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Abstract—Today, a growing amount of physical objects in our
surroundings are connected to the Internet and provide the
digital world with an interface to the physical world through
sensors and actuators. At the heart of this trend, smart-*
systems and applications leverage this interface to smartly and
seamlessly assist individuals in their everyday lives. However,
when interacting with the physical world by means of actuators,
these applications introduce a methodological disruption. Indeed,
as opposed to the classical distributed software applications
operating in the bounded and predictable digital world, these
applications operate in and through the physical world, open and
subject to uncertainties that cannot be modeled accurately. These
uncertainties lead the behavior of the applications to potentially
drift at runtime, compromising their intrinsic functionality. In
this paper, we propose a framework to estimate the behavioral
drift of smart-* systems and applications at runtime. To this
end, we first rely on the Moore Finite State Machine (FSM)
modeling framework. This framework is used for specifying the
ideal behavior of a smart-* application in terms of the effects
it is expected to produce within the physical environment as
it executes. We then appeal on the control theory and propose
a framework for projecting the Moore FSM to its associated
Continuous Density Input/Output Hidden Markov Model (CD-
IOHMM) state observer. By accounting for uncertainties through
probabilities, it extends Moore FSM with viability zones, i.e. zones
where the effects of a smart-* application within the physical
environment are satisfactory without necessarily being perfect.
At runtime, the CD-IOHMM state observer allows to compute
the probability of the observed effects, i.e. it gives direct insight
into the behavioral drift of the concrete application. We validate
our approach on a real dataset. The results demonstrate the
soundness and efficiency of the proposed approach at estimating
the behavioral drift of smart-* applications at runtime. In view
of these results, one can envision to use this estimation for
supporting a decision-making algorithm (e.g., within a self-
adaptive system).

Index Terms—Ambient intelligence, Hidden Markov models,
Probabilistic modeling, Smart-* systems and applications, Ubiq-
uitous computing, Uncertainty.

I. INTRODUCTION

The last decade progresses in computer hardware miniatur-
ization and power consumption reduction enable a growing
amount of everyday life objects and physical environments to
be wirelessly connected to the Internet (Internet of Things,
IoT). By means of software services, they provide software
applications with an interface to interact with our physical
surroundings through sensors and actuators. This trend paves
the way for opportunities covering a wide range of application

areas promising huge sociological, economical and ecological
impacts as shown quite clearly by the widespread interest
for smart-* applications and systems (e.g. smart-home, smart-
building, smart-city, smart-factory, etc. . . ). At a glance, smart-
* systems and applications can be classified in two categories,
namely:

1) Inference systems and applications. Applications within
this category consume data gathered from sensors scattered
in our surroundings or worn by the users (i.e. do not modify
the environment) and rely on data mining techniques to
infer relevant information. The responsibility of the actions
to be undertaken is delegated to the end-users. These
applications cover a large spectrum of fields ranging from
mobile assistance [1] to context recognition [2], health-care
[3] and energy analytics [4], just to name a few.

2) Automation systems and applications. Besides sensors,
many connected objects in our surroundings also embed
actuators that the applications can control through software
services in order to modify the environment. Leveraging the
set of sensors and actuators available through a synergistic
approach allows to imagine as many scenarios as relevant
physical interactions with the users, the physical environ-
ment and the other surrounding objects. It is then possible
to envisage applications offloading users with their physical
and cognitive demanding tasks [5], managing resources
efficiently, thereby drastically reducing their economical
and ecological impacts [6][7]. Here again, applications
within this category cover a large spectrum of fields rang-
ing from smart-home to smart-building, smart-city, smart-
factory, etc. . .

In this paper, we focus on smart automation systems
and applications as they introduce a clear methodological
disruption inherent to their operational environment [8].
Indeed, as opposed to the classical distributed software
whose intrinsic functionality is not supposed to depend on
the underlying hardware and communication infrastructures,
the functionality of automation systems and applications
(simply named applications in the sequel) is achieved through
a composition of services (1) interacting with each other
in and through the physical environment by means of
actuators, (2) whose availability is not necessarily ensured
over time. Therefore, the intrinsic functionality of these
applications is not immune to the parasitic interactions
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produced by the neighboring objects and physical processes
[9]. Consequently, their behavior may potentially drift to
the extent that it may even threaten their intrinsic functionality.

As an example, in Building Automation Systems (BAS)
it is quite common for the sensors and the actuators to be
linked into BAS rules (or more generally Event-Condition-
Action (ECA) rules) that determine automation behaviors
such as adjusting lighting based on whether people are around
or not [10]:
1 rule ’LightOn’
2 when
3 Item Presence_office changed from 0 to 100
4 then
5 sendCommand(Light_office_dimmer, 200)
6 end

As such, the rule assumes that the office is effectively en-
lightened to the required luminosity value (i.e. 200 Lux)
once the command has been issued. Somehow, it adopts a
classical programing approach where, for instance, writing a
value into the memory is not challenged and is assumed to be
effective once the command has been issued thanks to some
processes running in background whose role is to refresh, on a
regular basis, the content of the memory cells. This assumption
is obviously not applicable anymore when operating in and
through the physical environment, subject to uncertainties [8]
(a defective light bulb, a newly added furniture conceals the
light bulb, etc. . . ).
Some BAS rely on analytical models of the considered phys-
ical environment for computing optimal lighting [11] (Fig.4).
However, models are abstractions of the real world and are, by
definition, incomplete [12] and lack the integration of stochas-
tic dynamics that would be necessary in the context of smart-*
systems and applications operating in the physical environment
[13]. Therefore, although efficient for critical systems whose
environments are whether known or at least controlled over
time [14], model based techniques are seriously limited as
means to predict and provide guarantees that the functionality
of the smart-* systems and applications is going to be met
and maintained over time [15]. A direct consequence of this
limitation is that most of the current applications delegate the
responsibility of the actions to be undertaken to the users
who are burdened with a continuous flow of information and
notifications [16] (Fig.1).
Thus, the objective is no longer to verify whether the
behavior of an application is going to be conform or
not over time, this is illusory in this context. More
realistically, we aim at estimating, at runtime, the gap
between the observed behavior and the expected ideal
behavior, specified in terms of the effects the concrete
application is expected to produce within the physical
environment as it executes. As stated in [8], if we cannot
completely determine system behavior or guarantee correct
behavior in advance, we must find ways to make sure that
systems work ”well enough”. The main idea behind our
approach is to use a probabilistic modeling framework for
specifying the effects an application is expected to produce
within the environment as it executes. Here, the point is that

Fig. 1: Most of the current applications delegate the responsibility
of the actions to be undertaken by the users who are burdened with

a continuous flow of information and notifications [16][17].

the effects are specified irrespective of the concrete physical
environment the application operates in and the underlying
software components it is composed with. At runtime, the
concrete application is seen as a black box. The observation
of the effects of its interactions with the physical environment
is then applied against the probabilistic model from which
the probability of the observed effects is computed. The
probability gives direct insight into the conformity of the
concrete application.

