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Abstract

The power consumption of the High Performance Computing (HPC) systems is an increasing
concern as large-scale systems grow in size and, consequently, consume more energy. In response
to this challenge, we have develop and evaluate new energy-aware load balancers to reduce
the average power demand and save energy of parallel systems when scientific applications
with imbalanced load are executed. Our load balancers combine dynamic load balancing with
DVFS techniques in order to reduce the clock frequency of underloaded computing cores which
experience some residual imbalance even after tasks are remapped. The results show that our
load balancers present power reductions of 7.5% in average with the fine-grained variant that
performs per-core DVFS, and of 18.75% with the coarse-grained variant that performs per-chip
DVFS over real applications.

Keywords: Energy Consumption, Load Balancing, DVFS, Power Demand, Energy Saving

1 Introduction

The main focus of HPC systems has been performance, and nowadays the HPC community
works toward building Exascale systems, which will provide unprecedented computational
power, allowing to solve even larger scientific problems. However, if we conceive Exascale super-
computers by scaling the current technology, these systems could demand over a Gigawatt [8], [4].
In this way, a global research effort has risen to try to break this barrier while avoiding such
high power demands.

Reductions in the total execution time of real applications are also relevant in the perspec-
tive of energy consumption, as energy is saved when hardware resources are used for a shorter
time. However, it is possible to achieve even greater energy savings if the runtime system is
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able to exploit the residual imbalances to fine tune the voltage and frequency of cores accord-
ingly. In this case, a challenge lies in reducing the energy consumption of the application while
maintaining a similar performance.

Scientific applications generally have an irregular computational load and tasks with different
processing demands, which makes the load distribution among the processors more difficult. In
this context, different approaches have been used to mitigate these imbalanced workloads and
achieve an efficient use of all available parallel resources. However, most of these load balancing
strategies focus only on reducing the execution time using only computational load, neglecting
power demand and total energy consumption.

Generally, approaches to reduce the power demand are used separately of load balancing
research for increasing application’s performance. Several proposal have used DVFS, however
this technique may cause performance degradation and an increase of the total execution time
of parallel applications. Other proposals have used load balancing strategies to mitigate the
imbalanced workloads and achieve an efficient use of all parallel resources, which reduce the
overall execution time, and, consequently, save energy. Our developed approaches make the case
that both strategies, load balancing and DVFS, could be used together over real applications to
save energy. They identify the possibility of reducing the processors clock during the runtime
to achieve better gains over other load balancer algorithms. In this form, energy improvements
are achieved due the reduction of average power demand during the execution and also through
of reducing of the execution time by reducing the amount of tasks migrated.

In this paper we propose and validate over real applications our energy-aware load balancers,
which minimize the total energy consumption when applied over iterative applications with
imbalanced loads. We show that, combining load balancing with DVFS, our energy-aware load
balancers are able to reduce the energy spent with load balancing when they are used over other
state-of-the-art algorithms.

The remaining sections of this paper are organized as follows. Section [2| discusses some
of the related works on DVFS and energy-aware load balancing. The main concepts of our
energy-ware load balancer (ENERGYLB) as well as its two variants and implementation details
are discussed in Section [3] In Section [4] we present the evaluation methodology and the real
applications used in the conducted experiments. In addition, in Section [5| we address the results
obtained from the experiments. Finally, the Section [6] emphasizes the scientific contribution of
the work and notes several challenges that we can address in the future.

2 Related Work

Different approaches are used to reduce the power demand of the HPC systems aim improve
their energy efficiency. In this way Dynamic voltage and frequency scaling (DVFS) has
been used in different contexts as a means to save energy.

Spiliopoulos et al. [I5] extended the Gem5 simulator to support full-system DVFS modeling
and to study the behavior of different DVFS governors. They concluded that the interactive
governor is faster than on-demand to adapt to the workload changes and thus achieves better
performance at about the same energy consumption. Gerards et al. [5] analyze the use of
global DVFS in the context of multi-core processors. They proposed a theoretical method to
transform the problem of finding an optimal clock frequency on global DVFS systems to a
single core problem by using the amount of parallelism of applications. Their main goal is to
minimize the energy consumption of nontrivial real-time applications. Kin et al. [12] proposed
a realistic DVFS performance prediction method and a practical DVFS control policy (eDVFS)
that aims to minimize total energy consumption in multi-core processors. Their experimental



Using Power Demand and Residual Load Imbalance in the Load Balancing ... Padoin et al.

results show that eDVFS can save a substantial amount of energy compared with Linux on-
demand. Isci et al. [9] proposed to fine-tune the processor’s clock frequency by using workload
characteristics aim to maintain a chip-level power below a specified budget without degrading
the performance significantly.

