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a b  s t  r a c  t

Introduction:  The  number  of Alzheimer’s  Disease  (AD)  patients  is  increasing  with  increased  life  expectancy
and  115.4  million  people  are  expected  to  be affected  in  2050.  Unfortunately,  AD  is commonly  diagnosed
too  late,  when  irreversible  damages  have  been  caused  in the  patient.
Objective:  An  automatic,  continuous  and  unobtrusive  early  AD  detection  method  would  be required  to
improve  patients’  life  quality  and  avoid  big  healthcare  costs.  Thus,  the  objective  of this survey  is to
review  the  multimodal  signals  that  could  be used  in the  development  of such  a system,  emphasizing  on
the  accuracy  that  they  have  shown  up  to date  for  AD detection.  Some  useful  tools  and specific  issues
towards  this goal  will  also  have  to  be  reviewed.
Methods:  An extensive  literature  review  was  performed  following  a specific  search  strategy,  inclusion
criteria,  data  extraction  and  quality  assessment  in the  Inspec,  Compendex  and  PubMed  databases.
Results:  This  work  reviews  the  extensive  list of  psychological,  physiological,  behavioural  and cognitive
measurements  that  could  be  used  for AD  detection.  The  most  promising  measurements  seem  to  be  mag­
netic  resonance  imaging  (MRI)  for AD  vs  control  (CTL)  discrimination  with  an  98.95%  accuracy,  while
electroencephalogram  (EEG)  shows  the  best  results  for mild  cognitive  impairment  (MCI)  vs  CTL  (97.88%)
and  MCI  vs  AD distinction  (94.05%).  Available  physiological  and  behavioural  AD  datasets  are  listed,  as  well
as  medical  imaging  analysis  steps  and  neuroimaging  processing  toolboxes.  Some  issues  such  as  “label
noise”  and  multi­site  data  are  discussed.
Conclusions:  The  development  of an unobtrusive  and  transparent  AD detection  system  should  be based
on  a multimodal  system  in order  to  take  full  advantage  of all  kinds  of symptoms,  detect  even  the  smallest
changes  and combine  them,  so as  to detect  AD as early  as  possible.  Such  a multimodal  system  might  prob­
ably  be  based  on physiological  monitoring  of  MRI  or EEG,  as  well  as  behavioural  measurements  like  the
ones  proposed  along  the  article.  The  mentioned  AD datasets  and image  processing  toolboxes  are  avail­
able  for their  use  towards  this  goal.  Issues  like  “label  noise” and  multi­site  neuroimaging  incompatibilities
may  also  have  to be  overcome,  but  methods  for this  purpose  are  already  available.

1. Introduction

Peoples’ life expectancy is growing continuously in  the devel­
oped countries, making the population increasingly old. Even if this
is a positive reality, it also brings unwanted consequences such as
an increasing number of diseases, including the Alzheimer’s Dis­
ease (AD). It is estimated that AD will double its frequency in  the
next 20 years [1] and that 115.4 million people will suffer from it
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in 2050 [2]. Furthermore, while deaths attributed to  other health
problems such as heart disease have decreased in the last years,
deaths attributed to AD between 2000 and 2010 have increased in
68% [3]. Nowadays, it does not exist a cure for AD [4], neither a
100% reliable diagnosis until a  post­mortem analysis is done. Only
some symptomatic treatments that are effective for limited periods
in  subgroups of patients are available [5]. Life expectancy of the
patients diagnosed with AD is  currently less than 7 years [4].

Even if it is thought that AD is the result of a combination
of genetic, environmental and lifestyle factors [6,7], the initiating
events that make someone develop this type of dementia remain
still unknown [8]. The most effective method of controlling AD’s
progression is  believed to be  based on an early diagnosis and a



good management strategy started from the very beginning of the
cognitive decline [9,10], but, nowadays, the diagnosis is  mainly
accomplished using psychological tests that become positive when
the disease is practically irreversible [11].

This paper is structured as follows. In the remainder of this
section, AD and its progress are explained (see Sections 1.1 and
1.2), and the need for an early diagnosis method is highlighted
(Section 1.3). In Section 2 the methodology used to conduct the
literature review is explained. In  Section 3, the current state of
cognitive, psychological, physiological and behavioural diagnostic
methods and biomarkers is exposed and in Section 4, the reviewed
state of the art is critically analysed highlighting the research
gaps. In Section 5 some of the useful tools for the multimodal AD
detection research are considered, namely, the publicly available
datasets (Section 5.1), the standard methods for medical imaging
analysis (Section 5.2) and the neuroimaging processing toolboxes
(Section 5.3). In Section 6, some of the real­world datasets’ issues
are discussed. Finally, in Section 7, a conclusion is given along with
clues for future work.

1.1. Definition

AD is a progressive, degenerative disorder that attacks brain’s
nerve cells, or neurons, resulting in loss of memory, thinking and
language skills, and behavioural changes [12]. It  is a neurological
disorder that mostly affects people over 65 years old and whose
incidence rate grows exponentially with age [13]. It is the most
common form of dementia [14] and unlike what some people may
think, AD is not a normal part of ageing [15].

1.2. Phases

It is believed that people developing AD undergo three different
stages [16]. The first one is the preclinical AD stage, where changes
in the brain, in the blood and in the cerebrospinal fluid (CSF) may
start happening, but the patient does not show any symptoms [3].
Therefore, nowadays, this phase cannot still be detected. In fact, it
is believed that this stage can start 20 years before any symptom is
evidenced. The Nun Study, one of the most significant longitudinal
studies in the area of AD research, has even shown evidences of cor­
relations between youth linguistic ability and late life progression
to AD [17].

The  second stage of the disease is called the mild cognitive
impairment (MCI). In this stage, symptoms related to the thinking
ability may start to be noticeable for the patients themselves and
for the nearest family members, but they do not affect their daily
life [3]. Not all the people diagnosed with MCI develop AD, but only
an estimated 10–15% of them every year [18,19] and the reason
why some people develop dementia and others do not, remains
still unknown. When a  patient is diagnosed with MCI, a specific
diagnosis procedure must start to understand which disease or con­
dition is responsible for the deficit [20]. Two different types of MCI
are distinguished: amnesic MCI (aMCI) and non­amnesic MCI [9].
The former refers to patients who have impairment in the memory
domain, and the latter to patients who have impairment in one or
more non­memory domains of cognition, as, for example, attention
or language processing. It  is believed that subjects suffering from
aMCI are more likely to develop AD [21].

The final stage of the disease is called dementia due to AD, where
memory, thinking and behavioural symptoms are already evident
and affect the patient’s ability to function in daily life.

1.3. The need for an early diagnosis method

AD symptoms are occasionally recognized by the patients them­
selves, but in the vast majority of cases, the caregivers or the close

familiars and friends are the ones who realize the behavioural
and cognitive changes suffered by the AD patients. The severity
of these symptoms is  not always easy to notice. The problem is  that
AD symptoms are in many cases confused with a normal ageing
process, and thus, doctors are not consulted until being too late,
resulting in a  late diagnosis [22]. In the survey carried out in  [23],
64% of the caregivers affirmed that before the diagnosis, they con­
sidered the behaviour changes suffered from the patients as  part
of the normal ageing process. 67% of them agree that this made
the diagnosis to be delayed. Furthermore, once in the hand of spe­
cialists, it is not yet easy to correctly diagnose AD. Even the most
experienced specialists fail in about 10–15% of cases to correctly
diagnose AD [24]. In fact, the definite diagnose can only be  made
by a post­mortem examination of the brain. Nowadays, a patient
suspicious of suffering from AD can be clinically diagnosed with
an accuracy of about 90%, drawing on medical records, physical
and neurological examination, laboratory tests, neuroimaging and
neuropsychological evaluation [25]. Most of these methods used for
AD diagnosis are time­consuming and they require a  clinician inter­
vention [26], involving annoying displacements to hospitals, which
can be specially difficult with elderly. Moreover, the monitoring
of the progression of the disease is very costly [27] and, there­
fore, not well enough studied. Neuroimaging is being increasingly
used because it offers to physicians the possibility to analyse the
patients’ brains while they are alive. Nevertheless, when changes
can be appreciated with the naked eye, it is normally too late. That
means that the brain has evident signs of atrophy, or that too many
neurofibrillary tangles (NFT) and Amyloid plaque deposits can be
found on it. Non­invasive, fast, inexpensive and reliable AD diag­
nosis methods are still to be developed [4].

An early diagnosis of the disorder can be extremely helpful
for the patients because they can have access to treatments that
can delay some symptoms, being much more effective in the early
stages [4], as  well as to programs and support services, when the
disorder has no yet progressed too much [22]. Furthermore, this can
allow them to take part in the decision of their future, as, for exam­
ple, about their care and everyday life or about money and legal
concerns. Early diagnosis can also help to  improve AD survival rate
[28].

Thereby, for an early diagnosis of AD it is necessary to be able to
detect the most subtle symptoms of any type. Taking into account
the multimodal nature of AD symptomatology, it is  clear that the
most efficient and reliable early AD detection methodology can not
only rely on measurements of a unique domain, i.e. only physiolog­
ical or behavioural symptoms, but on the combination of several
modalities, that could allow to  detect all the subtle changes of all
domains from the very beginning and to contrast them with other
type of symptoms for a reliable diagnosis. The multimodal nature
of other disorders such as stress has also been analysed, and an
approach for its early detection proposed [29], demonstrating the
feasibility and application of these methods to  multiple disorders.

Nevertheless, subtle changes are not easily noticeable. People,
without the aid of technology, are not able to recognise the so small
behavioural shifts that AD patients may undergo, not suspecting
the problem until being too late. Technology that could make this
process easier is highly required to speed up the whole process.
Physicians may not be  able to correctly diagnose AD if they do not
find the necessary physiological traces for it. Automated computer
aided diagnosis (CAD) techniques are needed to facilitate physi­
cian’s diagnosis of complex diseases in individual patients [30].
Thus, technology that can help in the early detection of AD based on
subtle behavioural and physiological changes must be developed.

Recently, a review of non­invasive innovative diagnostic tools
for the early detection of AD has been published [31]. Neverthe­
less, this article did not emphasize on the multimodal nature of the
disorder, neither in the automatic assessment of dementia based



Fig. 1. Search methodology used for the literature review process.

on unobtrusively obtained behavioural data. Hence, the aim of
this article is to complete the previous work by summing up the
research carried out in the early AD detection in the four main
modalities, namely, in the physiological, cognitive, psychological
and behavioural domains. It  is intended to emphasize the most
reliable and useful biomarkers found up to date, and therefore, to
give clues for the combination of measurements and features that
should be used for an automatic, unobtrusive and reliable early AD
detection system.