The contributions of this paper are the following:
1) We rely on the Moore FSM modeling framework for

modeling the ideal behavior an application must meet
in terms of the effects it is expected to produce within
the environment as it executes [18] (Section. IV-A). This
modeling framework is very convenient and largely used
for representing rule-based or event-based behaviors as
it implements rules (i.e. states with associated expected
observations) triggered by input events constraining the
state transition dynamics [18].

2) We appeal on the control theory and the notion of state
observer. The role of a state observer is to estimate the
underlying state of a concrete system (not directly observ-
able) by means of its dynamical model and the observation
of its inputs and the effects it produces within the physical
environment as it executes (a.k.a. state estimation problem).
We assume that the dynamics of the physical environment
are non-linear and possibly subject to non-Gaussian noises.
Based on these assumptions, we propose to model the
state observer through the Hidden Markov Model (HMM)
probabilistic modeling framework [19] (Section.IV-B).

3) The Moore FSM modeling framework doesn’t allow to
compute the conformity of the behavior of an application
beyond a discrete PASS/FAIL result. Therefore, we pro-
vide a framework for projecting the model of the ideal
expected behavior (Moore FSM) to its associated HMM-
based probabilistic state observer (Section.V). In a previous
paper [20] we proposed to model the state observer through
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the Continuous Density Hidden Markov Model (CD-HMM)
probabilistic modeling framework. The current paper ex-
tends the previous paper by considering modeling the state
observer through the Continuous Density Input/Output Hid-
den Markov Model (CD-IOHMM) probabilistic modeling
framework [21] whose semantics is intimately linked to
the Moore FSM model (Section.V-B). We then leverage
the ability of the HMM-based state observer to estimate
the probability of an observation sequence collected from
sensors buried in the physical environment.

4) For the sake of clarity and ease of comprehension, we
validate our approach through a simple yet concrete use-
case in the field of smart home lighting automation from the
MavHome dataset [22] (Section.VI-A). The results demon-
strate the soundness and the efficiency of the proposed
approach at estimating the behavioral drift of applications
at runtime in the presence of environmental disturbances
and unexpected behaviors (Section.VI-C). In light of these
results, one can envision to use this estimation for support-
ing a decision-making algorithm, allowing applications to
smartly react to unexpected environmental events.

II. ILLUSTRATIVE USE-CASES

In this section we expose the problem through two use-cases
in the fields of outdoor and indoor smart lighting automation.

A. Outdoor smart lighting

In 2013, there were more than 90 million traditional street
lights in Europe, accounting for up to 60% of a typical
electricity cost of a city [23], not to mention the ecological and
environmental impacts (light pollution and CO2 emission).
Consequently, many cities have replaced old incandescent light
bulbs with Light-Emitting Diode (LED) bulbs, leading up to
70% energy savings. However, most of the street lights remain
uselessly switched on overnight and there is still room for
energy consumption reduction. To address this problem, recent
works propose to adaptively control street lighting, street lights
in smart-cities being connected, they can be monitored and
managed wirelessly [7]. Adaptive street lighting could be as
complex as dimming different values depending on whether
pedestrians or vehicles are present in the street or depending on
whether the lunar illumination suffices to enlighten the streets
(clear skies) or not (low clouds), etc. . . Current smart lighting
solutions rely on sensors embedded on the street lights and
more particularly on luminosity sensors as a means to ensure
that the luminosity is at the right level whether vehicles or
pedestrians are detected or not. However, as they operate in
the physical environment, any unexpected event in between
the street light and the area of the street to be enlightened
may jeopardize the expected functionality. For instance, as
trees along roads mature, they are likely to conflict with the
street lights (Fig.2). In addition to not match the functional
expectations, it is likely to endanger the physical safety of
pedestrians and car drivers (and this is worsened considering
that the neighboring street lights now could potentially be
switched off by the controller).

Fig. 2: The tree conflicts with the street light and jeopardizes the
model [24]

B. Indoor smart lighting

Daylighting is of importance in the context of classrooms. It
plays a significant role on students’ well beings and numerous
studies show a direct correlation between cognitive abilities
and a good visual environment [25]. Consequently, architects
rely on standards (e.g. Illuminating Engineering Society of
North America [26]) and physical models to design class-
rooms satisfying luminosity requirements while maximizing
daylighting. However, due to the building orientation, weather,
time of the day, classroom occupancy, etc. . . , the luminosity
in the classroom is not homogeneously distributed over time.
Consequently, classrooms are provisioned with a bunch of
hardwired switches allowing to independently illuminate rows
of school desks, blackboards, etc. . . . Managing lighting in
such conditions requires teachers and students to mobilize
cognitive resources and, in fine, lights, once switched on, are
never switched off. This results in a huge waste of energy.
According to the International Energy Agency (IEA):
”Lighting accounts for about 20% of global building electric-
ity consumption. The latest scenarios show the total electricity
savings potential in building lighting by 2030 could be equiv-
alent to all the electricity consumed in Africa in 2013”[27].
Relying on users to manage lighting does not allow to ensure
systems effectiveness both from users and energy savings
perspectives. To address this problem, BAS are deployed in
smart-buildings to adaptively control lighting in the class-
rooms. These systems are generally rule-based and possibly
rely on a mathematical model of the building defined at
design time (Fig.4). Sensors and actuators are linked into rules
determining the desired automation behaviors and validated
once the building has been equipped.
However, unanticipated events may still occur inside and
outside the classroom (Fig.3): (1) the weather turns cloudy,
(2) the shade of a tree is projected on the blackboard, (3)
a furniture recently placed in the classroom prevents the
luminosity to meet the expected level at some point in space,
etc. . . At any time, models and rules are questioned and the
behavior of the BAS is likely to drift over time. Such situations
are uncountable in the context of applications acting within the
physical environment through actuators.
Thus, although these applications promise huge economical,
sociological and ecological breakthroughs, their underlying
operational environment, by leading their behavior to poten-
tially drift unexpectedly over time, creates a serious limitation
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Fig. 3: The luminosity in the classrooms is not homogeneously
distributed [28]

