P. Ji, V. Yeh, and T. Ramirez,

, Haematologica, vol.95, pp.2013-2021, 2010.

E. Y. Popova, S. W. Krauss, and S. A. Short,

, Chromosome Res, vol.17, pp.47-64, 2009.

M. Chen, H. Sandoval, and J. Wang, Selective mitochondrial autophagy during erythroid maturation, Autophagy, vol.4, pp.926-928, 2008.

G. Keerthivasan, H. Liu, and J. M. Gump, A novel role for survivin in erythroblast enucleation, Haematologica, vol.97, pp.1471-1479, 2012.

G. Keerthivasan, S. Small, and H. Liu,

H. Sandoval, P. Thiagarajan, and S. K. Dasgupta, Essential role for Nix in autophagic maturation of erythroid cells, Nature, vol.454, pp.232-235, 2008.

J. Zhang and P. A. Ney, Role of BNIP3 and NIX in cell death, autophagy, and mitophagy, Cell Death Differ, vol.16, pp.939-946, 2009.

S. Watanabe, T. De-zan, and T. Ishizaki, Loss of a Rho-regulated actin nucleator, mDia2, impairs cytokinesis during mouse fetal erythropoiesis, Cell Rep, vol.5, pp.926-932, 2013.

N. Bianchi, C. Zuccato, and A. Finotti, Involvement of miRNA in erythroid differentiation, Epigenomics, vol.4, pp.51-65, 2012.

M. A. Listowski, E. Heger, and D. M. Boguslawska, microRNAs: fine tuning of erythropoiesis, Cell Mol Biol Lett, vol.18, pp.34-46, 2013.

N. Felli, L. Fontana, and E. Pelosi,

, Proc Natl Acad Sci U S A, vol.102, pp.18081-18086, 2005.

N. Felli, F. Pedini, and P. Romania, MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis, Haematologica, vol.94, pp.479-486, 2009.

M. Gabbianelli, U. Testa, and O. Morsilli, Mechanism of human Hb switching: a possible role of the kit receptor/miR 221-222 complex, Haematologica, vol.95, pp.1253-1260, 2010.

V. G. Sankaran, T. F. Menne, and D. Scepanovic, MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13, Proc Natl Acad Sci, vol.108, pp.1519-1524, 2011.

Q. Wang, Z. Huang, and H. Xue, MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4, Blood, vol.111, pp.588-595, 2008.

H. Bruchova-votavova, D. Yoon, and J. T. Prchal, miR-451 enhances erythroid differentiation in K562 cells, Leuk Lymphoma, vol.51, pp.686-693, 2010.

S. Masaki, R. Ohtsuka, and Y. Abe, Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis, Biochem Biophys Res Commun, vol.364, pp.509-514, 2007.

L. Zhang, J. Flygare, and P. Wong, miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1, Genes Dev, vol.25, pp.119-124, 2011.

L. Pase, J. E. Layton, and W. P. Kloosterman, miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2, Blood, vol.113, pp.1794-1804, 2009.

M. C. Giarratana, L. Kobari, and H. Lapillonne, Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells, Nat Biotechnol, vol.23, pp.69-74, 2005.

H. Lapillonne, L. Kobari, and C. Mazurier, Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine, Haematologica, vol.95, pp.1651-1659, 2010.

M. C. Giarratana, H. Rouard, and A. Dumont, Proof of principle for transfusion of in vitro-generated red blood cells, Blood, vol.118, pp.5071-5079, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00692474

L. Kobari, F. Yates, and N. Oudrhiri, Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model, Haematologica, vol.97, pp.1795-1803, 2012.

H. Dweep, C. Sticht, and P. Pandey, miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes, J Biomed Inform, vol.44, pp.839-847, 2011.

D. Chen, P. Wang, and R. L. Lewis, A microarray analysis of the emergence of embryonic definitive hematopoiesis, Exp Hematol, vol.35, pp.1344-1357, 2007.

H. Zhu, H. Wu, and X. Liu, Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells, Autophagy, vol.5, pp.816-823, 2009.

Y. Yu, L. Yang, and M. Zhao, Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells, Leukemia, vol.26, pp.1752-1760, 2012.