Other challenging problem that has been studied extensively to improve the performance of
parallel applications is Emnergy-Aware Load balancing [I1], [16]. However, few works have
made some efforts to further improve the energy consumption. Aupy [I] proposed energy-aware
scheduling models to schedule tasks under reliability and makespan constraints. They designed
and evaluated them using simulations with different heuristics based on the failure probability,
the task weights, and the processor speeds. Sarood et al. [14] proposed a load balancing strategy
that limits the processors’ temperatures to reduce the energy spent in cooling and to prevent
hot spots. Their results achieved energy savings of up to 63%, with a timing penalty from 2%
to 23%. Goel et al. [6] proposed a model that uses CPU performance counters and CPU
temperature to generate accurate per-core power estimates in real-time. They showed that the
model can be used to guide scheduling decisions in power-aware resource managers. Hartog et
al. [7] studied the relationship between CPU temperature and energy consumption in clusters
and provided a method of estimating the power consumption of the system. This method was
then used to implement a MapReduce framework that can evaluate the current status of each
node and dynamically react to estimated power usage without having to rely on readings from
expensive power monitoring hardware affixed to each node in the cluster.

As opposed to these works, our approach performs load balancing along with DVFS to im-
prove the performance and to reduce the energy consumption by exploiting residual imbalances
of parallel applications. In addition, we also reduce the cost of task migrations, since we only
migrate tasks between processors when necessary. The performance and energy efficiency of
our approach were also analyzed on a set of real-world application running on top of a real
platform without the need of simulations.

3 Energy-Aware Load Balancer (EnergyLB)

Scientific applications generally have tasks with different processing demands. Load balanc-
ing approaches have been used to mitigate these imbalanced load by making a better load
distribution among the available processors in the system. Load balancing algorithms try to
mitigate load imbalance by moving tasks between processors, which incurs in overheads to data
collection, decision making and mainly tasks migration, and may affect the application runtime
and consequently the total of energy spent. However, the most of the strategies aim only on
reducing the execution time. Only a few recent strategies began to use the power demand and
energy consumption information in their decision making process.

Thus, when imbalanced applications are executed on parallel platforms, the program only
finishes its execution when the most loaded processor completes all its tasks. This way, the
total execution time of an application is generally defined by the most loaded processor. This
means that all other processors or cores in charge of lightweight tasks finish first and remain
consuming energy without performing any actual work for the application.

In the case of iterative applications, energy savings can be achieved if the clock frequency
of these underloaded processors or cores is decreased through DVFS in such a way that they
can still and their tasks before or at the same time of the most loaded ones. Load balancers
can be applied to reduce such imbalances but some residual imbalance may still remain after
task migrations, making room for further energy improvements.

In principle, DVFS can be performed mainly at two levels of granularity. Systems featuring

3
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per-chip DVFES use the same power delivery network to reach every core, and consequently,
bind each core to the same DVFS schedule. On the other hand, systems that allow per-core
DVEFS control use a separate voltage regulator for each core and therefore allow every core to
have an independent DVFS schedule.

Taking these two levels of granularity in mind, we propose two variants of Energy-Aware
Load Balancer (Figure . The first one, is a centralized approach, called Fine-Grained Ener-
gyLB (FG-ENERGYLB). It is suitable for platforms composed of few tens of cores that allow
per-core DVFS. It considers a flat view of the underlying platform, balancing the load among all
cores and performing DVFS on each individual core. When the load imbalance is considerably
high, we rely on currently available load balancers to better distribute the tasks among the
cores. On the other hand, when migrating tasks is not beneficial, we adjust the clock frequency
of underloaded cores individually to save energy. Although this approach allows for a finer tune
of the load and frequency, it becomes subject to considerable overheads on platforms having
hundreds of cores.

( Application )

!