Fig. 4: The distribution of the luminosity in a classroom based on a
3D model [28]

in their capability to safely act on the behalf of the users. This
calls for a mechanism aiming at estimating at runtime, from
observations, the behavioral drift of these applications against
their expected ideal behavior.

III. RELATED WORK

Provisioning smart-* systems and applications with the abil-
ity to estimate, at runtime, their behavioral drift against their
expected ideal behavior is an open challenge. This challenge
is at the heart of the self-adaptive systems (SAS) providing
pervasive computing systems with self-* properties. Indeed,
when operating within open and uncertain environments, self-
adaptation is required. This poses new challenges in terms
of assurance, i.e., the ability to provide evidence that the
systems satisfy their behavioral requirements, irrespective of
the adaptations occurring over time [29], [30]. Close to the
problem addressed in the present paper, the authors in [31]
are concerned with the quantification of the deviation gap from
the original specified behavior of a SAS due to uncertainties
and propose future research agenda to tackle this problem.
At the base of this work is the notion of Bayesian surprise
[32]. Design-time beliefs for specific decisions are specified
using Bayesian Dynamic Decision Networks (DDNs) [32].
A Bayesian surprise then quantifies how observations affect
beliefs at runtime by measuring the distance between the
posterior and prior belief distributions. The distance is calcu-
lated by using the Kullback-Leibler divergence. Somehow, this
approach leans closely to what is known in the field of machine
learning and predictive analytics as Concept drift [33]. The
notion of Concept drift is relative to the unexpected evolution
of the statistical properties of a model variable, leading the
model to deteriorate over time. Authors in [34] focus on
quantitative measure of concept drift and introduce the notion
of drift magnitude whose value can be quantified through

distance functions such as Kullback-Leibler Divergence or
Hellinger Distance.
These approaches focus on measuring the distance between
the posterior and prior belief distributions of some model
variables. The approach proposed in the present paper goes
beyond and allows to compute the probability of an observa-
tion sequence, thereby encompassing the expected dynamics
of the observed application.
Underlying the challenge of assurance, the notion of viability
zone [35] is crucial to ensure the accuracy of the measures.
The viability zone of a system is the set of states in which
the system operation is not compromised, i.e. the set of states
where the behavior of the system is satisfactory [36]. A via-
bility zone is characterized in terms of relevant attributes and
corresponding desired values. These attributes are associated
with measurements of variables (either internal or environmen-
tal) whose variations can take the system outside its viability
zone. Managing viability zones at runtime is crucial for the
assurance of SAS and is still an open challenge. To some
extent, our approach allows to define the viability zone of an
application through the probabilistic model parameters, e.g.
mean, variance, etc. . . . Specifically, the model parameters can
be learned during operation [37], allowing the viability zone
to be refined at runtime.
Interestingly, the ideal behavior of the applications might
be defined by the users themselves (e.g. through end-user
programming [38]). In this context, the estimation of the
behavioral drift of these applications is intimately linked into
the Quality of Experience (QoE) [39] as an assessment of
the human satisfaction when interacting with technology in
a particular context. Although determining a measure of the
QoE is not a trivial task, recently, researchers considered
Artificial Intelligence (AI) and Machine Learning techniques
for measuring the QoE. In [40], the authors propose to model
users’ satisfaction with HMM in the domain of Spoken Dialog
Systems (SDS). The user’s judgment about the dialog is mod-
eled as states representing a specific judgment. Each judgment
has a probabilistic relation to the current events in the dialog.
Here a parallel can be done with our approach if one considers
the states in the HMM-based observers presented in this
paper as the user’s judgment about the application with each
judgment having a probabilistic relation to the current events
in the physical environment.

IV. BACKGROUND

The theoretical foundations of this paper are based on two
modeling frameworks, namely the deterministic Moore Finite
State Machine (Moore FSM) modeling framework and the
probabilistic Hidden Markov Modeling framework. We pro-
vide hereafter a brief overview of these modeling frameworks
and identify their advantages and disadvantages.

A. Moore Finite State Machine

In this paper, we suggest modeling the expected ideal
behavior an application must meet, as it executes, through
the Moore Finite State Machine modeling framework (Moore
FSM)[18]. The expected ideal behavior is defined in terms
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of effects the application is expected to produce within the
physical environment as it executes. Moore FSM models
systems dynamics as deterministic processes where each state
is associated with an output emission.

Fig. 5: Moore Finite State Machine (FSM) in a nutshell

More formally, a discrete-time Moore FSM is defined by the
tuple M = 〈S, S0, I, Y,Γ, G〉 (Fig.5) where:
• S = {x1, x2, . . . , xN} is the finite set of states. A state x

visited at time k is denoted x(k),
• S0 ∈ S is the initial state the machine starts with,
• I = {u1, u2, . . . , uM} is the finite set of input vectors; u(k)

denotes the input vector at time k,
• Y = {y1, y2, . . . , yL} is the finite set of expected output

vectors; y(k) denotes the output vector at time k,
• Γ is the state transition function mapping a state and an

input vector to the next state (x(k+1) = Γ(x(k), u(k))),
• G is the output function mapping each state to an expected

output vector (y(k) = G(x(k))), i.e. what is expected to
be observed while being in each state. The outputs of a
Moore FSM depend only on their underlying states. Thus,
as it executes, a Moore FSM produces an output sequence
y1:K = {y1, y2, . . . , yK}, where K is the sequence length.

