
HAL Id: hal-01516350
https://hal.science/hal-01516350

Submitted on 30 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Towards Better Availability and Accountability for IoT
Updates by means of a Blockchain

Aymen Boudguiga, Nabil Bouzerna, Louis Granboulan, Alexis Olivereau,
Flavien Quesnel, Anthony Roger, Renaud Sirdey

To cite this version:
Aymen Boudguiga, Nabil Bouzerna, Louis Granboulan, Alexis Olivereau, Flavien Quesnel, et al..
Towards Better Availability and Accountability for IoT Updates by means of a Blockchain. IEEE
Security & Privacy on the Blockchain (IEEE S&B 2017) an IEEE EuroS&P 2017 and Eurocrypt 2017
affiliated workshop, IEEE, Apr 2017, Paris, France. �hal-01516350�

https://hal.science/hal-01516350
https://hal.archives-ouvertes.fr


Towards Better Availability and Accountability for
IoT Updates by means of a Blockchain

Aymen Boudguiga*, Nabil Bouzerna*, Louis Granboulan†, Alexis Olivereau‡,
Flavien Quesnel*, Anthony Roger* and Renaud Sirdey‡*

*IRT SystemX, 8 avenue de la Vauve 91120–Palaiseau, firstName.lastName@irt-systemx.fr
†Airbus Group Innovations, louis.granboulan@airbus.com

‡CEA–LIST, 91191 Gif-sur-Yvette, firstName.lastName@cea.fr

Abstract—Building the Internet of Things requires deploying
a huge number of devices with full or limited connectivity to
the Internet. Given that these devices are exposed to attackers
and generally not secured-by-design, it is essential to be able
to update them, to patch their vulnerabilities and to prevent
hackers from enrolling them into botnets. Ideally, the update
infrastructure should implement the CIA triad properties,
i.e., confidentiality, integrity and availability. In this work, we
investigate how the use of a blockchain infrastructure can meet
these requirements, with a focus on availability.

Index Terms—Blockchain, IoT, Software updates, Availabil-
ity, Accountability, Innocuousness

I. INTRODUCTION

The Internet of Things (IoT) is today a paradigm that
is changing our lives in many ways with respect to how
we work, travel, entertain ourselves or communicate. Novel
forms of interactions with human users, distributed intelli-
gence, pervasiveness, new topologies, devices and commu-
nication technologies shape this evolution. From the non-
expert viewpoint, the digitalization of hitherto human-centric
scenarios and the devices by which this digitalization is
carried out are its most visible aspects. Practically, it results
in a profusion of new computerized objects and appliances.
It is expected that by 2030, the number of connected devices
will reach 30 billions and they will exchange hundreds of
zettabytes of data.

Individually, it is well-known that each IoT device exhibits
specific vulnerabilities to cyberattacks due to multiple factors
including longevity, lack of physical protection, hardware
shortcomings or stripped down Human Machine Interface.
With such a mass deployment, the vulnerability property
therefore calls for universal software update infrastructures
enabling IoT product manufacturers / integrators to remotely
maintain software-based equipment. Yet, even the best con-
ceived software update platforms can fall short if they are
deliberately targeted as part of a combined attack scenario.

In this work, we investigate the possible use of a
blockchain infrastructure to provide software updates to
several IoT objects belonging to different manufacturers. As
a blockchain relies principally on a peer-to-peer network,
we thought intuitively that it may serve as a distributed
database for storing and sharing software updates between
IoT objects.

In this paper, we show how IoT manufacturers can benefit
from the use of a blockchain to ensure updates availability
and innocuousness for IoT objects. Availability and also in-
tegrity result from the persistence property of the blockchain.
That is, once an update is added to the blockchain as part

of a valid block, it becomes impossible to erase it. As such,
we defeat malicious entities that prevent software updates
from being distributed, in order to benefit from current
software vulnerabilities. That is, we ensure that updates will
be always available for their intended devices. Moreover, the
blockchain infrastructure may be assumed to be much more
resilient to availability threats e.g., impersonations or Denial
of Service (DoS), than the manufacturer’s own infrastructure.