W. Pan, Y. Zhong, and C. Cheng, MiR-30-regulated autophagy mediates angiotensin IIinduced myocardial hypertrophy, PLoS One, vol.8, p.53950, 2013.

M. L. Choong, H. H. Yang, and I. Mcniece, MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis, Exp Hematol, vol.35, pp.551-564, 2007.

M. Zhan, C. P. Miller, and T. Papayannopoulou, MicroRNA expression dynamics during murine and human erythroid differentiation, Exp Hematol, vol.35, pp.1015-1025, 2007.

T. Ketelaar, C. Voss, and S. A. Dimmock,

R. A. Williams, T. K. Smith, and B. Cull, ATG5 is essential for ATG8-dependent autophagy and mitochondrial homeostasis in Leishmania major, PLoS Pathog, vol.8, p.1002695, 2012.

D. B. Khoa and M. Takeda, Expression of autophagy 8 (Atg8) and its role in the midgut and other organs of the greater wax moth, Galleria mellonella, during metamorphic remodelling and under starvation, Insect Mol Biol, vol.21, pp.473-487, 2012.

T. Kikuma, M. Ohneda, and M. Arioka, Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae, Eukaryot Cell, vol.5, pp.1328-1336, 2006.

M. L. Liu and M. C. Yao, Role of ATG8 and autophagy in programmed nuclear degradation in Tetrahymena thermophila, Eukaryot Cell, vol.11, pp.494-506, 2012.

C. Behrends, M. E. Sowa, and S. P. Gygi, Network organization of the human autophagy system, Nature, vol.466, pp.68-76, 2010.

D. Popovic, M. Akutsu, and I. Novak, Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers, Mol Cell Biol, vol.32, pp.1733-1744, 2012.

I. Novak, V. Kirkin, and D. G. Mcewan, Nix is a selective autophagy receptor for mitochondrial clearance, EMBO Rep, vol.11, pp.45-51, 2010.

R. A. Hanna, M. N. Quinsay, and A. M. Orogo, mitochondria via autophagy, J Biol Chem, vol.287, pp.19094-19104, 2012.

V. M. Betin, B. K. Singleton, and S. F. Parsons,

X. Wang, miRDB: a microRNA target prediction and functional annotation database with a wiki interface, RNA, vol.14, pp.1012-1017, 2008.

A. Krek, D. Grun, and M. N. Poy,

, Combinatorial microRNA target predictions, Nat Genet, vol.37, pp.495-500, 2005.

M. Maragkakis, M. Reczko, and V. A. Simossis, DIANA-microT web server: elucidating microRNA functions through target prediction, Nucleic Acids Res, vol.37, pp.273-276, 2009.

D. Betel, M. Wilson, and A. Gabow, The microRNA.org resource: targets and expression, Nucleic Acids Res, vol.36, pp.149-153, 2008.

M. Kertesz, N. Iovino, and U. Unnerstall, The role of site accessibility in microRNA target recognition, Nat Genet, vol.39, pp.1278-1284, 2007.

R. C. Friedman, K. K. Farh, and C. B. Burge,

, Genome Res, vol.19, pp.92-105, 2009.

, Table 1. Erythroid differentiation of H1 hESCs (A) Flow cytometric analyses of H1 hESCs and cells derived from H1

, EB9-D0) and day 20 (EB20-D0), (B) Percentage of erythroid cells at different stages of differentiation (pro-erythroblast, basophilic erythroblast, polychromatic erythroblast, orthochromatic erythroblast and reticulocyte) on day15, 18 and 25 in EB20 and EB9 derived cell cultures. (C) Total yield of erythroid cells from EB20, EB9, EB9-scramble vector and, EB9-miRZIP30a from D0 to D25 of erythroid differentiation, hESCs Percentages of cells expressing undifferentiated cell markers (SSEA-1, SSEA-4), hematopoietic markers (CD45, CD34) and erythroid markers (CD71, CD36, CD235a) during EB differentiation on day 9