Moore FSM equations can be stated as follow:{
x(k+1) = Γ(x(k), u(k)) (State equation)
y(k) = G(x(k)) (Observation equation)

(IV-A.1)
The state transition function Γ constrains the paths an ap-
plication is expected to go through as it executes (i.e. the
dynamics of the application). The function G defines the
observations one can expect while being in a particular state
(i.e. the effects the application is expected to produce within
the physical environment as it executes). This modeling frame-
work is largely used for representing rule-based or event-based
behaviors as it implements rules (i.e. states with associated
expected observations) triggered by input events constraining
the state transition dynamics [18]. For instance, let’s consider
the two following BAS behavioral rules:

1 rule ’LightOn’
2 when
3 Item A1 changed from 0 to 100
4 then
5 sendCommand(Light_office_dimmer, 200)
6 end
7
8 rule ’LightOff’
9 when

10 Item A1 changed from 100 to 0
11 then

12 sendCommand(Light_office_dimmer, 10)
13 end

These two rules define the effects expected within the physical
environment (luminosity in the office set to either 200 Lux or
10 Lux) in response to events (A1 changes). The resulting
Moore FSM is depicted in Fig.6. This modeling framework

Fig. 6: BAS rules transformed to equivalent Moore FSM

is convenient for specifying, in an intuitive manner, the ideal
effects an application is expected to produce within the physi-
cal environment as it executes. However, due to the fact that I
and Y are finite, this modeling framework suffers from several
limitations in our context:

1) Firstly, it doesn’t handle noisy observations, whereas
sensors introduce noise into the gathered values,

2) Secondly, output values are idealized values. However,
it is unlikely that, for a given state, the observed output
corresponds exactly to the one expected, even though it
might be still acceptable to the end-user.

Consequently, formal methods and tools associated with this
class of modeling framework, as means to reason about the
conformity of the behavior of an application beyond a simple
PASS/FAIL result, are not directly applicable [15].

B. Hidden Markov Models

To solve the aforementioned limitations, we appeal on the
control theory and the notion of state observer. The primary
goal of a state observer is to estimate the underlying state
x̂(k) of an application by means of its dynamical model, the
observation of its inputs and the direct and indirect effects of
its execution within the operational environment.
In this paper, we consider applications whose operational
environment is the physical environment. The physical en-
vironment dynamics are intrinsically stochastic and physical
phenomena are most of the time nonlinear. Therefore, the
applications, when operating within the physical environment
through actuators and sensors, are driven by random pro-
cesses (non-Gaussian noises, uncertainties and non-anticipated
interactions) potentially yielding unexpected behaviors. So,
from an observer point of view, a given application buried in
the physical environment can be described by the following
discrete-time stochastic dynamical system [41]:{

x(k+1) = Φ(x(k), ω(k)) (State process)
y(k) = ψ(x(k), v(k)) (Observation process)

(IV-B.1)
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where ω(k) and v(k) are respectively denoting the system and
the measurement noises (that can be assimilated to unknown
inputs affecting both states and observations).

{
ω(k)

}
and{

v(k)
}

are random processes, sequences of independent and
identically distributed (iid) random variables. Φ and ψ denote
any non-linear functions. The system defined by Eq.IV-B.1 is
said stochastic because it is driven by the random processes{
ω(k)

}
and

{
v(k)

}
.

In this context, and assuming that the expected behavior of
the application can be modeled over a discrete and finite state
space, the only state observer modeling framework allowing
to optimally estimate the underlying states from environmental
noisy observation sequences is the Hidden Markov Model-
ing framework (HMM) [41]. HMM belongs to the Dynamic
Bayesian Network (DBN) class. It is a Stochastic Finite State
Machine (SFSM) assuming modeled systems to have the
Markovian property, i.e., the state x(k+1) only depends on
the previous state x(k). The model is called hidden because
the underlying stochastic process (i.e. a sequence of states)
affecting the observed output sequence is not completely
observable.
More formally, a discrete-time finite-state HMM is defined by
the tuple H = 〈S, π,A,B〉 where:
• S = {x1, x2, . . . , xN} is the finite set of hidden states.
• π = {π1, π2, . . . , πN} is the initial state distribution vector.

N∑
i=1

π(i) = 1, where π(i) denotes the probability of the state

i to be the first state of a state sequence.
• A is the state transition matrix (N ×N) of the underlying

Markov chain. Aij = P(x(k+1) = j|x(k) = i), 0 ≤ Aij ≤
1, denotes the probability of being in state j at time k + 1

given we are in state i at time k;
N∑
j=1

Aij = 1.

• B is the state emission probability density function matrix.
In this paper, we consider univariate/multivariate con-
tinuous emissions, where the emission probabilities are
expressed, without loss of generality, as univariate/multi-
variate normal density functions.

B = diag(p(y(k)|x(k) = 1), . . . , p(y(k)|x(k) = N)
(IV-B.2)

Indeed, in the context of smart-* computing systems and
applications, states can be characterized by emissions inher-
ently multidimensional and continuous. This type of HMM
(Fig.7) is often referenced as Continuous Density HMM
(CD-HMM). We denote bx(k)

(y(k)) the probability of being
in the state x(k) and emitting the vector y(k).

The system equations can be stated as follows:{
x(k+1) = P(x(k+1)|x(k)) ⇒ Ax(k+1),x(k)

y(k) = p(y(k)|x(k)) ⇒ Bx(k)
(y(k))

(IV-B.3)

HMM is used to solve the following canonical problems:
1) Hidden state estimation problem. Given an HMM with

parameters Θ = 〈A,B, π〉 and an observation sequence
y1:K = {y1, . . . , yK}, evaluate the probability that the
HMM ended in a particular state (P(x(K)|y1:K)). In other
words, one obtains the log-likelihood (]−∞; 0]) of a given

Fig. 7: Multivariate CD-HMM in a nutshell

observation sequence y1:K to have been produced by the
model. In the HMM context, this computation is achieved
by the classical recursive forward algorithm [37].
Let α(K)(i) = P(x(K) = i|y1:K) be the probability that
x(K) = i given the observation sequence y1:K . Then, given

α(1)(i) = π(i)b(i)(y(1)), 1 ≤ i ≤ N (IV-B.4)

where α(1)(i) is the joint probability of starting in state i
and observing y(1), the recursive computation

α(k+1)(i) = b(i)(y(k+1))

 N∑
j=1

α(k)(j)Aji

 (IV-B.5)

for 1 ≤ k ≤ K − 1, 1 ≤ i ≤ N , gives the joint probability
of reaching the state i and emitting y(1:K).

