluated using the projector Πi that minimizes the difference between
û and ui along the interface, in the L2-norm sense. The basic concepts to introduce parametric Dirichlet
boundary conditions as extra coordinates under the PGD framework can be found in [7]. In this case we
detail it in a more complex situation in which all sides of the domain can be under parametric Dirichlet
boundary conditions. First we perform the following change of variable:

u?i = ui−
Ii

∑
j=1

D j
i

∑
k=2

Φ
j
i,k(x,y)a

j
i,k−

Ei

∑
k=1

Ψi,k(x,y)bi,k (4)

where Φ
j
i,k and Ψi,k are functions defined in all the subdomain. Functions Ψi,k meets, along the internal

boundaries, the linear terms of the basis B which takes unitary values at corners. Functions Φ
j
i,k meets,

also along the internal boundaries, the non-linear terms which are zero at the corners, then we can make
independent the different sides Ii. D j

i is the degree of the polynomial over the side j of the subdomain i
and Ei is the number of corners in contact with internal boundaries. a j

i,k and bi,k are the corresponding
parameters which compose ãi. The two last terms in (4) represent the parametric Dirichlet boundary
conditions. The solution to the problem (1) restricted to the subdomain i, after applying the change of
variable defined in (4) enunciates as follows: find u?i ∈Vi : ∀v ∈Vi

∫
Ωi

∇v · ki∇u?i dΩ =−
Ii

∑
j=1

D j
i

∑
k=0

∫
Ωi

∇v · ki∇Φ
j
i,ka j

i,k dΩ

−
Ei

∑
k=0

∫
Ωi

∇v · ki∇Ψi,kbi,k dΩ+
∫

Ωi

v f dΩ+
∫

ΓN

v q̄ ·n dΓ (5)

where Vi is the restriction of V to Ωi. This problem is suitable to be solved with the PGD solver using a
separation of the space domain. Note that if we choose a space-separated solution, both functions Φ

j
i,k

and Ψi,k must have a separated representation. The solution of the problem (5) reads as follows:

u?i ≈
M

∑
l=1

Xi,l(x)Yi,l(y)
Ii

∏
j=1

D j
i

∏
k=2

A j
i,k,l(a

j
i,k)

Ei

∏
k=0

Bi,k,l(bi,k) (6)

where M is the number of modes. Then, the solution ui depends on the parameters that define the
Dirichlet boundary condition along the internal boundaries and it can be used to solve the problem (3).

5 Numerical results

The problem here propsed is composed by 9 different subdomains all of them solved using a space
separated representation. In the subdomains Ω4 and Ω9, a cylindrical coordinates system is used. The
rest of subdomains are squares of side 1. Dirichlet boundary conditions are imposed according to the
model represented in figure 1a. The rest of the boundaries are isolated. The diffusion coefficient is k = 1.
The source term is f = 0. This problem is solved using a discretization of 21 nodes in x and y directions
for each subdomain. The basis for the parametric Dirichlet boundary conditions is of order 6. The
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(a) Model of the problem
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(b) DD+PGD solution
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(c) Relative error

Figure 1: Model of the problem and solution using the proposed technique (DD-PGD) and the local
relative error with respect to the FE solution.

domain defined for the parameters controlling the Dirichlet boundary conditions is Ωs = [−1000,1000]
discretized with 1001 equidistributed nodes.

Figure 1b shows the solution for this problem obtained with the proposed technique. Figure 1c
shows the error with respect to a FE solution using the same discretization. We observe that the solution
obtained with the proposed technique is similar to the FE solution with a relative error around 0.05%.
Additionally, the non-linear solver converges to the solution in only 2 iterations, due to the intrinsic
linearity of the problem, with an error smaller that 10−6.

6 Conclusions

The PGD technique is of a high interest when simulating the behaviour of laminates due to the capability
of obtaining full 3D solutions while keeping a 2D computational complexity. However, when it make use
of the space separated representation, the PGD technique is difficult to by applied when non-separable
geometries are used, as the one used in the proposed problem. The proposed technique is able to couple
a set of different subdomains solved with the PGD under a separated space representation allowing the
use of the PGD solver with a space separated representation for addressing complex geometries.
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