2. Methods

The following review of the state of the art concerning AD detec­
tion was undertaken to address three specific goals:

1 To review the variety of features, that can currently be used in
order to detect AD, starting from the most widely accepted meth­
ods which are already included in the clinical diagnosis process,
to the new emerging ways.

2  To compare the accuracies that can be  achieved with each signal
or measurement, so as to help to decide among the most suitable
signals for each situation.

3 To highlight the steps that should be followed in order to achieve
an ubiquitous early AD detection system.

To attain these goals an extensive literature review was per­
formed, with the following search strategy and inclusion criteria.

2.1. Search strategy

Publications were retrieved by means of a computerized search
of the Compendex and Inspec databases via Engineering Village [32]
and of the PubMed database [33] in order to find relevant studies
published in English from January 2005 to  date.

The review was carried out in an iterative way: first, a global
point of view of the current state in AD detection was searched.
The search terms applied in the title field in this step were:
“Alzheimer’s” OR “dementia” OR “AD” AND “detect*” OR “diagnos*”
OR “measure*” AND “survey” OR “review”. Controlled terms were
used in order to discard all the publications related to non­relevant
domains. After removing duplicates, 70 results were achieved.
Titles and abstracts of the remaining papers were reviewed,
rejecting the ones that focused on aspects of AD other than the
assessment. Twenty papers were considered for further reading.

After identifying the main domains and modalities involved in
the current state of AD detection, a more specific search was carried
out for each one of the domains. The combination of search terms
used were the following: “Alzheimer’s” OR “dementia” OR “AD”
AND “detect*” OR “recogn*” OR “identif*” OR “model*” OR “anal*”
OR “diagnos*” AND “physiolog*” OR “behavio*” OR “psycholog*”
OR “cogniti*” AND “accura*”. A  first set of 649 study abstracts was
retrieved for assessment. Controlled vocabulary terms were used
in order to exclude publications related to non­relevant research
areas and duplicates were rejected. The bibliographies of all rele­
vant articles and review papers were also hand­searched. The titles
and abstracts of the remaining articles were reviewed in applying
the inclusion criteria. Forty­four papers were in­depth read.

A summary of the literature review methodology used is pre­
sented in Fig. 1.

2.2. Inclusion criteria

All the selected papers were original studies and journal or
conference articles, written in English and published from 2005
onwards. For the first step of this literature review, only the papers
in where objective AD detection systems were reviewed were
accepted while for the second step, the inclusion criteria were
the following: studies of diagnostic accuracy of AD using at least
physiological or behavioural data and validated by means of cog­
nitive assessment tests such as the Mini­Mental State Examination
(MMSE), total subjects in the study at least ten and sufficient data
reported either directly or indirectly to enable the accuracy table
construction.

2.3. Data extraction and quality assessment

A data extraction spreadsheet was created for collecting data
from the papers. Each one of the selected papers was fully read and
assessed by one of the authors, whereas the results were verified
by all of them. Disagreements were resolved through discussion.

3. Measuring AD symptoms

People suffering from AD, show symptoms of several types and
in different degrees, depending on the progression level of the
dementia. These symptoms can be  distinguished into four main
modalities, which are physiological, psychological, cognitive and
behavioural. The symptomatology in these four modalities could



in general be understood as a  chain process that starts with some
physiological changes in the patient, mostly in the brain, that lead
to cognitive difficulties which in turn provoke psychological and
behavioural changes on the patient.

Regarding the physiological symptoms of AD, the best­known
changes are the ones evidenced in the brain. It has been found that
AD patients’ brains contain a huge number of Amyloid plaques and
NFT, which are also present in many healthy aged subjects’ brains,
but in much more moderate amounts. Amyloid plaques refer to the
deposits of beta­amyloid (ˇA) protein fragments, which are accu­
mulated between the neurons and NFT to the deposits of tau protein
fragments which are piled up inside the neurons [22]. The accumu­
lation of ˇA on the brain is considered a necessary but not sufficient
condition to produce the clinical symptoms of MCI and dementia
[34]. The presence of these plaques and tangles is  eventually accom­
panied by the damage and death of neurons [3], and in fact, one of
the most favourable hypothesis about the origin of AD nowadays is
the abnormal deposition of these proteins [35–37]. Cerebral hypo­
perfusion has also been found to be more evident in AD patients
than in normal adults, so other hypothesis blaming the vascular
and cardiovascular problems to  be the cause of this hypoperfusion
which in turn could trigger dementia have been developed [38].
Cortical and hippocampal atrophies of the brain are also very well
known AD symptoms [9]. Reduction of the volume of the hippocam­
pus is probably the most common pronounced change [26], being
a symptom which is already evidenced in the mild stage and which
worsens over time. In fact, the authors of [39] affirm that at the mild
dementia stage of AD, hippocampal volume is already reduced by
15–30% and in aMCI the volume is reduced by 10–15%. Reduced
brain activity and communication between nerve cells has also
been found to be an AD symptom, and eye dynamic patters have
also been detected to change in  these patients.

Cognition­related symptoms are probably the best known in AD.
The clinical hallmark and earliest manifestation of AD is episodic
memory impairment [40]. Not remembering recently learnt infor­
mation is the most common symptom, which is discernible from
the early stages of the disease. Memory also starts to  fail when
remembering important dates or events. People in early AD stages
may also have difficulties solving daily problems, for example,
with number­related tasks as managing finances. Getting confused
about the dates, seasons and time, as well as familiar places is
another sign of the disease. Vision may also be affected, and the
patients may not be able to read, to judge distances or to distin­
guish colours and contrasts and olfactory dysfunction has also been
reported [41]. Communication problems may also arise: patients
may suffer from difficulties when expressing themselves, they may
repeat things or they may stop in the middle of a conversation with­
out knowing how to continue. Vocabulary loss is also a common
sign of the disease, as well as misplacing and not remembering
where they left things and thus, losing them. As the disease pro­
gresses, this cognitive symptoms become even worse, and the
patients start having troubles recognizing people nearby, includ­
ing family members [22,42]. Reduced prevalence of pain can also
be an AD symptom [41].

Progressive deterioration of cognition leads to incoherent
behaviour and limits the patient’s capacity to perform his tasks of
everyday life. Therefore, behavioural symptoms of AD are direct
consequences of the cognitive changes. AD patients may take much
more time than before performing daily activities due to concen­
tration difficulties. Visual problems may lead to many behavioural
changes, as, for example, in driving. Due to communication diffi­
culties, the patient may suffer a big change of personality, and a
person who has always been very sociable, can be any more moti­
vated to deal with people and have social life. Furthermore, they
rely more and more on other people for everyday activities, like
eating, bathing or dressing because they may have problems to

Fig. 2. The multimodal nature of AD.

perform well physically. They may also be unable to walk properly,
due to gait and balance dysfunction [41], or to sit by themselves
and incontinence and swallowing problems may also arise [22,42].

Psychological symptoms include changes in mood and person­
ality. AD patients can become suspicious because they may think
they have been stolen when they lose things, confused when they
do not remember the day it is or how they arrived where they are,
and depressed, fearful or anxious, because they realize that they do
not remember basic things and they do not know how far it can
arrive [22]. Depression is the most common psychological symp­
tom in AD. Nevertheless, it is not still clear if depression is really a
consequence of AD or a risk factor by itself [43]. Apathy, irritability,
agitation, euphoria, disinhibition, delusions and hallucinations are
also part of AD symptomatology [41].

3.1. Cognition analysis

AD and MCI levels can be  evaluated by means of many tests,
among which some are based on the cognitive abilities of the
patients. Some examples are the MMSE [44] which is the most
frequently used test for AD diagnosis, the Severe Cognitive Impair­
ment Scale [45], the Alzheimer’s Disease Assessment Scale –
Cognitive [46] which focuses on attention, orientation, language,
executive functioning and memory skills, the Neuropsychological
Test Battery [47] which includes treatment effects’ measurements,
the Blessed Test which assesses memory, attention, concentration,
and the ability to complete Activities of Daily Living (ADL) and
the Severe Impairment Battery [48] which alternatively focuses on
measuring the unaffected cognitive functions [49].

Some other tests are the Neurobehavioral Cognitive Status
Examination, the Dementia Rating Scale – 2 and the Cambridge
Neuropsychological Test Automated Battery [50]. The Rey Auditory
Verbal Learning Test and the Category Fluency Test, which test the
ability of patients for recalling words, The Trail Making Test which
measures the function of brain in general, and other cognitive tasks
like the Digit Symbol Substitution Test and the Clock Drawing Test
can also help in measuring cognitive functions of AD patients.

This type of neuropsychological tests have been shown to be
effective in the assessment of AD. Nevertheless, they present some



drawbacks. The most important one is that the assessment by
means of these tests is lengthy and complicated [49]. Furthermore,
they are not suitable for all the patients in all the stages of the
dementia. Moreover, even if they can measure the dementia state in
a certain moment, it can be complicated to early detect AD because
they may not show enough sensitivity or because as in many cases,
it may be too late when the test is performed.

3.2. Psychological evaluation

As depression is  one of the most frequent non­cognitive symp­
toms in AD (to the extent that a pathogenetic relation between
depression and AD has been suggested [51]), psychological evalu­
ation is mainly focused on depression symptoms’ measurement.

Geriatric Depression Scale (GDS) is an instrument to detect
depression among old adults. Depression can sometimes provoke
similar symptoms to those of dementia, even a reversible state
called pseudodementia, and therefore, this test allows not to
measure the cognitive state of the patients but to see whether
depression coexists with AD or another form of dementia or to dis­
miss any kind of dementia verifying that the symptoms are related
to depression without AD [52].

The Montgomery and Åsperg Depression Scale, the Cornell Scale
for Depression in Dementia and the Nurses Observation Scale for
Geriatric Patients are other possibilities to  assess the depression
levels in AD patients [51].

Further research is still needed in order to verify if depression is
a consequence of dementia, or, on the contrary if it is another risk
factor. Once known the relation between both concepts, this kind
of psychological assessment could be introduced in a  periodical
dementia progression test. Nevertheless, psychological evaluation
being carried out by means of tests and scales, has the same draw­
backs as the cognitive tests, not being suitable for an automatic
continuous monitoring system for dementia.