In addition, we propose to rely on some nodes in the
blockchain to validate an update innocuousness before its
transmission to end devices. Innocuousness checking nodes
will not only check the integrity of the updates by verifying
manufacturers signatures but they will also validate the
innocuousness of the received software by checking it for
bugs, analyzing its vulnerabilities and testing its resistance to
a set of known attacks. As such, devices will only download
an update that has been approved by some innocuousness
checking nodes. These nodes can belong, for example, to
national cybersecurity agencies. That is, we protect legiti-
mate devices from downloading insecure updates.

The remainder of this paper is organized as follows. Sec-
tion II presents the targeted IoT architecture. Section III de-
picts two mechanisms for software update with a blockchain.
Section IV concludes the paper and gives some future works.

II. TARGETED IOT ARCHITECTURE

Tschofenig and Arkko [1] present smart objects as devices
with size, memory, computation or energy constraints. These
devices are used in our daily lives to return interesting
information about our environment. For example, in smart
homes, smart objects may serve to return temperature levels
or our energy consumption rates. Smart objects can connect
to the Internet to form an Internet of Things (IoT) architec-
ture. Tschofenig et al., [2] distinguish three models of IoT
communication:

∙ Device-to-Device communication concerns smart objects
that exchange information in a peer-to-peer manner with-
out accessing the Internet. For example, in a smart home,
a wireless communication can be established between a
light bulb and a light switch that do not come necessarily
from the same manufacturer.

∙ Device-to-Cloud communication refers to use cases where
a smart object interacts with a service provider in the
Internet. For example, a temperature sensor can transmit
real-time information about a smart house temperature to
an energy service provider. The latter will define the user



m1

mi

mm

G
Manufacturers: M1...Mm

GatewayG

Objects

Wired Connection

Wireless Connection

Internet

G G G G

Fig. 1. Abstract IoT architecture

energy consumption profile and output advice to reduce
his energy bill.

∙ Device-to-Gateway communication either provides
Device-to-Cloud communication via a routing gateway
or relies on an applicative gateway to gather device data.
A routing gateway can be for example a smartphone that
relays a user health data collected by a smartwatch to
a service provider database. Meanwhile, an applicative
gateway can gather, for example, temperature data from
different sensors and synthesizes the results for the end
user.

Figure 1 describes an abstract IoT architecture. First, we
define a set of device manufacturers M = {m1, . . . ,mm}.
mi can be a smart meter, a car or even a smart fridge manu-
facturer. It is worth noting that we have a 1 : n relationship
between a manufacturer and its own devices.

Second, we define Oi = {oi1, . . . , oin} as the the set of
smart objects manufactured by mi. That is, each mi ∈ M
is managing a set of devices Oi. For simplicity sake, we
suppose that each manufacturer mi is in charge of n distinct
devices. As such, the cardinality of Oi,∀i∈[1,m] equals n.

As presented in Figure 1, a device can connect to the
Internet, and so to its manufacturer cloud, via a gateway
G, directly or by hoping through other devices until getting
access to the gateway G. That is, a device can participate
into a peer-to-peer communication to relay its peers’ traffic
to a certain gateway. A gateway can simply be a WiFi
Access Point in a smart home or a Road Side Unit in an
Intelligent Transportation Structure (ITS) architecture. Note
that devices forming a peer-to-peer network do not belong
necessarily to the same manufacturer. For example, different
brands of cars communicate directly in an ITS context.

III. BLOCKCHAIN AND SOFTWARE UPDATES

In this section, we describe how IoT manufacturers can
benefit from the use of a blockchain to provide devices up-
dates availability and innocuousness. For simplicity reasons,
we will talk only about software updates. However, our pre-
sented solutions can be adapted to applications distribution,
to network settings sharing or to new configuration profiles
dispatching.

We first define the considered attacker model in sec-
tion III-A. Then, we depict keys initialization mechanism in
section III-B. Keys are compulsory for updates signing and

encryption, and for blockchain operations. In section III-C,
we introduce our first contribution. We show how we can
benefit from a blockchain as a distributed database to share
updates between several devices. That is, we show how a
blockchain can provide updates availability. Then, we go
a step further by adding a set of innocuousness checking
nodes in the blockchain (section III-D). These nodes are
in charge of validating manufacturers updates before their
transmissions to the end devices. That is, these nodes will
not only check the integrity of the updates by verifying
manufacturers signatures but they will also validate the in-
nocuousness of the received software by checking it for bugs,
analyzing its vulnerabilities and testing its resistance to a set
of known attacks. The innocuousness checking nodes can be,
for example, national cybersecurity agencies and certifying
cybersecurity companies. An object will not download an
update until it has been approved by a set of innocuousness
checking nodes. Finally, section III-E presents an update
acknowledgement protocol. Acknowledgement is important
as it creates a history of installed updates.