2) Hidden state sequence decoding. Given an HMM with
parameters Θ = 〈A,B, π〉 and an observation sequence
y1:K = {y1, . . . , yK}, decode the most probable underlying
hidden state sequence Q that has been ran through to
produce y1:K . Viterbi algorithm is mainly used to this end.

3) Model parameters learning. Given an observation se-
quence y1:K = {y1, . . . , yK}, estimate the HMM param-
eters Θ̂ =

〈
Â, B̂, π̂

〉
. This can be done by using either

supervised algorithms which expect the underlying state
sequence to be associated with each observation sequence
(e.g., Maximum Likelihood Estimate (MLE)), or unsuper-
vised algorithms (e.g., Baum-Welch algorithm) which ex-
pect the number of hidden states and the state transition
topology (e.g., ergodic, forward, etc. . . ).

This class of modeling framework seems to be well suited for
reasoning about the conformity of the behavior of an appli-
cation as it executes. Specifically, the solution it provides to
the hidden state estimation problem through the log-likelihood
estimation (]−∞; 0]), can be used to give direct insight into the
behavioral drift of an application interacting with the physical
environment. However, developing a behavioral model through
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this framework is not trivial to the extent that it involves
probabilities.

V. APPROACH OVERVIEW

In the sequel of the paper, we provide an overview of the
approach we have adopted to take advantage of both modeling
frameworks (Fig.8), i.e. (1) the ability of the Moore FSM
modeling framework to specify, in an intuitive manner, the
behavioral rules and the expected effects an application must
meet as it executes, (2) the ability of the HMM modeling
framework to reason about the conformity of the behavior of
an application as it executes.

Fig. 8: Approach overview. The model of the ideal expected
behavior of an application is specified in terms of the effects it has
to produce within the physical environment as it executes (Moore

FSM). This model is then projected into its probabilistic
HMM-Based state observer counterpart. The solution the state

observer provides to the hidden state estimation problem through
the log-likelihood value (]−∞, 0]), gives direct insight into the

behavioral conformity of the application as it executes.

A. Moore FSM to CD-HMM state observer projection

Let’s assume that the effects an application is expected to
produce within the physical environment as it executes are
modeled through the Moore FSM modeling framework. The
problem is then to find a way to project this model to its
associated CD-HMM state observer. To this end, we consider
the Moore FSM from a probabilistic point of view.
As discussed in the section.IV-A, the state transition function
Γ of a Moore FSM maps a state x(k) ∈ S and an input vector
u(k) ∈ I to a next state x(k+1) ∈ S (x(k+1) = Γ(x(k), u(k))).
This can be traduced by (Fig.9):
1) The probability of the occurrence of the input u(k) given

the current state is x(k)
(
P(u(k)|x(k))

)
,

2) The probability that this occurrence leads effectively the
state transition x(k) → x(k+1)

(
P(xk+1|x(k), u(k))

)
.

This leads a transient state to appear in the HMM state
observer (Fig.10). Indeed, the state transition probabilities are

Fig. 9: Moore FSM from a probabilistic point of view. Being in the
state x(k) there is a probability of the occurrence of the input
u1(k) ∈ I (P(u1(k) |x(k))). Then P(xk+1|x(k), u1(k)) is the

probability of the transition x(k) → x(k+1) given x(k) and u1(k) .

hard-coded in an HMM (matrix A) and do not depend on the
occurrence of an input. Therefore, in order to qualify each state
through observations, the output vector y(k) is partitioned with
the input vector (Y(k) = (y(k), u(k))). It implies that the inputs

Fig. 10: Considering Moore FSM from a probabilistic point of
view leads (1) a transient state x

′

(k) to appear in the HMM state
observer and (2) the output vector y(k) to be partitioned with the

input vector u(k) (Y(k) = (y(k), u(k))).

have to be observed. For a given Moore FSM, the probabilities
discussed above are implicit and values constrained as follow:
1) Input occurrence probabilities. The occurrence of an

input being exogenous to the model, given a state x(k) ∈ S,
any input {u0, . . . , uχ} ∈ I that can lead a transition
x(k) → x(k+1) may occur at time k.

∀x(k) ∈ S,
uχ∑
u=u0

P(u(k)|x(k)) = 1 (V-A.1a)

2) State transition probabilities. Moore FSM implicit con-
straint on state transitions (given by Γ) can be stated as
follow: ∀x(k) ∈ S, ui(k) ∈ {u0, . . . , uχ} ∈ I:

∃!x(k+1) ∈ S\P(x(k+1)|x(k), ui(k)) = 1, (V-A.2a)
xN∑

x(k+1)=x1

P(x(k+1)|x(k), ui(k)) = 1, (V-A.2b)

xN∑
x(k+1)=x1

P(x(k), x(k+1)) = 1 (V-A.2c)

Eq.V-A.2a and Eq.V-A.2b put together stipulate that a
couple x(k), ui(k) at time k is associated with a unique
state x(k+1) at time k + 1 (determinism). Eq.V-A.2c stip-
ulates that the outgoing transitions from each state are
equiprobable (= 1

χ ). Indeed, inputs being exogenous to the

7
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model, one cannot presume the probabilities of the input
occurrences (See V-A.1a).

3) Output emission probabilities. Moore FSM implicit con-
straints on outputs can be stated as follows:
∀x(k) ∈ S :

∃!y(k) ∈ Y \P(y(k)|x(k)) = 1, (V-A.3a)
yN∑

y(k)=y1

P(y(k)|x(k)) = 1, (V-A.3b)

Eq.V-A.3a and Eq.V-A.3b put together stipulate that each
state is associated with a unique output vector.