3.3. Physiological signals

Nowadays AD research is mainly based on physiological mea­
surements, making use of both biological signals and imaging
methods. Especially the latter are being developed and improved
straight off, and this is  giving way to AD related physiological
changes getting better identified. The volumetric analysis of the
brain, which allows to detect atrophy, has been the main objec­
tive of imaging, and even if it has been done manually for many
years, nowadays, it is evolving and has started to be  done auto­
matically, thanks to techniques like the voxel­based morphometry
[53,54], tensor­based morphometry [55,56], object­based mor­
phometry [57] and feature­based morphometry [58]. Currently,
“neuroimaging plays a  central role in the clinical research of cog­
nitive disorders” [59]. Some of the neuroimaging methods are
considered for clinical use, namely, Positron Emission Tomogra­
phy (PET), Computed Tomography (CT) and structural MRI while
the others need still further research in order to be accepted.

In this section, the current use and state of the biomedical
signals and images that have been considered for AD research is
introduced.

3.3.1. CSF

In the recent years, some researches have focused on identifying
reliable and valid biomarkers of AD in biofluids [60]. One of these
biofluids is the CSF, which is a clear fluid that surrounds the brain
and spinal cord mainly for protection. CSF must be  obtained by
lumbar puncture [61].

CSF “is the only body fluid in direct contact with the extracellular
space of the brain and thus biochemical changes due to  patholog­
ical brain processes are more probable to be reflected in CSF than

in other body fluids” [7]. Thus, scientists have made the hypoth­
esis that the accumulation of A  ̌ plaques on the brain involves a
decrease in CSF Aˇ42 levels and that this can be already appreci­
ated in the asymptomatic period. CSF tau levels are also known to
increase, but it is not clear if this happens after the A  ̌ accumula­
tion starts [62] or both processes start independently [34], thus, the
pathophysiological process of tau might be precedent to the one of
Aˇ.

Aˇ42 is probably the most typical CSF measurement in AD
detection, and in the majority of the cases decreased values have
been found in AD patients compared to healthy subjects [34]. Aˇ40
is also present in the literature but no significant differences have
been found for AD patients [63], and sometimes ratios between
both A  ̌ species have also been computed, suggesting that it has
potential for both for distinguishing AD patients from healthy sub­
jects and to predict AD in people suffering from MCI [60,63–65]. CSF
total tau, as well as some specific tau epitopes (p­tau231, p­tau181
and p­tau199), have been found to  increase in AD [34,66] and some
researches also affirm its predictability from MCI to AD [60,67].
The ratio of tau­epitopes to Aˇ42, in agreement with the prece­
dent results, have also been found to  be  predictors of AD in  MCI
patients [67]. Other chemical components like CSF Isoprostanes
which have been found to be increased in AD patients even in
the preclinical stage [68] and ˛1­antichymotrypsin, Interleukin­6
and various markers of inflammation which have given ambiguous
results [60], even if  much less frequently, are also present in the lit­
erature. Recently, it has been concluded that the amount of CSF in
the hippocampal region is  also related to AD [69]. This is probably
due to  the decreased size of the hippocampus in AD, which leaves
space for more CSF.

“Numerous studies on CSF biomarkers for AD have been
published during the last years, however frequently providing con­
tradictory and inconclusive results” [34]. Furthermore, many of
these biomarkers are not unique to AD disease but to other types of
dementia. In addition, this technique is very invasive because CSF
must be obtained by lumbar puncture, and thus, it is difficult to  use
it as a prevention method of the overall population.

3.3.2. Blood tests

Blood samples can be obtained in a less intrusive and less costly
way [61] and more frequently than CSF samples, and thus, AD
biomarkers on blood have also been searched. More precisely, the
blood components plasma and serum have been analysed, as well
as platelets [70].

Features extracted from blood samples are similar to the ones
extracted from CSF. Aˇ42 and Aˇ40, which according to the major­
ity of the researches do not show significant differences between
AD and healthy subjects [63,71] or give ambiguous results [72,73],
Aˇ42/Aˇ40 ratio which in the study carried out by Koyama et al.
[71], at odds with the one performed by Hansson et al. [72], has
shown decreased values in AD patients and ˛1­antichymotrypsin
and various markers of inflammation which have not provided evi­
dence about the potential for distinguishing between AD patients
and healthy subjects [73].

Isoprostanes and Interleukin­6 have also been extracted from
plasma, but they have resulted in the same kind of ambiguous
results [60]. In blood platelets, Amyloid Precursor Protein (APP)
forms, beta­secretase enzyme (BACE) and alpha­secretase (ADAM
10) have also been measured. Studies have reported that altered
values of this biological parameters can be found in AD patients,
even in the very early stages of the disease [74,75].

Thus, up to now, it is not clear if blood samples could help
in  discriminating AD and healthy patients, neither if they could
serve as a  predictor. The different results obtained could be due to
the difficulty to measure Aˇ42 in plasma or to the method used
for extracting the peptides, as well as  to the differences in  the



populations studied. Hanson et al. [72] state that whether plasma
A  ̌ concentrations reflect A  ̌ metabolism in  the brain is very
unclear and others affirm there is no relation at all [76]. Conse­
quently, blood­based biomarkers of AD have not been still accepted
due to the “failure to replicate findings” [61] and to the ambigu­
ous results obtained in  different studies. Nevertheless, it would be
interesting to research further because blood can be easily obtained
in routine tests. Recently, a  blood­based diagnosis procedure has
been patented but its validity for clinical diagnosis remains to be
seen.

3.3.3. CT scans

CT scan is a structural imaging method that uses X­rays to cre­
ate pictures of cross­sections of the body, achieving with the same
dosage of radiation, 100 times more clear images [77] than the reg­
ular X­rays. To get this kind of images, specific CT scanners are
used.

CT has been used to observe the atrophy of medial temporal
regions years ago, but it is not easy to find recent studies about CT
as an AD diagnosis source. Varghese et al. affirm that [9] CT is not
used as a standard technique for early diagnosis of AD. This could
be because other methods have demonstrated to provide greater
accuracy, manipulability and precision [60] and because CT is only
capable to show late changes in AD [9].

Even if some studies have tried to verify its utility in AD diag­
nosis [78] due to its simplicity, availability and inexpensiveness
compared to other methods such as  MRI, nowadays, it is only used
to rule out other brain problems, like tumours or haemorrhages,
and it “does not have any other role in the early diagnosis of AD”
[9].

3.3.4. PET scans

PET imaging is a molecular imaging technique that provides
three­dimensional images of a brain at the molecular and cellu­
lar level [79]. It consists of injecting or making inhale a substance,
called radiotracer, that contains a positron emitter to the patients,
detecting the emitted radiation by a scanner and computing a dig­
ital image that represents the distribution of the radiotracer in the
body [80]. Depending on the chosen radiotracer, different kinds of
PET scans can be done. PET Scans are done with PET scanners, but
the use of cyclotrons for the preparation of the radiotracers is also
necessary, elevating the cost of the equipment.

In AD diagnosis, many different radiotracers have been used for
four main purposes: Mainly the 11C­PIB to image the accumulation
of the ˇA plaques on the brain, 18F­FDG to image the glucose con­
sumption of the brain, 11C­PMP, 11C­MP4A, 11C­MP4B, 11C­Nicotine
and others to image the neurotransmitter systems of the brain and
finally 11C­(R)­PK11195 to  image the inflammation in the central
nervous system (CNS) which can cause neuronal death [5]. The glu­
cose consumption imaging is based on the idea that as brain mainly
uses glucose for energy production, glucose metabolism is closely
related to neuronal function, both at rest and during functional
activation [20,81].

CAD systems have been developed to try to automatically diag­
nose AD and MCI. Su et al. [82] proposed a  method based on
automatically selected ROI features, and classified with a support
vector machine (SVM) classifier with a  linear kernel, and achieved
accuracy rates of up to 91.1% in distinguishing AD from controls,
79.41% with AD and MCI and 78.13% with MCI and controls. They
also tested principal component analysis (PCA) and linear discrimi­
nant analysis (LDA) based features with both linear and radial basis
function (RBF) kernel SVMs and achieved accuracies up to 94.6%,
81% and 79.7% for the same cases as before. Dehghan [83] improved
these results combining both FDG and PiB PET scans, and using
PCA and SVM algorithms for feature extraction and classification,
they achieved 94.12% of accuracy distinguishing AD from healthy

controls and 82.05% in the case of MCI and controls. A  group of
investigators of the University of Granada has published several
important works proposing automatic PET based AD diagnosis tools
[84–86], reporting high accuracies of up to 98.3% distinguishing AD
patients and healthy controls, 77.47% separating CTLs from both
AD and MCI patients and 68.79% in classifying MCI patients and
controls.

The advantage of PET is that it has the ability to display very mild
symptoms [83]. Unfortunately, while theoretically is  not a high risk
for the patients, it involves exposure to radiation and radioactivity,
and, therefore, it is a method that should better be avoided. Fur­
thermore, it is an expensive method and is not highly available,
although this fact is changing in recent years [87]. These reasons
lead us to believe that PET imaging is not the best­suited method
for massive monitoring of the population.

3.3.5. Single photon emission computed tomography (SPECT)

SPECT or perfusion SPECT is a  type of radionuclide brain scan
that tracks cerebral blood flow (CBF) and measures brain activity
[88]. It  consists of injecting or making the patient swallow radioac­
tive substances and distinguishing the brain tissues by the radiation
emitted by each one of them due to the particular ability of each tis­
sue to absorb this kind of substances. It is a  similar method to PET, as
both consist on introducing short­lived radionuclides into an amy­
loid binding molecule, being different the radionuclides used for
the two techniques: while PET uses emitting positrons, SPECT needs
photons [89]. The two commonest radiotracers used for SPECT are
99mTc­hexamethylpropyleneamine oxime and 99mTc­ethylcysteine
dimer [90].

SPECT has shown to be  a valuable aid for the early diagnosis of
AD [91], because it allows to  image the hypo­perfusion suffered by
AD patients. A correlation between the progression of AD and the
loss of cortical CBF in various brain regions [92] has been found with
SPECT. A significant correlation was also found between the total
tau and phosphorylated tau concentrations in CSF and perfusion in
the left parietal cortex [93]. Nevertheless, it is not yet clear in which
brain areas this hypoperfusion is most evidenced and thus which
one would be the most accurate one for AD diagnosis. Temporo­
parietal region has been considered practical for the early detection
of AD [94], but its sensitivity and specificity is still questioned [91].
Some suggest that posterior cingulate gyri and precunei regions
could be  more useful [95] while medial temporal lobe (MTL) and
hippocampus regions cannot be  analysed due to the depth to which
they are located [96].