Charm++

libEnergy

nergylLB

Energy Daemon

Platform

Figure 1: ENERGYLB Implementation

To overcome this issue, the second, called Coarse-Grained EnergyLB (CG-ENERGYLB),
uses a hierarchical approach suitable for current HPC platforms, where the underlying platform
is represented as a two-level tree. In this scheme, the platform (root) is composed of several
multi-core processors (leaves). Our hierarchical approach performs load balancing to distribute
the load among the processor’s cores in each leaf. Then, in the root level, it adjusts the frequency
of each multi-core processor according to its load to save energy.

Beyond the load balancers, we implemented two other modules. The first, called of Energy
Daemon is responsible for gathering power and energy measurements through the Intel’s Run-
ning Average Power Limit (RAPL). And the second is a Lib Energy that offers an interface to
get system information such as the maximum frequency that can be set to a core or processor,
to set the clock frequency of individual processors/cores or to set a specific Linux governor.

Our strategies take three input parameters in their execution. The first one, is the load
balancer that is used to migrate tasks when the imbalance is high. The second one, is the
maximum frequency available by processors that can be set to a core, and the last one, is a
threshold value, used to decide whether call the load balancer or perform DVFS strategy.

In this way, in each call of the load balancer, is verified if the weighted load of each processor
exceeds or not the threshold, make decisions to adjust the frequencies (determining so that the
frequency will be decreased or increased) or invoke other load balancer to migrate tasks.

We used the CHARM++ parallel runtime system [I0] to implement the two variants of
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ENERGYLB. This framework provides a simple API that can be used to implement load bal-
ancers without changing the source code of the applications. The instrumented data load can
be dynamically obtained during the application execution through the use of the API.

4 Evaluation Methodology

4.1 Experimental Environment

Our experiments were conducted on an Altix UV 2000 platform designed by SGI. The platform
is composed of 24 NUMA nodes. Each node has an Intel Xeon E5-4640 Sandy Bridge-EP x86-
64 processor with 8 physical cores running at 2.40 GHz. There are 14 clock frequency levels
available in this processor, allowing us to vary the clock frequency of the processor from 1.2 GHz
up to 2.4 GHz.

Each core of the Intel Xeon E5-4640 has 32 KB instruction and 32 KB data L1 caches and
256 KB of L2 cache. Each node has 32 GB of DDR3 memory, which is shared with other nodes
in a cc-NUMA fashion through SGI’s proprietary NUMAIlink6. Overall, this platform has 192
physical cores and 768 GB DDR3 memory.

The platform runs an unmodified SUSE Linux Enterprise Server operating system with
kernel 3.0.101-0.29 installed. All applications as well as the CHARM~++ programming model
were compiled with GCC 4.8.2. The CHARM++ version used in our experiments was linux64-
6.5.1. The results presented in Section [5| are the average of at least 10 runs. The relative error
was less than 5% using a 95% statistical confidence by Student’s t-distribution.

4.2 Applications

To evaluate the runtime, power demand and total energy consumption of our Energy-Aware
Load Balancers, we selected three real-world applications. They were chosen due to their
varied range of communication patterns and workload characteristics. The description of the
applications is given below:

e Ondes3D is a seismic wave propagation simulator employed to estimate the damage
in future earthquake scenarios [3]. In Ondes3D, seismic waves are modeled as a set of
elastodynamics equations. These equations are then solved by applying a finite difference
method. The application is over decomposed into multiple virtual MPI processes per core.
Ondes3D presents load irregularity due to the boundary conditions producing additional
work, and load dynamicity from the simulation of waves spreading through space;

e Lulesh simulates a variety of science and engineering problems require modeling hydro-
dynamics, which describes the motion of materials relative to each other when subject to
forces. The Livermore Unstructured Lagrange Explicit Shock Hydrodynamics (LULESH)
application was originally developed as one of the five challenge problems in the DARPA
Ubiquitous High Performance Computing (UHPC) program. Lulesh solves one octant of
the spherical Sedov problem using Lagrange hydrodynamics [2]; and

e Lassen is a mini-application that explores applications with varying load balance. It
simulates the propagation of a wave through as it travels around an unstructured mesh
and it works on a 2D and 3D version. The computational load of the mesh is sub-divided
into domains, which are assigned to processors. Therefore, this becomes a challenging
problem to effectively parallelize since the workload is constantly changing [13].
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4.2.1 Input parameters

Table [I] summarizes the characteristics of the applications and parameters used in our experi-
ments. Different load balancing frequencies have been chosen for different applications in order
to strike a balance between the benefits of remapping tasks and the overheads of moving tasks
and computing a new task mapping.