A. Attacker Model

In this work, we consider a Dolev and Yao attacker
model [3]. That is, the attacker is able to read, send and drop
a transaction addressed to the blockchain, or any network
packet. Of course, she can be passive by connecting to the
network and eavesdropping all exchanged messages. Or, she
can be active by injecting, replaying or filtering exchanged
information.

Our attacker targets devices, their manufacturers, the
update blockchain or even the network:

∙ Attacking the network: an attacker can try to isolate a
device or its manufacturer to prevent it from sending
a transaction to the blockchain. Here, by isolation, we
refer to classical network attacks where the traffic of the
attacked node is filtered, or the link between the targeted
node and its network is simply cut. As such, a network
attacker can prevent a device from sending its acknowl-
edgment transaction of section III-E. Network isolation
attacks can be simply avoided by ensuring that each device
or manufacturer has in its routing table redundant paths
to the core network.

∙ Attacking the blockchain: as the update transactions T
or the acknowledgment transactions A are signed by
manufacturers and devices respectively, the attacker will
not be able to impersonate a manufacturer or a device
unless she gets their respective signing keys. However, she
can try to prevent a legitimate transaction from appearing
into a valid blockchain block, which is equivalent to the
double spending problem in bitcoin [4]. By construction,
the attacker will have to control more than half of the
blockchain nodes to prevent a transaction from appearing
in a valid block in the blockchain which is presumably
hard [4]. Moreover, manufacturers can check that their
updates correctly appear in the blockchain; if this is not the
case, it can mean that someone is attacking the blockchain.

∙ Attacking a manufacturer: as all update transactions T
are signed with manufacturers private keys, the attacker
will not be able to impersonate a legitimate manufacturer.



However, a passive attacker can recover all updates bi-
naries. As such, manufacturers will have to encrypt their
updates binaries when their confidentiality e.g., intellectual
property, is a concern.

∙ Attacking a device: as an attacker can hack into a device
where keys are stored in a HSM, she is able to recover
all the updates, even the encrypted ones. Indeed, she has
simply to dump the memory of the hacked device to get
the last software update. In this work, we do not address
the problem of confidentiality within hacked devices.

B. Keys Initialization

We consider a manufacturer (mi) who sells some devices
(Oi) and who, for some good and legitimate reasons, wishes
to perform software updates on these devices once fielded.
Let us assume that the manufacturer has its own master
public/secret keys pair, say pkmi and skmi , and that it also
generates such a pair for each device oik, say pkoik and
skoik . Before shipping device oik, the manufacturer somehow
“burns” pkmi , skoik and certoik into it1. certoik is the tuple
(pkoik , signmi(skmi , pkoik)) where signmi(skmi , pkoik) is the
signature of pkoik with the private key of mi, namely skmi .
Today, it is common use to rely on a Hardware Security
Module (HSM) or on a tamper resistant memory for secure
keys storage. So, it is fair to assume that mi is storing its
pkmi , skoik and certoik on its devices HSMs.

C. Blockchain and Updates Availability

In order, to generate an update U for device oik, mi

proceeds in a utterly classical fashion by signing U by
means of skmi and then encrypting U and the signature under
pkoik . Upon receiving (or retrieving) an update U, the device
would also proceed in a classical fashion, by decrypting the
bundle, checking the signature and, if both operations are
successful, applying the update. So far, everything works
smoothly enough without any blockchain infrastructure as
we seemingly have solved both integrity and confidentiality
issues within our reference architecture (assuming of course
that neither the manufacturer nor the devices - or at least
the subset of them owning the cryptographic material - are
compromised).

Having said that, a blockchain infrastructure (Figure 2)
can help in terms of availability as a blockchain with a
critical-enough mass would bring the following two prop-
erties:
1) Persistence in time of anything written to it e.g., once

written into the supporting blockchain, a legitimate -
signed - software upgrade towards a given device will
remain there, unaltered ad vitam eternam.

2) The blockchain infrastructure may be assumed to be
much more resistant to availability threats e.g., imper-
sonations or Denial of Service (DoS), than the manufac-
turer’s own infrastructure.