CAD systems have been developed using SPECT images and
machine­learning techniques [84,86,94,97,98]. Lopez et al. [84]
have been able to distinguish AD patients of Alzheimer’s Disease
neuroimaging initiative (ADNI) database [99] from CTLs with 96.7%
accuracy, using PCA based features of preselected slices of inter­
est and an SVM classifier with a quadratic kernel. Ramirez et al.
[97] used SPECT images of 52 subjects, and a methodology based
on first and second order image parameter selection and SVM clas­
sification. Feature selection techniques yielded a  feature vector of
only two coefficients, that could still provide a  high classification
accuracy of 90.38%. These results strongly suggest the potential of
such a system to early detect AD.

SPECT shows lower resolution and higher variability [100] than
PET, but its radiotracers are cheaper and easier to acquire [101],
being probably better suited for longitudinal repetitive studies. Fur­
thermore, SPECT can be carried out by means of a Gamma camera,
a device that is already available in most of the greater hospitals
[102]. SPECT has also shown the potential to aid distinguishing
between AD and other dementias, namely, frontotemporal demen­
tia (FTD), vascular dementia (VD) and dementia with Lewy bodies,
as well as between AD patients and healthy controls [90,102]. Nev­
ertheless, the heterogeneity of the results suggest that it should



be combined with other methods. Weih et al. suggested in their
review [102] that SPECT could be better used to rule out AD instead
of for diagnosing it, as it presents a much higher specificity than
accuracy both in distinguishing AD patients from healthy controls
and in predicting progression from MCI to AD. The results reported
above encourage SPECT­based AD diagnosis research, nonetheless,
this can be questioned due to its invasive nature provoked by the
use of radiotracers.

3.3.6. Structural MRI

MRI is a non­invasive imaging technique for structural analy­
sis. Shortly, it consists of applying strong magnetic fields to the
area that is wanted to image while the different tissues are dis­
tinguished thanks to their particular relaxation responses, i.e. the
radiofrequency signal emitted by the protons of each tissue, [87]
when the magnetization stops. This is done with an MRI scanner.

Structural brain MRI imaging has been widely considered for
early detection and diagnosis of AD [28]. This technique can help
diagnosing AD in two ways: on one hand, it allows to  measure MTL’s
atrophy, which is closely related to cognition and memory, with
very high definition [103,104] and on the other hand, it enables
changes on tissue characteristics due to vascular damage to be
detected [87]. MTL’s atrophy is earliest evidenced in the hippocam­
pus and the entorhinal cortex [28,105–107], followed closely by the
parahippocampus and the amygdala [87].

In the last years, the number of longitudinal studies based on
MRI images has increased, thanks to databases such as ADNI [99].
This has allowed to  better analyse and model the progression of
the disease [108] and its effects on individuals’ spatiotemporal
brain atrophy patterns [109]. Moreover, it has been possible to
verify that the brain atrophy in AD patients and in subjects con­
verting from MCI to  AD happens much faster than in healthy adults
[110,111].

Making use of image processing techniques, automatic diag­
nosis systems have been developed, achieving satisfactory results
distinguishing AD patients from CTLs. Recently, Yepes­Calderón
et al. [105] have developed a  relatively simple classification sys­
tem to distinguish between AD, MCI and control patients with MRI
and they achieved classifications accuracies of 98.95% when distin­
guishing AD from control patients. Others have reported accuracies
of 92% [30], 89.22% [112], 89% [56], 88.9% [106], 88.49% [28], 87%
[26] and 83% [113]. Farzan et al.  [114] have achieved comparable
results in AD diagnosis from longitudinal MRI data. They used per­
centage of brain volume changes information of a period of two
years, and after applying discriminative analysis (DA) to select the
best subset of features, they achieved a classification accuracy of
91.7% in discriminating AD patients from CTL. Others [115] have
recently analysed whether it is possible to predict AD conversion
from MCI patients using longitudinal MRI data. Apart from affirm­
ing this possibility, they found out a difference between male and
female patients: while they achieved an accuracy of 61% in males,
in females this value raised up to 84%.

As distinguishing control people from those who are developing
MCI might be particularly useful in early AD detection, researches
have also focused on this. Yepes­Calderón et al. [105] achieved
87.3% of accuracy distinguishing AD and MCI cohorts and 90.64%
in the case of MCI and control. MCI and control subjects have also
been distinguished in other studies with accuracy rates of 85.4%
[28], 84% [56], 81.3% [106] and 78.22% [26].

Currently, MR’s role is quite blurry in the early disease stages
[11]. Atrophy of the hippocampus can be differenced clearly in AD
patients compared to healthy people, but, unfortunately, it may not
be so obvious at the early stages, hindering the use of MRI for early
detection. Furthermore, brain atrophy is not specific to AD but char­
acteristic of different diseases [87], or the brain can even suffer vol­
ume changes due to  reasons other than neuronal loss. Nevertheless,

some researchers affirm the possibility of predicting and distin­
guishing between the different stages of AD using automatic MRI
analysis and the results reported herein suggest that MRI can con­
tribute positively to an automatic AD diagnosis system, even in its
early stages. Furthermore, MRI scanners are highly available nowa­
days and they are easy to  use, so further research is worth.

3.3.7. Functional MRI (fMRI)

Functional MRI is a non­invasive imaging technique for func­
tional analysis that allows to detect some of the abnormalities of
AD patients brain’s performance [9]. More specifically, fMRI con­
sists of measuring the oxygen concentration of the different brain
areas when the subject is developing different tasks or when he is at
the rest state for evaluating the default mode network. These way,
brain areas involved on each task or at the rest state can be detected
[116]. Thus, a blood oxygen level­dependent (BOLD) image contrast
that provides an indirect measure of neuronal activity is achieved
[59,87]. As in the precedent case, an MRI scanner is needed for this
type of imaging.

“The use of fMRI in aging, MCI, and AD populations thus far has
been limited to a  relatively small number of research groups” [87].
Notwithstanding, fMRI can help diagnosing AD by obtaining infor­
mation about each brain part’s activity. It has been found that AD
patients have reduced activity in the MTL [117], particularly in the
hippocampus [117–121], but also in the entorhinal cortex [117],
while an increased activation has been reported in the prefrontal
cortex, probably, due to a compensation mechanism [122,123].
Deactivation in posteromedial cortical areas such as the posterior
cingulate and the medial parietal cortex has also been found to be
anomalous in AD patients [124,125]. Nevertheless, these anoma­
lies are much less evident in MCI patients, which could complicate
the use of fMRI as an early detection component. In some cases,
conflicting findings have been done in hippocampal [118,126] and
in  the MTL [127,128] activation in MCI patients. These differences in
results might be due to a compensatory effect, where some brain
regions must activate in order to carry out the work that others
cannot do anymore. Some researches have suggested that some
brain parts follow a U­curve pattern for activation [129]. In the
default mode network evaluations, a “significant alteration” has
been found in the connectivity between the hippocampus and its
surrounding brain areas [130]. Differences in BOLD signals have
also been found between AD patients and other dementia sufferers
[131–133].

Even if they are fewer than in the case of MRI, some exam­
ples of automatic analysis of fMRI images in AD detection can be
found in the literature. Khazaee et al. [134] developed an auto­
matic classification system based on SVM and fMRI images, where
an accuracy of 97.5% was achieved distinguishing AD from healthy
people. Tripoliti et al. have carried out several works [135–137]
where an accuracy of 88% was achieved in the same two­class clas­
sification problem. Furthermore, they also distinguished elderly
CTLs, patients with very mild AD and those with mild AD with 80.5%
of accuracy and introducing a fourth class of healthy young people
they achieved 87% of accuracy.

The biggest advantages of fMRI are probably its noninvasive and
no radioactive nature, allowing its safe utilization [59] in a repeti­
tive manner and thus facilitating longitudinal studies. fMRI offers
a  relatively high spatial and temporal resolution [9] of the activa­
tion map of the brain, but, unfortunately, it is very sensitive to head
motion. This could be  a  problem in people that are in an advanced
stage of cognitive impairment, as  well as the fact that they can have
difficulties in performing the cognitive activities that are needed for
the test [87]. Nevertheless, the latter should not be  a problem for
the early diagnosis of the dementia and furthermore, the resting
state methodology can help overcome this obstacle.



            

3.3.8. Magnetic resonance spectroscopic imaging (MRSI)

MRSI, also known as Chemical Shift Imaging, Spectroscopic
Imaging or Multivoxel Spectroscopy (or Multivoxel MRS) [138], is a
non­invasive imaging method that can be  performed in a standard
MRI scanner. Unlike MRI that visualises anatomy in living tissue by
only using the signal of water, MRSI makes also use of MRS tech­
nology that can detect biochemistry by using signals from organic
molecules, allowing in vivo detection and measure of concentra­
tion of some low molecular weight metabolites [59,138,139]. “This
technique is based on the phenomenon of chemical shift to dis­
tinguish between various cerebral metabolites, whereby the H1

signals from the metabolites exhibit slightly different resonant fre­
quencies dependent on their specific chemical environment” [140].
As the chemical shift of a  single metabolite is constant, it will always
peak at the same frequency [141] and thereby, MRS provides a
spectra in which each peak represents a metabolite or group of
metabolites. The area under the peak is related to the concentra­
tion of the metabolite. These metabolites include myo­Inositol (mI),
choline (Cho), N­acetyl aspartate (NAA), creatine (Cr), glutamate
and glutamine (Glu) [142].

AD patients have shown metabolite abnormalities like
decreased NAA or NAA/Cr levels [143–149], elevated mI/Cr ratio
[144,147], increased or decreased Cho/Cr ratio levels depending on
the stage of the disease [150] and decreased Glu levels [147–149]
in the gray matter (GM). NAA/mI ratio has been found to be useful
for distinguishing between AD patients and healthy subjects. In fact,
some affirm [141,151,152] that this is the most robust marker of the
disease. MRSI could also help in the prediction from MCI to  demen­
tia. Some studies have reported lower NAA/Cr [153–157] and higher
Cho/Cr [158] levels in  several brain regions in MCI patients who
developed dementia than stable MCI subjects. Nevertheless, some
disagree with these findings [159,160] so further research is needed
to verify MRSI’s predictability from MCI to AD. Some researches
have also affirmed the potential of MRSI to help in distinguishing
different types of dementia from AD, such as  FTD [161] or subcor­
tical ischemic VD [162,163].

