An adaptation of the Gear scheme for fractional derivatives

Abstract : The Gear scheme is a three-level step algorithm, backward in time and second-order accurate for the approximation of classical time derivatives. In this contribution, the formal power of this scheme is proposed to approximate fractional derivative operators in the context of finite difference methods. Some numerical examples are presented and analysed in order to show the effectiveness of the present Gear scheme at the power a (G a-scheme) when compared to the classical Gru¨nwald–Letnikov approximation. In particular, for a fractional damped oscillator problem, the combined G a-Newmark scheme is shown to be second-order accurate.
Type de document :
Article dans une revue
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2006, 195 (44-47), pp.6073-6085. 〈10.1016/j.cma.2005.10.013〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01516404
Contributeur : Mathias Legrand <>
Soumis le : dimanche 30 avril 2017 - 20:34:23
Dernière modification le : jeudi 7 février 2019 - 16:43:23
Document(s) archivé(s) le : lundi 31 juillet 2017 - 12:22:04

Fichier

GDMDO.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Ana Cristina Galucio, Jean-François Deü, Stéphanie Mengué, François Dubois. An adaptation of the Gear scheme for fractional derivatives. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2006, 195 (44-47), pp.6073-6085. 〈10.1016/j.cma.2005.10.013〉. 〈hal-01516404〉

Partager

Métriques

Consultations de la notice

77

Téléchargements de fichiers

152