As an example, a device could periodically poll the
blockchain by picking randomly one of its supporting nodes
and checking whether or not one or more updates have been
posted for it (in which case it applies either all of them or the

1Of course, the case where there is a single public/secret key pair shared
among all objects is a subcase of the present one.

m1

mi

mm

i1

ii

ik

G G G G G

BlockchainManufacturers: m1...mm

Gateway

Objects

Wired Connection

Wireless Connection

Blockchain Node

Manufacturer Node

Innocuousness Checking Node

G

Fig. 2. Blockchain update architecture

last one, depending on the system design). In this context, a
blockchain with access rights management would be a plus
(in terms of system load optimization) but is not necessary
in terms of security properties.

Thanks to this architecture, it becomes possible to provide
liveness guarantees on a software upgrade system.

Then, an attacker who would attempt a DoS on an
IoT software update system e.g., in order to maintain an
actionable vulnerability which would be fixed by an update,
would be able to do so only via a DoS attack on the
blockchain (which is presumed hard) or by flooding the
blockchain with invalid software upgrades. Although the
latter strategy may not be prevented by the blockchain
infrastructure, it is not at all stealthy and can be detected
by the manufacturer (whereas a man-in-the-middle on a
manufacturer’s own infrastructure would be both stealthy
and unbounded in time).

It therefore appears that bringing a (massive-enough)
blockchain into the picture would allow many manufacturers
to share the burden of countering availability threats on their
software upgrade infrastructures (to some extent it could
be generalized to their overall communication infrastructure
when availability is a stake). Per se, this is interesting as
availability is all too often the Cinderella of the security
pillars.

We define a manufacturer update transaction,
corresponding to an update U, as the tuple
T = (Tid,Uid,Uv,Ubin,Otype,Mid,Msign) where Tid is
a transaction identifier, Uid is an update identifier, Uv is an
update version, Ubin is an update binary or an encrypted
update binary, Otype is a device type, Mid is a manufacturer
identifier and Msign is Mid signature of all the previous
fields. Uid can be simply the hash of Ubin.

Finally, note that when an update confidentiality is a
concern, a manufacturer will have to encrypt an update
binary Ubin of a transaction T before pushing it into the
blockchain. Broadcast encryption mechanisms, such as those
used for Pay TV, can be used to provide more efficient
encryption of Ubin [5], [6].

D. Blockchain and Updates Innocuousness

In this section, we consider that manufacturers are not
including update binaries into update transactions T i.e.,
T = (Tid,Uid,Uv,Otype,Mid,Msign). When a transaction T



is pushed to the blockchain, it just serves to notify concerned
devices that their manufacturer has a new software update
available for download. However, devices will not download
and install this new update until a set of innocuousness
checking nodes have approved it.

Indeed, we extend the blockchain infrastructure by a set of
k innocuousness checking nodes I = {i1, . . . , ik} (Figure 2).
These nodes can belong to national cybersecurity agencies,
or certifying and certified cybersecurity companies. These
innocuousness checking nodes receive the new update binary
Ubin directly from the manufacturer. Then, they not only
check the integrity of the manufacturer signature of Ubin but
also the innocuousness of Ubin itself against bugs and known
attacks.

A device interested in a new update U will refrain from
downloading U till at least ⌊ k

2⌋+ 1 nodes of I have approved
the innocuousness of Ubin and acknowledged it in the
blockchain.

Let us assume that we have a complex system containing
several devices coming from different manufacturers. One
of these manufacturers may become malicious and install a
malware in its device to spy on other devices or to collect end
user private data. If the use of our blockchain architecture
extended by innocuousness checking nodes is enforced by
a global security policy, or even a law, such a malware
will be detected by the innocuousness checking nodes. In
addition, the latter will push a negative acknowledgment for
this malicious update into the blockchain.

The advantage of using this approach compared to the
one of the previous section III-C is mainly reducing the size
of the blockchain by removing update binaries. However,
extending the blockchain with k innocuousness checking
nodes implies providing each device with k different public
keys. These keys are compulsory for validating the acknowl-
edgments of innocuousness checking nodes. However, keys
management can become a disadvantage when k exceeds a
certain threshold.

