T. Ahmed-ali, E. Cherrier, and F. Lamnabhi-lagarrigue, Cascade High Gain Predictors for a Class of Nonlinear Systems, IEEE Transactions on Automatic Control, vol.57, issue.1, p.221226, 2012.
DOI : 10.1109/TAC.2011.2161795

URL : https://hal.archives-ouvertes.fr/hal-00648732

V. Andrieu and L. Praly, On the Existence of a Kazantzis--Kravaris/Luenberger Observer, SIAM Journal on Control and Optimization, vol.45, issue.2, p.432456, 2006.
DOI : 10.1137/040617066

URL : https://hal.archives-ouvertes.fr/hal-00529943

V. Andrieu, L. Praly, and A. Astol, Homogeneous Approximation, Recursive Observer Design, and Output Feedback, SIAM Journal on Control and Optimization, vol.47, issue.4, p.18141850, 2008.
DOI : 10.1137/060675861

URL : https://hal.archives-ouvertes.fr/hal-00362707

V. Andrieu, L. Praly, and A. Astol, High gain observers with updated gain and homogeneous correction terms, Automatica, vol.45, issue.2
DOI : 10.1016/j.automatica.2008.07.015

URL : https://hal.archives-ouvertes.fr/hal-00362752

J. Back, K. T. Yu, and J. H. Seo, Dynamic observer error linearization, Automatica, issue.12, p.4221952200, 2006.
DOI : 10.1016/j.automatica.2006.07.009

S. Battilotti, Incremental Generalized Homogeneity, Observer Design and Semiglobal Stabilization, Asian Journal of Control, vol.19, issue.6, p.498508, 2014.
DOI : 10.1002/asjc.716

S. P. Bhat and D. S. Bernstein, Finite-Time Stability of Continuous Autonomous Systems, SIAM Journal on Control and Optimization, vol.38, issue.3, p.751766, 2000.
DOI : 10.1137/S0363012997321358

S. P. Bhat and D. S. Bernstein, Geometric homogeneity with applications to nite-time stability, Mathematics of Control, Signals and Systems, vol.17, p.101127, 2005.

I. Bouraoui, M. Farza, T. Ménard, R. B. Abdennour, M. M. Saad et al., Observer design for a class of uncertain nonlinear systems with sampled outputsapplication to the estimation of kinetic rates in bioreactors

C. Califano and C. H. Moog, The Observer Error Linearization Problem via Dynamic Compensation, IEEE Transactions on Automatic Control, vol.59, issue.9, p.25022508, 2014.
DOI : 10.1109/TAC.2014.2308606

URL : https://hal.archives-ouvertes.fr/hal-00937999

G. Conte, C. H. Moog, and A. Perdon, Algrebraic Methods for Nonlinear Control Systems, 2007.

S. Diop and M. Fliess, Nonlinear observability, identiability, and persistent trajectories, Proceedings of the 30th IEEE Conference on Decision and Control, 1991.
DOI : 10.1109/cdc.1991.261405

S. Diop and M. Fliess, On nonlinear observability, Proc. 1st Europ. Control Conf, p.152157, 1991.

F. Esfandiari and H. K. Khalil, Output feedback stabilization of fully linearizable systems, International Journal of Control, vol.4, issue.5, p.10071037, 1992.
DOI : 10.1109/TAC.1987.1104550

M. Farza, M. M. Saad, and L. Rossignol, Observer design for a class of MIMO nonlinear systems, Automatica, vol.40, issue.1, pp.135-143, 2004.
DOI : 10.1016/j.automatica.2003.08.008

T. Floquet and J. P. Barbot, Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs, International Journal of Systems Science, vol.32, issue.10, p.803815, 2008.
DOI : 10.1109/9.975511

URL : https://hal.archives-ouvertes.fr/inria-00128137

J. P. Gauthier, H. Hammouri, and S. Othman, A simple observer for nonlinear systems applications to bioreactors, IEEE Transactions on Automatic Control, vol.37, issue.6, p.875880, 1992.
DOI : 10.1109/9.256352