Table 1: Summary of the input parameters of applications.
Application FG-EnergyLB CG-EnergyLB Iterations LB Frequency

Tasks Tasks
Ondes3D 128 1024 500 20
Lulesh 729 5832 1000 50
Lassen 256 512 550 50

4.3 Load Balancers

We applied our energy-aware load balancer along with different standard load balancers avail-
able in CHARM—++. The rationale behind that is to evaluate the energy savings that can be
obtained by exploiting residual imbalances of these load balancers. To compare the power
demand and energy consumption results, we selected the load balancers GREEDYLB (G) and
GREEDYCOMMLB (GC) that have a greedy algorithm, REFINELB (R) and REFINECOMMLB
(RC) that use a limit of task migrations, RANDCENTLB (Ra) that randomly assigns objects
to processors and SCOTCHLB (S) that map based on the recursive bi partitioning using both
the source process graph and the target architecture graph.

5 Experimental Results

Real applications as Ondes3D, Lulesh and Lassen have different initial imbalance and different
dynamicity in their computational load, which leaving space for the use of load balancing
algorithms. In this context, some energy improvements were achieved.

Thus, this section provides an analysis of total energy spend with load balancing over
total energy consumption and the percentage of energy spend with load balancing when FG-
ENERGYLB and CG-ENERGYLB are used over these real applications. The application runtime
depends on several issues, among them, the number of parallel tasks and their load, the duration
of each timestep, and the selected load balancing strategy. The impact of load balancing is
directly related to the load balancing frequency once load balancing overhead can overcome the
gains achieved with load balancing.

5.1 Fine-Grained EnergyLB Evaluation

The propagation of the wave of this application introduce a dynamism to the load. In this way,
Ondes3D has both irregularity and dynamicity in its execution. Applying FG-ENERGYLB
alone, it reduces the clock frequency of cores used during the runtime, which reduces the power
demand in 15% on average, from 35.5 W to 30.2 W. By reducing the processors power according
their computational load, FG-ENERGYLB achieve saving energy of 13.9%.

Similar to Ondes3D, Lulesh and Lassen have imbalance and dynamicity of load. Considering
this, FG-ENERGYLB make several DVFS to adjust the clock frequency of the cores according

6
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Figure 2: Average Power Demand reductions for each real application with FG-ENERGYLB.

their relative load, reducing the average power of 35.06 W to 33.64 W, to Lulesh and of 34.8 W
to 30.8 W (11.48%).

When FG-ENERGYLB was applied over the residual imbalance of other load balancing
algorithms the average power demand is reduced in up to 5.29%, 4.05% and 5.23% respectively.

Considering this reductions in average power demand, we select the energy spent with load
balancing when load balancers are used alone (LB) and the energy spent with load balancing
when load balancers are used with FG-EnergyL.LB (LB+FQG) of the total energy spent in the
application execution (App), as depicted in the Figure

10000
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1000
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100

log Energy Consumption (kJ)
log Energy Consumption (kJ)
log Energy Consumption (kJ)

o FG G GC R RC Ra S o FG G GC R RC Ra §
App 3 LB BEXXX3 LB+FG =33 App 3 LB BEXXX3 LB+FG =3 App 3 LB BEXXXX3 LB+FG =33
(a) Ondes3D. (b) Lulesh. (c¢) Lassen.

Figure 3: Energy spend with load balancing over total energy consumption for each real appli-
cation with FG-ENERGYLB.

The energy spent with load balancing comes from of the time overhead of every load balancer
call. In the test with Ondes3D, the load balancers are responsible in average for spending
of 7.87% of the total energy consumed during execution of the application (red column in
Figure . When FG-ENERGYLB was used together with load balancers (green column),
it is able to saving energy of own load balancing. The energy spent with load balancing was
reduced from 7.87% to 2.07%, on average. This occurs due the reduction of the total execution
time and mainly by reductions on average power demand.