Nevertheless, MRS has some drawbacks. The concentration of
metabolites in the body compared to water concentration is small,
resulting in low SNR images and long acquisition times [139], which
in turn makes this system sensitive to motion artifacts [138]. Fur­
thermore, it provides a  low spatial resolution. Consequently, MRS
“is little used in the clinical evaluation of subjects with dementia”
[164]. Furthermore, for the best of our knowledge, automatic AD
diagnosis systems based on MRSI and machine learning techniques
have not been reported up to date.

3.3.9. Diffusion tensor imaging (DTI)

DTI is a  MRI technique that can provide information about
brain tissue microstructure. It can be obtained non­invasively using
an ordinary MRI scanner. It takes advantage of the Brownian
motion phenomenon suffered by water molecules in human tis­
sues, which makes them collide randomly between them and with
other molecules. In pure water, molecules move in all directions
isotropically, i.e. with equal probability, but the cell membranes
and the large protein molecules of the human tissues limit the
rate and the orientation of the water molecules’ diffusion, ren­
dering movements an­isotropic [59]. Thus, the microstructure of
the human tissues can be inferred from the water molecules’ dif­
fusion patterns [165]. In other words, DTI identifies indirectly “the
microscopic aspects that provide measures reflecting the patterns
in size, orientation and organization of tissue which are sup­
posed precursors to the final stage of macroscopic tissue atrophy”
[166,167].

It has been proven that DTI can provide relevant information
about a person’s cognitive state, being mean­diffusivity (MD) and
fractional anisotropy (FA) the main measures used for it [59]. FA has

shown significant differences in the cingulum, splenium of the cor­
pus callosum, uncinate fasciculus, superior longitudinal fasciculus
and frontal lobes between AD patients and healthy controls, and MD
in  the hippocampus, splenium of the corpus callosum, parietal lobes
and temporal lobes. MD has been found to increase with cognitive
performance decline, especially in the temporal structures while
FA decreases [168]. The hippocampal area, the posterior cingulate
and the corpus callosum have also shown moderate early cogni­
tive dysfunction evidence in DTI images [166,169], which could
allow early detection of AD. For this purpose, DTI has shown supe­
rior effect sizes compared to  volumetric MTL measurements [170].
Some few studies have also shown abnormalities in MD values in
healthy subjects at risk of AD [171,172], which could lead to a very
early diagnosis when cognitive changes have not yet started.

Machine learning methods have been applied to DTI images
in several researches both for automatic MCI and AD diagnosis.
O’Dwyer et al. [19] made use of DTI images and an SVM algorithm
with an RBF kernel and achieved 92.9% accuracy in distinguish­
ing MCI from control healthy subjects, and a  very similar result of
92.785% considering a three class classification problem with aMCI,
non­amnesic MCI and control subjects. Wee et al.  [173] combined
both DTI and fMRI images in order to obtain complementary fea­
tures related to the white matter (WM) and to the GM respectively.
The combination of the two techniques and the SVM algorithm
with a linear kernel gave significantly higher classification accu­
racies distinguishing MCI from healthy control subjects than using
each one of the techniques alone. Specifically, 96.3% accuracy was
achieved with the combination method, compared to 88.89% accu­
racy using DTI alone and 70.37% using fMRI alone. Dyrba et al. [174]
created a diagnosis methodology for AD emphasizing in its real
future application and taking into account the variability that can
be found in DTI images taken with different MRI scanners. For that,
they made use of DTI taken from 9 different scanners and created
a  methodology to distinguish AD from control subjects. The best
classification accuracy of 83.3% was achieved for the MD informa­
tion extracted from the images, using an SVM algorithm with RBF
kernel. Their work showed that DTI can be robust enough to be
incorporated to AD diagnosis systems if  the necessary treatments
are applied.

DTI has shown to be  a very potential tool in the early diagnosis
of AD, because it can detect alterations that cannot be detected, for
example, by conventional MRI [175]. It  still presents some draw­
backs, because there is still uncertainty about the best choice of
diffusion parameters and about the methods to use to manage
crossing fibres [59]. Nevertheless, these obstacles are being over­
come, so before long DTI could be  accepted as a  clinical diagnose
tool.

3.3.10. Transcranial Doppler (TCD) ultrasonography

TCD ultrasonography is an imaging technology that has been
used to assess cerebral hemodynamics [176], namely, CBF. Tran­
quart et al. [177] were among the first in measuring CBF using this
technology, testing it in  rabbits, while Macé et al. [178] have more
recently presented a  high resolution CBF imaging technique based
on the same principle. This method is based on the Doppler effect,
and is  executed with an “ultrasound probe that sends high­pitched
inaudible and invisible sound waves into the body, which “bounce”
off of the tissues in varying patterns” [179]. The parameters of these
patterns allow to  compute the direction and speed of the blood
flow. The experience of the operator and the indirect parameters
like the depth of the sample volume, the position of the transducer
and the direction of the flow allow to assign the received Doppler
signal to a specific artery [180].

Studies based on this technology have been carried out in order
to verify its potential to detect AD and to predict it. Several find­
ings have been done [181]. Silvestrini et al. [182] found out an



increased carotid intima­media thickness (IMT), which is  a  parame­
ter of the arterial wall, in AD patients compared to healthy subjects.
This increase in IMT could also indicate a  higher short­term risk of
developing AD or to  convert from MCI to AD [183]. A  higher degree
of carotid atherosclerosis has been found to be correlated the same
way with the disease and a higher risk of developing it [184]. The
total CBF is also decreased in AD patients [185,186], as  well as
the cerebrovascular reserve capacity (CVRC) and the mean flow
velocity (MFV) [176,180,187,188]. CVRC “is a  parameter of cere­
brovascular autoregulation describing the ability for vasodilation
of cerebral arterioles in setting of low cerebral perfusion pressure”
[180]. Decreased CVRC or middle cerebral artery flow velocity could
also reveal a higher risk for developing a dementia [189]. The pul­
satility index (PI) has been found to increase in AD [176]. A few
studies have also focused on cerebral micro­embolization, and have
concluded that people suffering from dementia, both AD or VD, are
more affected by this effect [190,191].

Despite these findings, for the very best of our understanding,
researches aiming to  create an automatic early diagnosis system
for AD have not yet been reported. Nevertheless, advances have
been done in this area developing image processing algorithms to
better focus on regions of interest, i.e. the carotid artery wall, in
ultrasound images [192].

Vascular impairment can be detected by several imaging meth­
ods like PET or SPECT, but ultrasonography can be  a non­invasive
and cheaper alternative, thus no radiation or injections are needed.
Unfortunately, ultrasonography has also some drawbacks. Mistakes
can be done in the identification of individual vessels and in the esti­
mation of blood velocity due to the angle between the vessel and
the ultrasonic beam [180]. Nowadays, colour­coded duplex ultra­
sonography might overcome some of these drawbacks, but it offers
lower performance for long monitoring. Furthermore, even if some
researches suggest the possibility of using ultrasonography to dis­
tinguish between AD’s symptoms from other dementias such as the
VaD [193], this is not still possible [181]. Even worse, given that the
relationship between vascular degeneration and dementia is not
clear, it cannot even be known if this technique could really serve
as a  diagnosis method. Nowadays, it can just serve for monitoring
the vascular system’s state for AD prevention.

3.3.11. Electroencephalogram (EEG)

EEGs are called to the recordings of the electric field of the scalp
caused by the electrical signals exchanged between neurons [4].
Thus, they reflect the communication activity between nerve cells,
which is of great importance in neurological diseases like AD.

Studies have shown that EEG may have the potential for an early
AD detection. It has been widely accepted that at least 3 types of
changes occur in AD patients’ EEG signals: they slow down (i.e. the
power of low frequencies is found to be increased while the power
of the high frequencies is  decreased), their complexity, which is
the measure of the number of different patterns in the signal [4], is
reduced and synchrony or correlation between EEG signals of the
different parts of the brain is reduced [4,194].

In the recent years, EEG has shown promising results in AD
and MCI detection. An Italian group of researchers have devel­
oped automatic EEG based diagnosis methods, using an algorithm
called IFAST, which is  based on Artificial Neural Networks (ANN).
IFAST consists in synthesizing EEG data by computing spatial
features of EEGs that are represented by some ANN based connec­
tion parameters [195]. Using these techniques they have achieved
93.46% accuracy separating MCI from healthy elderly [196] and
92.33% distinguishing AD patients from MCI [197]. They have also
shown the validity of the IFAST method to predict conversion
from aMCI to AD with high accuracy (85.98%) in a  1­year follow­
up study [195]. Recently, they have improved their method [198]
by using a feature extraction technique called MS­ROM and a

combination of some classification algorithms, namely, k­nearest
neighbours, naïve Bayes and quadratic discriminant classifier. They
have reported very satisfactory results: an average of 93.48% for
AD detection, 97.88% for MCI detection and 94.05% for AD vs MCI
discrimination. Trambaiolli et al. [199] have used SVM to classify
healthy people and probable AD patients, using EEG signals, and
79.9% accuracy was achieved. Individual models were also tested
by analysing for each one of the subjects the ratio between the
number of correctly classified EEG epochs and the total number
of EEG epochs, resulting in higher accuracies of up to 87%. In the
study carried out by McBride et al. [35], EEG signals have been used
to discriminate control, MCI and AD patients. Spectral and com­
plexity features were used for three SVM classifiers, that aimed
to solve three two class classification problems: control vs MCI,
control vs AD and MCI vs AD. A majority voting system was used
to solve the overall classification problem based on the results of
the previous classifiers. 91.4%, 84.4% and 89.9% of accuracy was
achieved in the first, second and third two class classification prob­
lems respectively, and an overall classification accuracy of 82.6%
on the classification of the three classes. Recently, another very
promising method based on EEG synchronization analysis have
been proposed for the early diagnosis of AD [200].

Many researchers [1,4] support the use of EEG for a longitudinal
monitoring of changes in the brain, due to the cheap and non­
invasive nature of this method and because of the ease with which
anybody can take samples without the need of going to a medical
facility each time. It is a “simple, relatively inexpensive and poten­
tially mobile brain imaging technology” [201] but further research
is needed for EEG to be included in a  clinical AD diagnosis.

3.3.12. Magnetoencephalogram (MEG)

MEG is a  non­invasive medical imaging technology. MEG iden­
tifies the brain activity by measuring the magnetic field created
by the electric current flowing within the neurons. Thus, mea­
surements follow a similar principle to the ones obtained by EEG
because both measure the same sources of brain activity. A  MEG
scanner is needed for this imaging purpose.