E. Update Acknowledgment

Once a device or an innocuousness checking node has in-
stalled an update and approved it, it must acknowledge its in-
stallation by sending a special transaction to the blockchain.
We identify two types of acknowledgment transactions:
∙ We define a positive acknowledgment transaction as the

tuple A = (Aid,Uid,Oid,Osign) where Aid is an acknowl-
edgment identifier, Uid an update identifier, Oid an ac-
knowledging device or an innocuousness checking node
identifier and Osign is Oid signature of all the previous
fields.

∙ We define a negative acknowledgment transaction as the
tuple (NAid,Uid,Oid,MOid,Osign) where NAid is a nega-
tive acknowledgment identifier, Uid an update identifier,
Oid an acknowledging device or an innocuousness check-
ing node identifier, MOid a malicious device or a malicious
manufacturer identifier and Osign is Oid signature of all
the previous fields. Negative acknowledgment by innocu-
ousness checking nodes of an advertised new update can
serve as a metric for detecting misbehaving manufacturers
(section III-D). Meanwhile negative acknowledgments re-
ferring to the same misbehaving device and coming from

its peers can be used as a metric for insider attacker
detection.

These acknowledgments are important as they permit to
maintain a history of downloaded object updates, providing
a simple accountability and logging system.

IV. CONCLUSION

In this paper, we investigated how a blockchain infras-
tructure can help in securing the deployment of updates
for IoT devices. We enlightened the fact that, by design,
a blockchain dramatically improves updates availability, due
to the persistence and DoS risk mitigation properties. We
refined our proposal to (i) allow extensive update innocu-
ousness checking, by relying on trusted actors like national
cybersecurity agencies; (ii) keep track of up-to-date devices;
(iii) identify potentially malicious devices or manufacturers,
therefore providing a building block for accountability.

For our future work, we consider several improvements.
First, we will evaluate broadcast encryption mechanisms, to
provide the confidentiality property at a lower cost, without
having to deploy a dedicated update for each IoT device.
Then, we will study if these mechanisms are compatible
with resource-constrained devices, or if we have to tune these
mechanisms to leverage lightweight cryptography. Second,
we will investigate the use of threshold signatures in order to
reduce the number of transactions transmitted by innocuous-
ness checking nodes. Indeed, the latter will use a threshold
signature to sign only one transaction to acknowledge the
approval of an update instead of transmitting, at least,
⌊ k
2⌋+ 1 acknowledgment transactions as currently proposed.

Finally, it could be interesting to investigate which economic
models can be built on this kind of distributed infrastructure;
for instance, device manufacturers could give (financial)
incentives to encourage device owners to retrieve updates by
means of the peer-to-peer mechanism, in order to decrease
the load on the blockchain infrastructure.

ACKNOWLEDGMENT

This work has been carried out in SystemX, and therefore
granted with public funds within the scope of the French
program Investissements d’avenir. This work is part of
the projects Environment for Cybersecurity Interoperabil-
ity and Integration (EIC) and Cybersecurity of Intelligent
Transportation Systems (CTI). We would like to thank Jack
Fazakerley, from SystemX, for helping with the figures.

REFERENCES

[1] H. Tschofenig and J. Arkko, “Report from the Smart Object Workshop,”
RFC 6574 (Informational), Internet Engineering Task Force, Apr.
2012. [Online]. Available: http://www.ietf.org/rfc/rfc6574.txt

[2] H. Tschofenig, J. Arkko, D. Thaler, and D. McPherson,
“Architectural Considerations in Smart Object Networking,” RFC
7452 (Informational), Internet Engineering Task Force, Mar. 2015.
[Online]. Available: http://www.ietf.org/rfc/rfc7452.txt

[3] D. Dolev and A. Yao, “On the security of public key protocols,” in
IEEE Transactions on Information Theory, vol. 29, no. 2, March 1983,
pp. 198 – 208.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[5] A. Fiat and M. Naor, “Broadcast encryption,” in Annual International

Cryptology Conference. Springer, 1993, pp. 480–491.
[6] S. C. H. Huang and D.-Z. Du, “New constructions on broadcast

encryption key pre-distribution schemes,” in Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies., vol. 1, March 2005, pp. 515–523 vol. 1.

http://www.ietf.org/rfc/rfc6574.txt
http://www.ietf.org/rfc/rfc7452.txt

	Introduction
	Targeted IoT Architecture
	Blockchain and Software Updates
	Attacker Model
	Keys Initialization
	Blockchain and Updates Availability
	Blockchain and Updates Innocuousness
	Update Acknowledgment

	Conclusion
	References