Projecting a Moore FSM to its CD-HMM counterpart
consists in computing the probabilities of the state transition
matrix A, namely P(x

′

(k)|x(k), uj(k)) and P(x(k+1)|x
′

(k))
(Fig.10), the output emission probabilities of the matrix B
and the initial state distribution vector π.
P(x

′

(k)|x(k), uj(k)) is given by Eq.V-A.2a and Eq.V-A.2b
and is equal to 1

χ . Moore FSM constrains the transition
x(k) → x(k+1) on the occurrence of the input and assumes
that the transition is effective once the input has been triggered
(x(k+1 = Γ(x(k), u(k)). Thus, P(x(k+1)|x

′

(k)) = 1− ς1.
Assuming a model reduction is applied, the total amount of
states ℵ in the resulting CD-HMM is equal to T −N where
N and T are respectively the amount of states and transitions
in the Moore FSM. Thus, the state transition matrix A is an
ℵ × ℵ matrix.
The initial state distribution vector π = {π1, . . . , πℵ}, where
πi denotes the probability of the state i to be the first state
of a state sequence, is computed as follow: the states defined
in the Moore FSM get equiprobable values ( 1

N ) while the
transient states get zero probability.
The output emission probabilities defined in the matrix B
(Eq.IV-B.2) are probability density functions expressed,
without loss of generality, as univariate or multivariate normal
density functions depending on the number of emission
variables used to characterize a state. In this context, the
probability density functions are defined through µ = E(y(k)),
an n-dimensional vector (or simply the mean value for
univariate density functions) and Σ, the n × n positive
definite variance-covariance matrix of y(k) (or simply the
standard deviation for univariate density functions). µ can
directly be retrieved from the Moore FSM model output
vectors (y(k) = G(x(k)) in Eq.IV-B.2). Variance, covariance
or standard deviation values cannot be retrieved directly
from the Moore FSM model and have either to be defined
off-line by the users or learnt from observations (see model
parameters learning in Section.IV-B).
Following the aforementioned methodology, the FSM
depicted in Fig.6 is projected into its associated CD-HMM
state observer depicted in Fig.11.

1Depending on the sampling rate of the observation, there is a non-
negligible probability ς for a transient state to loop back on itself (i.e., the
observed values lead the CD-HMM to consider that the application is still in
the same state due to the observation probability density functions defined in
the matrix B).

Fig. 11: CD-HMM state observer corresponding to the Moore FSM
depicted in Fig.6. We assume that the probability density functions

in the matrix B are multivariate normal distributions. Here, the
parameter values of the distributions have been populated from the

dataset used for the validation of the approach (Section.VI-A).

As previously discussed, the parameters of the emission
probability functions (matrix B) define viability zones
(Fig.12).

This approach, although showing good results at estimating the
behavioral drift of applications [20] has several drawbacks: (1)
as to take into account input events, it requires transient states
to be added, (2) it implicitly assumes, through Eq.V-A.1a, that
the input space is bounded, i.e. from a given state x(k) only
a subset of inputs ∈ I is likely to occur leading the transition
to the next state x(k+1). However, it may exist numerous

Fig. 12: The parameters of the emission probability functions
(matrix B), expressed as multivariate normal distributions, define

viability zones, i.e. zones where the effects of an application within
the physical environment are satisfactory without necessarily being
perfect. This figure represents the viability zones for all the state

emissions defined in Fig.11

unknown input events in the physical environment that may
lead the transition to an unknown state x(k+1) from the state
x(k) (called ”regulons” and ”tyches” in the viability theory
[35], respectively controls that are not identified (and thus not
part of the model) or disturbances over which nobody has any
control). As a consequence, it is unlikely for the probability
values of the state transition defined in the model to sum to
one.
For these reasons, we introduce in the sequel the Continuous
Density Input/Output Hidden Markov Model (CD-IOHMM)
modeling framework.
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B. Continuous Density Input/Output Hidden Markov Model

A CD-IOHMM [21] is an HMM for which the state transi-
tion and emission probabilities can be conditionally dependent
on an input sequence (for this reason this model can also be
found in the literature as Non-Homogeneous HMM (NHMM)
[42]). In this paper, we consider input-independent state-
emitting model variant [43], i.e. a model where only the state
transition probabilities are conditionally dependent on an input
sequence and whose semantics is intimately linked to the
Moore FSM model.
We define the state transition matrix A as a N × N matrix
where each cell of the matrix is the input probability density
function. Then, given u(k), an input vector ∈ I observed
at time k, Aij(u(k)) = P(u(k)|x(k+1) = j, x(k) = i) and
Aijl = P(x(k+1) = j|x(k) = i, u(k) = l) = Aij(l). Thus, the
probability of transition from state x(k) to x(k+1) ∈ S is equal
to the probability for the input u(k) ∈ I to trigger the state
transition x(k) → x(k+1). Hence:

∀x(k) ∈ S,
uχ∑
u=u0

P(u(k)|x(k)) 6= 1 (V-B.1a)

As for the observation probability density function matrix B
(Eq.IV-B.2), we consider univariate/multivariate continuous
inputs, where the input probabilities are expressed, without
loss of generality, as univariate/multivariate normal density
functions, i.e. a state transition can be dependent on one
or multiple input events. This model can be referenced as
Continuous Density Input/Output HMM (CD-IOHMM).
In this context, the hidden state estimation problem can be
expressed as follow. Given a CD-IOHMM with parameters
Θ = 〈A,B, π〉, an observation sequence y1:K = {y1, . . . , yK}
and an input sequence u1:K = {u1, . . . , uK}, evaluate the
probability that the CD-IOHMM ended in a particular state
(P(x(K)|y1:K , u1:K)). In other words, one obtains the log-
likelihood of a given observation sequence y1:K to have been
produced by the model knowing the input sequence u1:K . This
computation is still achieved by the classical recursive forward
algorithm [37].
Let α(K)(i) = P(x(K) = i|y1:K , u1:K) be the probability that
x(K) = i given the observation sequence y1:K and the input
sequence u1:K . Then, given

α(1)(i) = π(i)b(i)(y(1)), 1 ≤ i ≤ N (V-B.2)

where α(1)(i) is the joint probability of starting in state i and
observing y(1), the recursive computation

α(k+1)(i) = b(i)(y(k+1))

 N∑
j=1

α(k)(j)Aji(u(k))

 (V-B.3)

for 1 ≤ k ≤ K − 1, 1 ≤ i ≤ N , gives the joint probability of
reaching the state i and emitting y(1:K) knowing u(1:K).