MEG findings related to AD are similar to those of EEG. Increased
delta and theta activity [202–205] in frontal and central areas
[206] and decreased alpha activity in posterior and temporal
regions [206] has been reported in several pieces of research, i.e.
slower signals. A generalized loss of functional interactions (i.e.
decreased synchrony) has also been found [202,207,208]. People
with MCI have also been investigated with MEG, verifying that
their symptoms are somewhere between those of AD and controls
[203,209,210].

MEG has been less studied than EEG, probably, because the
results obtained up to  date with this method suggest that it has a
lower discriminative potential than EEG. Gómez et al. have highly
contributed to the use of these signals on AD diagnosis, publish­
ing several researches based on it.  They have analysed several
MEG features’ ability to discriminate between AD patients and
healthy controls, including Sample Entropy (SampEn) and Lempel­
Ziv complexity (LZC) [211,212], Shannon spectral entropy (SSE),
approximate entropy (ApEn), Higuchi’s fractal dimension (HFD)
[213], Maragos and Sun’s fractal dimension (MSFD) and Cross­
approximate entropy (Cross­ApEn) [214]. They have concluded that
MEG really has the potential to discriminate between these two
groups, as they have achieved accuracies of 70.83% using the Cross­
ApEn, 77.42% with SSE, 87.8% in the case of HFD and 85.37% with
SampEn and LZC parameters introduced to an ANFIS classifier. Nev­
ertheless, for the best of our knowledge, no research has analysed if
the results remain so high when an MCI group is considered, which
could be  interesting to  analyse the predictability to AD and early
detection potential of MEG signals.



MEG can be done without placing uncomfortable electrodes and
it is less affected by conductivity issues related to the skull and scalp
[215], they do not require a reference, they are less affected by vol­
ume conduction, and furthermore, they can obtain more sensitive
measurements of the cortical activity than scalp EEG. The disadvan­
tage of MEG is the interference that Earth’s magnetic field or the
electrical devices can introduce, so measurements must be done
in a heavily shielded room with all the electrical devices around
switched off, which complicates its use as part of a global routine
monitoring system. Furthermore, results show that the accuracy
obtained up to date with MEG doesn’t reach the one obtained by
EEGs.

3.3.13. Eye dynamics

It has been hypothesized that “the pattern of AD­specific neu­
rodegeneration may affect neural circuitry of the eye movement
system in a unique manner that allows the clinical differentia­
tion of AD from other cognitive disorders” [216]. In order to verify
this hypothesis, eye movements of AD patients have been com­
pared to those of healthy subjects in many studies and effectively,
it has been proven that AD patients suffer from changes in ocu­
lomotor and pupillary functions [217]. More precisely, changes in
saccades, smooth pursuit function and in the pupillary response
have been found by some researchers. Saccades are “rapid, conju­
gate movements of the eyes, which serve to orient the high acuity
foveal region of the retina onto a  specific region of visual space”
[218]. Saccadic movements can be distinguished into three dif­
ferent types: prosaccades, which are eye movements towards a
target, antisaccades, which are movements in the opposite direc­
tion of a target, and finally, microsaccades and saccadic intrusions,
which are minuscule eye movements that happen during fixa­
tion. It is thought that saccades are of particular interest because
they are very related to attention and thus, they are likely to be
disturbed by cognitive impairments associated with neurodegen­
erative disorders such as AD, as  well as  by dysfunctions related
purely to oculomotor execution [219]. All these behaviours can be
measured easily and in a non­invasive way in a  laboratory, making
the patients carry out specific tasks like the reflexive paradigm, the
memory­guided paradigm [219], the gap/overlap task or the anti­
saccade task [220] while their eyes are being tracked by cameras or
infrared systems [221] and image processing techniques. Reading
tasks have also been used [222].

Some researches have revealed that AD patients show
higher latency than healthy subjects when starting prosaccades
[223–226], that the velocity of these prosaccades is lower [226]
and that the accuracy when reaching the target also worsens [220].
Antisaccades have also been analysed in some researches. It has
been found that in this case too, latency increases in AD patients
compared to healthy people, and that the number of incorrect sac­
cades toward the target increases while the number of corrections
after the error decreases [220,223]. Peltsch et al. [227] compared
aMCI, mild AD and healthy people’s antisaccades concluding that
aMCI and mild AD patients showed very similar performance in the
antisaccade task. Related to AD patients’ microsaccades and sac­
cadic intrusions, it has been found that they are much more oblique,
frequent and greater in amplitude [223] than healthy peoples’ ones.
Hence, their gaze­fixation is much more unstable. Nevertheless,
disagreements exist with these results. Some have not found dif­
ferences in speed and accuracy of AD patients’ saccadic movements
[224], neither in gap tests’ results. Smooth pursuits are slower eye
movements that serve to keep an object foveated if it moves across
our field of vision [218]. It  has been found that AD patients’ smooth
pursuit function is affected in a similar way as saccadic functions,
i.e. they show increased latency and decreased velocity, velocity
gain (pursuit velocity/target velocity) and initial acceleration. They
also tend to anticipate to  the targets’ movement, resulting in more

compensatory saccades. Pupillary responses have also been studied
by some researches, and they have found out that these responses
show a greater latency, and smaller amplitude, velocity and accel­
eration in AD patients that in healthy people [228].

Despite the power of the eye dynamics’ for AD detection, no
many researchers have tried to develop an automatic AD detection
system using eye movement features and machine learning tech­
niques. Lagun et al. [221] are about the only ones taking advantage
of these biomarkers for AD recognition. They used the visual paired
comparison task, which consists on identifying the eye movement
pattern of the patients while introducing new visual stimulus. It
has been seen that control patients spend 70% of the time looking
at the new stimulus whereas MCI patients spend the same time
looking at the old and new pictures, suggesting that they are not
familiarized with anyone of them [229]. They used these and other
eye dynamics’ features and an SVM classifier, achieving an accuracy
of 86.9% distinguishing between MCI and control patients.

The problem with these measurements is that these abnor­
malities are not always present in AD patients and furthermore,
they are not unique to them [219]. Moreover, it is not clear if MCI
patients also show signs of these abnormalities because while some
refuse this fact [224], others have found some evidences [220,225].
Crutcher et al. [229] have also found that some MCI preferred
the new images the same as  the control patients, demonstrating
the variability between patients’ patterns. Consequently, further
research is needed to verify if they might be  used both as AD
biomarkers and as predictors in the early stages.

3.3.14. Summary

The great effort being made in Alzheimer’s research in the
last years has allowed to identify many AD­related physiological
biomarkers so that the AD diagnosis is becoming more and more
accurate. Table 1 summarizes the physiological biomarkers of AD
that have been found in the literature.

As it has been seen in this section, many types of signal
processing techniques and imaging modalities have been tested
so as to find out the best signals and features that can be used
to diagnose AD automatically, or at least to assist the specialist in

Table 1

Physiological AD biomarkers of the literature.

Method Biomarkers

CSF Aˇ42 ↓, Aˇ40, Aˇ42/Aˇ40 ↓, total tau ↑, p­tau231 ↑,
p­tau181 ↑, p­tau199 ↑, [p­tau231, p­tau181,
p­tau199]/Aˇ42 ↑, Isoprostanes ↑, ˛1­antichymotrypsin,
Interleukin­6, markers of inflammation, amount of CSF in
the hippocampus ↑

Blood Aˇ42, Aˇ40, Aˇ42/Aˇ40, ˛1­antichymotrypsin, various
markers of inflammation, Isprostanes and Interleukin­6,
APP, ADAM 10, BACE

CT  Brain problems other than dementia
MRI MTL’s atrophy, vascular damage
fMRI Activity in the MTL ↓, prefrontal cortex ↑, capacity of

deactivation in PMC ↓

MRSI NAA ↓, NAA/Cr↓, mI/Cr↑, Cho/Cr↑, Glu ↓, NAA/mI ↓

TCD Carotid IMT ↑, total CBF ↓, CVRC ↓, MFV↓, PI ↑, cerebral
microenbolization ↑

DTI MD↑, FA↓

PET ˇ­Amyloid plaques ↑, glucose consumption ↑, anomalies in
neurotransmitter systems, inflammation in the CNS ↑

SPECT CBF ↓,CSF ↑, perfusion ↓

MEG/EEG Delta and theta activity ↑, alpha activity ↓, complexity ↓,
synchrony↓

Eye dyn. Prosaccades’ and antisaccades’ latency ↑, velocity ↓  and
accuracy ↓, no. of incorrect saccades ↑, no. of corrections ↓,
obliquity↑, frequency↑ and amplitude↑ of microsaccades
and saccadic intrusions, gaze­fixations’ stability ↓,
anomalies in smooth pursuit function, pupillary responses’
latency↑, amplitude↓, velocity↓ and acceleration↓



the hard decision of the diagnosis. Table 2 shows the signals and
imaging modalities used in the literature with their respective fea­
tures. Nevertheless, much less work has been done related to the
automatic early diagnosis of MCI and AD, which is the key for the
prevention of dementia’s progression.

Table 3 shows the best accuracies achieved in the state of the
art distinguishing AD patients from CTLs using physiological sig­
nals and images, while Table 4 is  its equivalent for MCI diagnosis
and Table 5 for MCI and AD discrimination. The results for the
three classification problems are very promising. It is evident that

Table 2

Physiological features used in the literature.