Over Lulesh and Lassen applications, the load balancing is responsible for 4.91% and 3.57%
respectively of the total energy consumed during execution of the application. Using FG-
ENERGYLB together with other load balancers, the total energy spent with load balancing is
reduced to 3.52% and 3.13% respectively, as shown in the Figure In this way, using FG-
ENERGYLB together with other load balancers, the average of energy spent with load balancing
is reduced from 5.45% to 2.90%.
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5.2 Coarse-Grained EnergyLB Evaluation

This section provides a CG-ENERGYLB evaluation over real-world applications. Each one
these scientific applications present a different and dynamic behavior, the load of its tasks
change through the iterations, which provides a more challenging scenario for energy aware
load balancing. Since all the 192 cores will be used, different parameters are used in the
evaluation of the CG-ENERGYLB, as shown in the Table [T}

These applications has irregularity in the creation of its tasks and load dynamicity during
execution. So, when load balancing algorithms are applied over real applications, different
improvements are achieved. By updating the frequency of the processors according to their
weighted loads, When CG-ENERCYLB is employed alone, it reduces the average power demand
of the system while the application is running. Using this approach, reductions of 27.4%, 25.5%
and 9.17% on average in power demand are achieved, as depicts the Figure
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w
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(a) Ondes3D. (b) Lulesh. (¢) Lassen.

Figure 4: Average Power Demand reductions for each real application with CG-ENERGYLB.

Over Ondes3D, CG-ENERGYLB (Figure 2(a)) reduces the power from 54.71 W to 39.72 W.
For Lulesh and Lassen (Figures|2(b)[and [2(c)), CG-ENERGYLB is able to reduce the average
power from 50.91 W to 37.93 W and from 50.34 W to 45.72 W.

Once applied load balancers, residual imbalances still are present. In this way, when CG-
ENERGYLB is employed to mitigate this residual imbalance left by the load balancing algorithm,
it identifies the possibility of reducing the processors clock to achieve better gains over these
algorithms. For theses applications, the average power demand is reduced in 21%, 20.6% and
8.83% respectively.

Considering the different power reductions, we analyse the load balancing energy when load
balancers are used alone (LB) and the load balancing energy when load balancers are used with
FG-EnergyLLB (LB+FG). These energy value are depicted in the Figure [5| compared to total
energy spent in the application execution (App).

We realize that our CG-ENERGYLB has load balancing overhead lower than other state-
of-the-art load balancers when tested with real applications. So, when the application call
CG-ENERGYLB, it spend less time to adjust the clock frequency, which results in a reduction
in total execution time and an equivalent saving energy.

In the tests with the Ondes3D, Lulesh and Lassen applications, the load balancers are
responsible in average by spent of 28.87%, 9.87% and 6.80% of the total energy consumed
during execution of the applications. When CG-ENERCYLB was used together with load

balancers, it reduces the energy spent with load balancing on average to 24.55%, 8.46% and
5.71% respectively.

8
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Figure 5: Energy spend with load balancing over total energy consumption for each real appli-
cation with FG-ENERGYLB.

6 Conclusions

The exponential increase in power consumption related to a linear increase in the clock frequency
and a higher complexity involved in the processors’ design changed the course of development
of new processors. Power consumption has become a critical aspect to the development of both
large and small scale systems. This concern is now enough to warrant the research on techniques
to improve the energy efficiency of parallel applications running on top of HPC platforms.

In this paper, we focused on reducing the energy consumption and power demand of par-
allel applications without considerably degrading their overall performance. Our main idea
was to exploit the existence of residual imbalances on iterative applications to adjust the clock
frequency of underloaded cores/processors through DVFS. We proposed two variants of ENER-
GYLB, an energy-aware load balancer and validate both variants in CHARM++-. Both strategies
can be used together with any other load balancer to improve energy efficiency of real world
applications.

Experimental results present improvements in energy consumption when our ENERGYLB
load balancers were used with state-of-the-art algorithms over real-world applications. FG-
ENERGYLB and CG-ENERGYLB are able to reduce the load balancing energy in average of
32.6% and 11.1% respectively.

This work can be extended in different directions. One possibility would be to develop a new
load balancer that performs load balancing and DVFS at the same time in each load balancing
step. For that, it would be necessary to create a heuristic that take into account the cost of
task migrations between cores/processors that operate in different clock frequencies. Another
possibility would be to develop a hierarchical energy-aware load balancer that performs task
migrations between cores of the same processor and only migrate tasks between processors when
needed. In this scheme, only the processors involved in task migrations would need their clock
frequencies to be adjusted, reducing overhead of performing DVFS on all processors at each
load balancing step. Finally, we also intend to evaluate the benefits of FG-ENERGYLB and
CG-ENERGYLB on other real-world applications and platforms.
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