C. CD-IOHMM state observer initialization

The output emission probabilities from Eq.IV-B.2 and the
initial state distribution vector π are computed in the same
way as for the CD-HMM approach (Section.V-B). The state

transition matrix A is computed the same way as for the
matrix B. A is a N ×N matrix where each cell of the matrix
is the input probability density function expressed, without
loss of generality, as univariate or multivariate normal density
functions depending on the number of input events required
to characterize a state transition. In that case, µ = E(u(k))
can directly be retrieved from the Moore FSM state equation
x(k+1) = Γ(x(k), u(k)). Here again, variance, covariance or
standard deviation values cannot be retrieved directly from the
Moore FSM model and have either to be defined off-line by
the users or learnt from observations (see model parameters
learning in Section.IV-B.

Additionally, the sensors used to gather observation and input
sequences as input to the CD-IOHMM have to be specified.
From the rules point of view, one can include statements for
specifying the sensors to be used:

1 rule ’LightOn’
2 when
3 Item A1 changed from 0 to 100
4 measureState(A1, Sensor_1)
5 then
6 sendCommand(Light_office_dimmer, 200)
7 measureValue(Light_office_dimmer, Sensor_2)
8 end

VI. EVALUATION

A. Dataset

To evaluate our approach, we experimented with the Mav-
Pad published datasets from the MavHome (Managing an
Adaptive Versatile Home) project [22]. MavPad is an on-
campus apartment at the University of Texas at Arlington (TX,

Fig. 13: MavPad living room actuators and sensors location

USA) automated using 25 controllers and providing sensing
of light, temperature, humidity, leak detection, vent position,
smoke detection, CO detection, motion, and door/window/seat
status. For the evaluation we focused on the lighting actuators
and sensors in the living/dining room (Fig.13, Fig15) described
in Table.I.

9



This is the author’s version of the work posted for personal use only, not for redistribution.
The definitive version was published in IEEE Access journal, http://dx.doi.org/10.1109/ACCESS.2017.2716105

Fig. 14: Data acquisition and treatment chain implemented as lightweight components instantiated within WComp [44], a middleware for
ubiquitous computing. To fit as much as possible with a real scenario, each measure from the dataset is transmitted through MQTT, a

lightweight publish/subscribe protocol designed specifically for machine-to-machine (M2M) and mobile applications. Then, the output and
the input sequences are synchronized from time stamps before being transmitted to the CD-IOHMM component. The input sequence, the

output sequence and the log-likelihood values are stored on a local ThingSpeak server [45].

ID Type S/A Location
A1 Ceiling light Actuator Overhead light near north wall
A8 Table lamp Actuator Near door on side table
A11 Floor lamp Actuator Southwest corner
S1 Light Sensor West wall. Facing into room
S5 Light Sensor South wall. Facing into room
S13 Light Sensor Between window and blinds, fac-

ing out
S14 Light Sensor Between window and blinds, fac-

ing in
S15 Light Sensor Near window, facing miniblinds
S16 Light Sensor East wall. Facing into room
S17 Light Sensor North wall. Facing into room

TABLE I: MavPad living room actuators and sensors description

Fig. 15: Pictures from the MavPad apartment at the University of
Texas at Arlington (TX, USA)

B. Experimentation setup

We used the data stored in the file 7-12-2004-raw.data

of the dataset. From the data, we issued a simple Moore
FSM for describing the expected behavior of an application
controlling lighting in terms of the effects it is expected to
produce within the physical environment as it executes. To
this end, we modeled the Moore FSM with fizzim, a free open-
source GUI-based FSM design tool [46]. We then developed
a tool for projecting the Moore FSM to its associated CD-

IOHMM state observer. The CD-IOHMM state observer is
built on top of the Accord.NET framework [47]. The resulting
Moore FSM is depicted in Fig.6 and its CD-IOHMM state
observer counterpart is depicted in Fig.16. The mean and stan-
dard deviation values for the probability density functions of
the state transition and emission matrices have been computed
from the dataset.
The CD-IOHMM engine is instantiated as a component in
the WComp platform, a middleware for ubiquitous computing
[44] allowing service composition by assembling lightweight
components. It implements the SLCA model (Lightweight
Service Component Architecture) [48] where the application
is formed by an assembly of software components based on
the LCA model (Lightweight Component Architecture) and
services communicating using events (Fig.14).

Fig. 16: CD-IOHMM state observer corresponding to the Moore
FSM depicted in Fig.6. One sensor is used to observe the input

event (light actuator A1) and one sensor is used to observe expected
emissions for each state (luminosity sensor S17). Probability

density functions are defined as univariate normal distribution.

C. Results

We executed the engine using a representative luminosity
sensor available in the living room, namely S17 (north wall)
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Fig. 17: Results for the computation of the log-likelihood of an observation sequence y1:K (here the luminosity sensor S17 is used) given
an input sequence u1:K and the CD-IOHMM state observer depicted in Fig.16.

Fig. 18: Results for the computation of the log-likelihood of an observation sequence y1:K (here the luminosity sensor S17 is used) given
an input sequence u1:K and the CD-HMM state observer depicted in Fig.11.

and the actuator A1 (Overhead light near north wall). The
length K of the input and observation sequences, respectively
u(1:K) and y(1:K), is set to 10.
Results using a CD-IOHMM state observer are depicted in
Fig.17. From 7AM to 10AM (in between indexes 200 and
400 in Fig.17), the luminosity in the room, measured by
the sensor S17 (north wall close to the light controlled by
A1), increases as the sun rises. Here, the CD-IOHMM state
observer detects a violation as the actuator A1 is set to 0 and
the expected luminosity is 10 Lux. From 11AM, the state of
the actuator A1 is changed from 0 to 100. However, for some
unexpected reasons, the expected effect (i.e. living room
enlightenment is supposed to be at 39 Lux from that time) is
not perceived within the environment by the sensor S17. This
violation here again is detected by the CD-IOHMM state
observer (in between indexes 500 and 800 in Fig.17). From
7.20PM (index 800), the luminosity measured by the sensor

S17 is finally at the expected level and no more violation is
detected by the CD-IOHMM state observer.
These results compare well with the CD-HMM approach
(Section.V-A) whose results for the same dataset are depicted
in Fig.18. Interestingly, the proposed approach, through the
log-likelihood (] − ∞; 0]) estimation, allows to quantify, at
runtime, the magnitude of the behavioral drift of a concrete
application beyond a discrete PASS/FAIL result generally
obtained through most of the software engineering techniques
(Fig.19).