Method References Features Parameters

MRI [135–137,113,106,28,56,
26,112,30,105]

GM voxel values Mean, SD

GM volume Voxel location, PCA eigenbrains, PLSa­brains, sICA basis
functions

WM  volume PCA eigenbrains, PLS­brains
GM + WM volume PCA eigenbrains, PLS­brains
Hippocampal volume Total volume, CHF (visual features), CSF volume
Total brain volume PCA eigenbrains, GM volume/total volume
Cortical thickness Average within a ROI
MBLb features Coordinates
Atrophic voxels average Jacobian within a ROI
MTL volume Grey­level data, volume change estimation
35 ROIs Structural thickness, contour area, volume, structural

curvature
fMRI [134–137,173] Head motion Path length (see [230])

Activation patterns No. of activated voxels, max z­score,
size of the cluster where the max
z­score belongs to, no. of significant
clusters, % of activated regions that
belong to a ROI, total activation of ROIs,
atlas based ROIs’ clustering coefficients
of functional connectivity networks of
several frequency sub­bands

BOLD response Amplitude, undershoot and transit time
CBF Amplitude
Venous volume Amplitude
Vascular signal Amplitude
DeoxyHb signal Amplitude
Brain network graph Degree, participation coefficient, betweenness centrality, local

efficiency, local/global efficiency
DTI [174,19,173] FA Mean

MD Mean
Axial diffusion Mean
Radial diffusion Mean
Fibre connectivity network

PET [82–86] Intensity of the whole brain (VAF c) Eigenbrains (PCA), ICA based features, LDA projections, 22
ROIs, average of 48 ROIs

Intensity of VOI d Eigenbrains (PCA)
SPECT [97,86,84] First order histogram Mean, variance, entropy

Co­occurrence matrix Angular second moment, contrast, inverse difference moment,
entropy, correlation

SOIs (slices of interest) Eigenbrains (PCA)
Voxels of interest Eigenbrains (PCA)
VOIs NMSEe features

EEG [196,35,199,197] Delta, theta, alpha, beta and gamma bands’ spectrum power densities, total spectral power, specific spectral power
ratios (see [35]), coherence between several combinations of
pairs of electrodes, peak alpha band, spectral peaks of
biauricular references, spectral peaks of bipolar references,
median frequency, spectral entropy

Temporal signals of Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3,
Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2

Connection weights derived from IFAST methodology, activity,
mobility, complexity, SampEn, LZC

First derivative Total spectral power, peak alpha band frequency, median
frequency, spectral entropy, SampEn, LZC

MEG [211–214] Temporal signals SampEn, LZC, ApEn, MSFD, Higuchi’s fractal dimension (HFD),
cross­ApEn

Spectrum SSE
Eye dyn. [221,229] Pupil diameter SD/mean during tests and outside them, pupil dilatation in

tests ((meantest − meanfam)/meantest)
Fixations Median duration, mean re­fixation depth, total duration, total

no. of fixations, total fixation time, novelty preference
Saccades Orientation

a Partial Least Squares.
b Manifold­based learning.
c Voxels­as­features.
d Voxels of interest.
e Normalized mean square error.



Table 3

Accuracy rates reported in the literature for AD vs CTL discrimination.

Reference Signal Accuracy (%)

[105] MRI 98.95
[86] PET 98.3
[94] SPECT 98.3
[40] Speech 97.7
[134] fMRI 97.5
[98] SPECT 96.91
[35] EEG 96.9
[84] SPECT 96.7
[82] PET 94.6
[83] PET 94.12

Table 4

Accuracy rates reported in the literature for MCI vs CTL discrimination.

Reference Signal Accuracy (%)

[198] EEG 97.88
[35] EEG 96.8
[173] DTI + fMRI 96.3
[196] EEG 93.48
[19] DTI 92.9
[105] MRI 90.64
[221] Eye dyn. 87
[28] MRI 85.4
[56] MRI 84
[83] PET 82.05

Table 5

Accuracy rates reported in the literature for MCI vs AD discrimination.

Reference Signal Accuracy (%)

[198] EEG 94.05
[19] DTI 92.785
[136] fMRI 93
[197] EEG 92.33
[35] EEG 90.9
[105] MRI 87.3
[135] fMRI +  MRI 87
[195] EEG 85.98
[82] PET 81
[115] MRI 83.78a

[28] MRI 78.92

a In females.

diagnostic rates in real life using these methods would not be  as
high as the ones that have been achieved in laboratory experiments
because in real life there is much more variety of diseases, and
probably, also much more variation in the progression of demen­
tia. However, these results verify that automatic signal and image
processing methods have the potential for both AD diagnosis and
early AD diagnosis (or MCI) when they are combined with other
methods.

Nonetheless, most of the analysed neuroimaging methods still
lack to have established validity, sensitivity, specificity, predictive
value, repeatability and concordance [231] to have real diagnostic
value. Variability in participant selection, methodological incon­
sistency and use of different acquisition protocols between the
different researches are the main causes for this problem [59].
Thereby, further research is required in order to overcome these
barriers and establish a valid early diagnosis method based on phys­
iological data.

3.4. Behavioural responses

Although behavioural changes are not less important than phys­
iological ones, they have been much less considered in AD detection
research. Some tests and scales have been developed in order to
assess patients’ autonomy to carry out everyday activities, but

much less has been done towards an automatic detection system.
The following lines sum up the behavioural assessment methods
for AD patients.

3.4.1. General behaviour assessment tests

Behavioural changes suffered by AD patients might be mea­
sured by means of questionnaires or tests. These tools may help the
patient himself and his relatives to take conscience of the real state
of the disease. Tests like the Behavioural Pathology in AD Rating
Scale (BEHAVE­AD) [232], the Brief Psychiatric Rating Scale [233],
the Behavior Rating Scale for Dementia of the Consortium to Estab­
lish a  Registry for AD [234], Neuropsychiatric Inventory (NPI) [50]
and the Dementia Behaviour Disturbance Scale [235] are question­
naires used to measure the behavioural abnormalities that the AD
patients can undergo [49].

Nevertheless, as do all assessments based on questionnaires,
they have some drawbacks, including the so common belated diag­
nosis.

3.4.2. ADL scales

Tests with the main objective of measuring the progress of the
dementias by analysing the abilities of the patients for carrying out
typical daily activities with normality have been designed. These
tests offer additional information to the one given by cognitive
tests, because even if a patient has achieved quite encouraging
results, he may have problems integrating visual, motor and cog­
nitive skills, making him perform poorly in ADLs. Often, the real
state of the dementia can be better assessed and the level of sup­
port needed can be much better understood seeing them in action
and recording the level of cognitive support required to  complete
a  certain task successfully [236].  Hence, ADLs can be  assessed both
by means of questionnaires and by specifically designed tasks.

Some tests are based on the most basic activities (ADL), like feed­
ing, walking or dressing, while others measure the abilities for more
complex tasks, called instrumental activities (IADL) [49]. Examples
of IADL are cooking, tasks which involve the use of money, etc.
Katz Index of ADL [237] and the ADCS­ADL 19 [238] test measure
the former kind of activities while the ADCS­ADL 23 [238] is suited
for the IADL activities. Other questionnaires and interviews like the
Disability Assessment for Dementia [239], Interview for Deteriora­
tion in  Daily Living Activities in Dementia [240] or the Functional
Autonomy Measurement System [241] also serve to measure the
behaviour regarding the ADL activities.

Among the specific tasks that allow to evaluate the abilities of
the patient in vivo, the most well known is  probably the kitchen task
assessment [236]. It is a functional measure that aims to evaluate
the processing skills of initiation, organization, inclusion of all steps,
sequencing, safety and judgement, and completion of a cooking
task for measuring the cognitive aspects of performance by means
of behaviour.

3.4.3. Smart homes

A smart home is a regular home that has been augmented with
various types of sensors and actuators [242], being its main objec­
tive to overcome the cognitive disorders of people to enhance their
autonomy [243].

Sensorized devices and environments allow to capture the
actions of the residents while actuators can serve for automation
or for providing comfort, making tasks easier or finishing the tasks
that have not been accomplished by the patients, for example, for
security reasons (turn off the oven after a certain time). Prompts
or suggestions can also be made to recall to the patients how to
continue an interrupted task and to provide them punctual assis­
tance when needed [244]. All these actions should be  carried out in
a non­intrusive [245] and transparent way, respecting the privacy
of the patients, to make it easier for adults to  accept this technology



in their daily life. Hence, monitoring systems such as  video cameras
are not desirable and the selected system should not interfere at all
with the normal activities of the patients.

Even if specialized institutions where caregivers are available
24 hours a day exist, both seniors with dementia and their family
members normally prefer the patients to be  at home as long as pos­
sible [244]. Governments also prefer this option due to economical
[246] and social reasons. Because of these reasons, smart homes
and ambient intelligence (AmI) technology are being increasingly
used in order to give assistance to elderly who suffer from dementia
or cognitive impairment, to  help them accomplish their ADL suc­
cessfully and to reduce workload to the caregivers. For this purpose,
it is necessary to predict these peoples’ actions, and therefore, to
learn their frequent behaviour patterns [247]. Learning these pat­
terns can also be useful to detect abnormal behaviours [245] and
to ease AD diagnosis.

Smart home projects aimed at assisted living both for demented
and non­demented elderly currently exist [242] in Europe (Greno­
ble Health Smart Home [248]) and beyond (CASAS [249], DOMUS
[250], MavHome [251]).

Smart homes have been considered as a possibility for MCI
detection by a few researchers. Some biomarkers have been found,
indicating that this technology could be successfully used in early
AD detection. Suzuki et al. [252] have placed infra­red sensors in
a smart home for monitoring ADL with an emphasis on people’s
sleep patterns. More precisely, the number of outings, sleep dura­
tion, sleep interruptions and sleep rhythm were measured, and it
was concluded that MCI patients went out of home with less fre­
quency and had a shorter sleep time. Wadley et al. [253] have
measured the performance of healthy people and MCI patients
carrying out ADLs like using the telephone, locating nutrition infor­
mation on food labels, dealing with money, grocery shopping or
medication managing and have observed that it took significantly
longer for MCI patients to complete the tasks. Hayes et al. [254]
also measured healthy people’s and MCI patients’ behaviour pat­
terns in smart homes, including walking speed and measures of
daily activities. Several markers were found in these case: the coef­
ficient of variation in the median walking times of a week showed
to be twice as high in the MCI group compared to the healthy
group, the time spent out of home was also less for the MCI group
than for the healthy group and the day­to­day pattern of activ­
ity of MCI subjects was more variable than for healthy subjects.
Furthermore, MCI subjects had longer walking activities in the
evening while this was not true for healthy subjects. Akl et al.
[255] have recently published a research in where behavioural
data of elderly acquired in a real­world experiment conducted
in a  smart­home was used. Walking speeds, number of walks,
number of outings and daily activity were monitored and used to
distinguish between cognitively intact people and MCI patients.
They achieved an area under the ROC curve of 0.97 and an area
under the precision­recall curve of 0.93 using a  time window of
24 weeks, proving that smart environments can be really useful
to successfully collect relevant data and when they are combined
with machine learning algorithms, to quite accurately detect onset
of dementia. Researchers from the Washington State University
also confirmed this hypothesis [256]. In this case, sensor data col­
lected from 18 real­world smart homes with older adult residents
during two years was used. Support vector regression confirmed
a statistically significant correlation of 0.72 between processed
sensor data and cognitive assessment scores, making possible a
prediction of cognitive impairment using only behavioural data.
Besides, an accuracy of 71.75% was achieved when classifying
this data into two groups with different cognitive scores using
SVM.

Smart homes offer the possibility to properly interpret the
information given by the sensors using algorithms to recognise

ADL [257,258], to learn behavioural patterns [247,259,260] and to
detect anomalies [261–263].