H. Hammouri, B. Targui, and F. Armanet, High gain observer based on a triangular structure, International Journal of Robust and Nonlinear Control, vol.26, issue.6, p.497518, 2002.
DOI : 10.1002/rnc.638

URL : https://hal.archives-ouvertes.fr/hal-00524454

R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Transactions on Automatic Control, vol.22, issue.5, p.728740, 1977.
DOI : 10.1109/TAC.1977.1101601

P. Jouan, Immersion of nonlinear systems into linear systems modulo output injection, SIAM Journal on Control and Optimization, vol.41, issue.6, p.17561778, 2003.

H. K. Khalil, Nonlinear Systems, 1996.

A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers, Systems & Control Letters, vol.3, issue.1, pp.47-52, 1983.
DOI : 10.1016/0167-6911(83)90037-3

A. J. Krener and W. Respondek, Nonlinear Observers with Linearizable Error Dynamics, SIAM Journal on Control and Optimization, vol.23, issue.2, p.197216, 1985.
DOI : 10.1137/0323016

Y. Li, Y. Shen, and X. Xia, Global nite-time observers for a class of nonlinear systems, Kybernetika, vol.49, issue.2, p.319340, 2013.

Y. Li, X. Xia, and Y. Shen, A high-gain-based global nitetime nonlinear observer, International Journal of Control, vol.86, issue.5, p.759767, 2013.
DOI : 10.1109/icca.2011.6137934

T. Ménard, E. Moulay, and W. Perruquetti, A global highgain nite-time observer, IEEE Transactions on Automatic Control, vol.55, issue.6, p.15001506, 2010.

P. H. Menold, R. Findeisen, and F. Allgöwer, nite-time convergent observers for linear time varying systems, Proceedings of the 11 th Mediterranean Conference on Control and Automation, 2003.

H. Michalska and D. Mayne, Moving horizon observers and observer-based control, IEEE Transactions on Automatic Control, vol.40, issue.6, p.9951006, 1995.
DOI : 10.1109/9.388677

Y. Orlov, Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems, SIAM Journal on Control and Optimization, vol.43, issue.4, p.12531271, 2004.
DOI : 10.1137/S0363012903425593

W. Perruquetti, T. Floquet, and E. Moulay, Finite-Time Observers: Application to Secure Communication, IEEE Transactions on Automatic Control, vol.53, issue.1, p.356360, 2008.
DOI : 10.1109/TAC.2007.914264

URL : https://hal.archives-ouvertes.fr/inria-00176758

F. Plestan, J. W. Grizzle, E. R. Westervelt, and G. Abba, Stable walking of a 7-dof biped robot [34] A. Polyakov. Nonlinear feedback design for xed-time stabilization of linear control systems, IEEE Tansactions on Robotics and Automation IEEE Transactions on Automatic Control, vol.19, issue.48, pp.653668-5721062110, 2003.

A. Polyakov, D. Emov, and W. Perruquetti, Finite-time and xed-time stabilization: Implicit lyapunov function approach
DOI : 10.1016/j.automatica.2014.10.082

L. Rosier, Homogeneous lyapunov function for homogeneous continuous vector eld

Y. Shen and . Huang, Uniformly observable and globally lipschitzian nonlinear systems admit global nitetime observers, Systems & Control Letters IEEE Transactions on Automatic Control, vol.19, issue.611, pp.467473-5426212625, 1992.

Y. Shen and X. Xia, Semi-global nite-time observers for nonlinear systems, Automatica, vol.44, issue.12, p.31523156, 2008.
DOI : 10.1016/j.automatica.2008.05.015

Y. Shen and X. Xia, Semi-global nite-time observers for a class of non-lipschitz systems, th IFAC Symposium on Nonlinear Control Systems, p.421426, 2010.

S. T. Venkataraman and S. Gulati, Terminal sliding modes: a new approach to nonlinear control synthesis, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments, pp.443-448, 1991.
DOI : 10.1109/ICAR.1991.240613