For the sake of clarity and ease of comprehension, the ex-
amples used in this paper are simple with regards to their
dynamics and the amount of sensors and actuators used.
However, one can imagine as complex as possible application
behaviors modeled through ECA rules further transformed to
their Moore FSM and CD-IOHMM state observer counterpart.
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VII. CONCLUSION AND FUTURE WORK

Today, a growing amount of physical objects in our sur-
roundings are connected to the Internet and provide the digital
world with an interface to the physical world through sensors
and actuators. At the heart of this trend, smart-* systems
and applications (e.g. smart-home, smart-building, smart-city,
smart-factory, etc. . . ) leverage this interface to smartly and
seamlessly assist individuals in their everyday lives. However,
as soon as these systems and applications come to interact
with the physical world by means of actuators, this promising
trend is seriously hampered by the intrinsic stochastic nature
of the physical world, subject to uncertainties that cannot
be modeled entirely off-line. As a consequence, most of the
current applications delegate to the users the responsibility of
the actions to be undertaken. This leads users to be burdened
with a continuous flow of information and notifications.
We argue that being subject to uncertainties and physically
interacting with the users, what is at stake in this context
is no longer to verify whether the expected behavior of an
application is going to be maintained over time (which is
illusory without a comprehensive model of the physical en-
vironment), but, more realistically, to estimate, at runtime, the
gap between the observed concrete behavior and the expected
ideal behavior, specified in term of effects the concrete appli-
cation is expected to produce within the physical environment
as it executes. In this context, we presented in this paper
an approach providing smart-* systems and applications with
this estimation. (1) We modeled the effects an application is
expected to produce within the physical environment through
the Moore Finite State Machine (Moore FSM) modeling
framework. This modeling framework is very convenient and
largely used for representing rule-based or event-based behav-
iors; (2) the Moore FSM modeling framework doesn’t allow
to compute the conformity of the behavior of an application
beyond a discrete PASS/FAIL result. Therefore, we considered
this modeling framework from a probabilistic point of view
and presented a framework for projecting this model to its
associated Continuous Density Input/Output Hidden Markov
Model (CD-IOHMM) state observer. We then leveraged the
ability of this probabilistic modeling framework to estimate
the log-likelihood of an observation sequence y1:K to have
been produced by the model given an input sequence u1:K .
As such, the log-likelihood value gives direct insight into the
behavioral drift of the concrete application as it executes.
We validated our approach through a concrete dataset in the
field of smart-home. The results obtained demonstrate the
soundness and the efficiency of the proposed approach for
estimating the gap between the concrete and the expected
behaviors of smart-* systems and applications at runtime in
the presence of unforeseen environmental disturbances.

In view of these results, one can envision to use this
estimation for supporting a decision-making algorithm. Also,
in order to extend the application areas of the proposed
approach, we plan to investigate cases where the expected
behaviors have to integrate temporal properties. For instance,
we target situations where the expected behaviors could

Fig. 19: The CD-IOHMM-based state observer approach, through
the log-likelihood (]−∞; 0]) estimation, allows to quantify, at

runtime, the magnitude of the behavioral drift of a concrete
application beyond a discrete PASS/FAIL result.

be subject to some temporal inertia (e.g., (1) in order to
reduce energy consumption, recent light bulbs reach their
optimal luminosity after a given period of time; (2) a user
requiring ambient temperature to be increased cannot expect
it to be set instantaneously). On that front, we plan to
specify the expected behavior of an application through
timed automaton further projected into its associated Hidden
Semi-Markov Model (HSMM) state observer [49]. HSMM is
said semi-Markov because the transition from a state x(k) to
a subsequent state x(k+1) does not only depend on the state
x(k) but also on its duration.
Additionally, one can consider the case where the ideal
expected behavior of an application is defined by the users
themselves (e.g. through end-user programming [38]). We
introduced the fact that the probabilistic modeling framework
extends Moore FSM modeling framework with viability zones,
i.e. zones where the behavior of the application is satisfactory.
The boundaries of these zones are defined through the state
emission and state transition probability density functions
whose parameters (e.g. mean, variance and covariance values
in the case of multivariate normal distributions), when defined
by users, describe what they are able to accept in terms of
effects produced within the environment. In this context, the
approach proposed in this paper, by estimating the behavioral
drift of a concrete application against its expected ideal
behavior, is intimately linked to the Quality of Experience
(QoE) [39] as an assessment of users’ satisfaction when
interacting with the controlled environment. We plan to run
some experiments in this direction and correlate the state
observer estimations with users’ satisfaction feedback.

Although promising, the proposed approach raises a number
of research challenges that will need to be addressed:

1) So far, it is assumed that the sensors required for evalu-
ating the drift of an application are available. However,
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the cost/benefit analysis of the sensors required to enable
the implementation of the proposed approach should be
carried out (the number of sensors required is dependent
on the applications and might not be economically viable
from case to case). As the number of sensors in our
surroundings continues to grow, a possible approach
for mitigating this concern would be to leverage them
opportunistically (through sensor discovery and semantic
selection mechanisms for instance),

2) Also, it might be worthwhile sharing knowledge across
different state observers, and thereby allowing them to
possibly use more relevant sensors or respond appropri-
ately with fewer sensors,

3) As it relies on sensors via possibly compromised network
paths, the proposed approach is not immune to cyber
security risks, one of the main concerns of the IoT
research community [50].
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