Thus, seen that these behavioural differences can be detectable
by AmI environments, algorithms that allow to  detect subtle
behavioural changes [247], and therefore, to  detect when the adult
is trespassing the limits from healthy to MCI group or from MCI to
AD group, have been developed.

Other researchers have focused their work into the development
of services or improvements on smart homes to better assist and
help already diagnosed people with AD or some other dementia
[244,264].

3.4.4. Gait monitoring

As seen in the precedent section, smart homes can be used,
among other things, to monitor walking activity of the demented
elderly. Nevertheless, parameters such as walking speed may not
be accurate enough to predict dementia. Gait monitoring takes into
account the manner of walking of the person, where much more
parameters apart from speed can be analysed. It  has been recently
found that cognitive functioning and gait are closely related, so gait
should not be  longer considered a  simple motor activity that is inde­
pendent from cognition but as  a complex cognitive task [265]. This
hypothesis has been reinforced by dual­task tests [266]. This rela­
tionship is achieving more and more importance, and scientists are
recently focusing on gait analysis for early AD diagnosis.

Gait monitoring can be carried out using an electronic walk­
way or force platforms placed on the floor, using cameras and
image processing algorithms or by means of wearable sensors like
force sensors, accelerometers, gyroscopes, extensometers, incli­
nometers, goniometers, active markers or electromyography [267].

Changes in gait behaviour have been reported in AD. Decreased
velocity and step length, static and dynamic postural instability,
and hesitation in starting and in turning and a  widened base have
already be found. Nonetheless, all these symptoms are part of a  cau­
tious walking, and they can also be found in normal ageing elderly.
Scherder et al. [268] reported that AD patients differ from the
healthy elderly in that they may show gait apraxia/ataxia, shuffling
gait, lymbic discoordination, bradykinesia and rigidity. Increased
support time has also been found [268,269]. More recently, stride­
to­stride variability has been reported to be  an even more specific
biomarker [270–272].

There are not many references in the literature affirming gait
disturbances at the early stages of AD. Some report that these are
nonexistent and gait is not useful for AD prediction [273], while oth­
ers report interesting results that could be used for AD prediction.
Camicioli et al. [274] affirmed that subjects developing cognitive
decline walked more slowly than healthy people do, and that they
presented limbic coordination impairment. Scherder et al. [268]
affirmed this information and added that rigidity is  already present
in  the first stages of the dementia. Further research is needed to
verify the predictability of gait disturbances for AD.

3.4.5. Speech

The speaking and conversational skills of the AD patients dete­
riorate from the early stages of the disease [40]. They are likely to
lose vocabulary, make big pauses while they are speaking or just
stop abruptly because they are not able to  continue the conversa­
tion. Thereby, speech recording aims at detecting these difficulties
in  speaking from the very beginning of the symptoms to facilitate an
early diagnosis of AD. More specifically, their objective is to detect
aphasia, which is called to the inability to  communicate effectively
[275]. Speech can be recorded continuously and in a non­invasive
way, and can be analysed automatically with speech recognition
and signal processing techniques.

Language and communication disturbances suffered by AD
patients include [276] word recall and word­finding difficulties



            

Table 6

Behavioural features used in the literature.

Method Reference Features Parameters

Smart homes [252–255] Sleep patterns Sleep duration, sleep interruptions and sleep rhythms
Outings Number of outings, time spent out of home
ADLs Variation of activity patters, completion time
Walking patterns Number of walks, walking speed

Gait [268,270–272] Walking patterns Walking speed, step length, static and dynamic postural instability,
hesitation, base width, gait apraxia/ataxia, shuffling gait, lymbic
disco­ordination, bradynesia, rigidity, stride­to­stride variability,
support time

Speech [27,40,286] Hesitation and puzzlement
features

Question rate, confusion rate, no answer count, rate of pauses in
utterances, filler sounds

Words Verb, noun, pronoun, adverb, adjective, particle, and conjunction rates,
unintelligible word rate

Complexity features Phonemes per word, words per recording, standardized word entropy,
phone entropy

Fluency Voice segment length, pause length, short time energy and spectral
centroid, voiced/unvoiced segment average, voiced/voiceless
percentage and spontaneous speech evolution along the time,
voiced/unvoiced segment max, min

Emotional temperature Pitch, standard deviation of pitch, max and min pitch, intensity,
standard deviation of intensity, max and min intensity, period mean,
period standard deviation, and root mean square amplitude, shimmer,
local jitter, noise­to­harmonics ratio, harmonics­to­noise ratio and
autocorrelation, fraction of locally unvoiced frames, degree of voice
breaks

HFD  Max, min, variance, SD

[277–280], repetitions during speech [277–279,281], loss of both
reading and writing skills [280], problems to follow a conversa­
tion due to deterioration in concentration and comprehension skills
[279,280] and decline in non­verbal communication skills [282].
These problems are present from the very early stages of the dis­
ease, and progress and worsen at the same time that the cognitive
decline [276,283].

Due to the ease with which voice recordings can be obtained, in
the recent years, speech features have been used in  works related
to automatic MCI and AD diagnosis systems [27,40,284–288].
Nonetheless, few studies report speech based classification results
that suggest that they have potential to become part of a  multi­
modal diagnosis system. Roark et al. have demonstrated that auto­
matic speech characteristics measuring techniques in combination
of neuropsychological tests can help in improving MCI diagnosis
[287,288]. Khodabakhsh et al. [27] have recently analysed the possi­
bility of a diagnosis, using speech features extracted from telephone
calls. This is a method that could provide many advantages like,
for example, to avoid displacements to hospitals or to carry out
expensive tests. Using only three features, which measured the use
of vocabulary and phonemes and the pause rate, 90% of accuracy
was achieved by both the SVM classifier with a linear kernel and a
decision tree, classifying AD patients and control people.

One of the drawbacks of speech analysis for AD recognition is
that aphasias are not unique to AD, but they can be caused by other
factors. Nevertheless, it is true that “AD may be one of the primary
causes responsible for a  high proportion of aphasic patients in the
human population” [289], so it can be of great interest to continu­
ously keep an eye on people’s speech features automatically, to later
verify or discard the presence of dementia. Furthermore, speech can
be easily and non­invasively measured, nowadays, almost contin­
uously, which can be  a big advantage for continuous monitoring
and early diagnosis systems. It  remains to be  seen if  the accuracy
reported above would be reachable in a general population, but
it is clear that speech features can provide important clues for a
diagnosis.

3.4.6. Others

In the review of Qassem et al. [290] some other possibilities to
measure the behavioural symptoms of AD in an unobtrusive way

are suggested. They propose for instance the use of motion sensors
to measure restlessness, radars to measure tapping and banging
behaviours, GPS tracking to detect wandering, smart beds with
pressure sensing to  detect sleep disturbance and video monitoring
to detect shifts in ADL activities. In fact, some of these possibilities
are already being researched. Examples of automatic assessment of
agitation in dementia include the work of Fook et al. [291] which
aim at measuring it with video streams, or the one by Bankole et al.
[292] where the use of body sensors was purposed instead of cam­
eras. In the case of wondering detection, steps have already been
given so as to  detect it using activity recognition techniques in wire­
less sensor networks [293], as said before, by means of GPS tracking
systems [294] and also by using RFID tags and antennas to track the
walking patterns and ADLs [295] of the patients.

3.4.7. Summary

To sum up, behavioural changes of people suffering from
dementia can be  assessed both by means of tests and scales carried
out periodically, or automatically making use of several sensors
and smart technology. Even if  the tests and scales have the same
inconvenients as the cognitive and psychological tests, the smart
technology helps to overcome them allowing to monitor the elderly
ubiquitously and in a completely transparent way. Even though it is
not possible to  use this technology as a definite diagnosing method,
partly because it does not provide any physiological information,
it is true that it could satisfactorily be used as  part of a  continu­
ous monitoring system absolutely necessary for an early diagnosis.
Table 6 summarizes the behavioural biomarkers of AD that have
been found up to date.

4. Critical review

This section aims at critically analyzing the state of the art that
has been reviewed in the previous section.

As said before, nowadays, AD diagnosis relies on cognitive
assessment by means of tests such as the MMSE, on the use of CSF­
based biomarkers and in the last years, on the use of some medical
imaging modalities, namely, PET, CT and sMRI for brain imaging. All
these methods are considered to be reliable biomarkers. However,



they present some drawbacks that make impossible their use for
early AD detection.

On one hand, they only offer information about the current
health condition of the patient and not about the evolution of the
disorder. Data can be sampled from time to time, but may not
be suitable for detecting the subtle changes which could indicate
an early stage of a  major problem [296] neither realistic to  carry
out a continuous monitoring of the disease progress [297]. Actu­
ally, they are only measured when the affected themselves or the
people around them realize or suspect about the severity of the
situation, and this is too late in the vast majority of the cases.
Consequently, the appreciation of suffering from cognitive impair­
ment often comes too late, when health problems already manifest
themselves [298].

On the other hand, psychological or cognitive assessment ques­
tionnaires can be  too subjective and may lack sensitivity [299]
whereas they require the full attention of the user. Regarding CSF
measurements, they are intrusive, costly and slow methods of
analysis [300]. Furthermore, all of these current tests, are “usu­
ally administered in a physician’s office or a rehabilitation facility,
causing inconvenience for the patient, using valuable health­
care resources, making frequent monitoring unrealistic” [296] and
therefore, precluding an early diagnosis. As said before (see Sec­
tion 1.3), early detection of AD would bring many benefits, in
terms of treatments’ effectiveness and accuracy of diagnosis. There
are enough evidences affirming that treatments are much more
effective when they are applied in the early stages, allowing the
cognitive decline to be stopped or at least, slowed down. Further­
more, when the patient is still able to  answer to questions and to
recall the order in where symptoms appeared, diagnosis can be
much more accurate. Consequently, health­care costs can decrease
while quality of life of patients can greatly improve, allowing them
to make choices about their future (legal and financial decisions,
how they want to be  cared,. .  .).

All these facts show the great importance of an early detection.
Therefore, it is necessary to develop an ubiquitous monitoring sys­
tem for AD and related diseases so that even the possible decisive
subtle changes can be detected. Such a  system should work in a
completely unobtrusive and transparent manner, i.e. embedded
in every day’s environment, in  order to be practical the massive
real use. In order to achieve this goal, the two research gaps that
have been identified in the literature and which are more in­depth
explained in the following paragraphs should be overcome.

4.1. Multimodal analysis

Most of the recent research on AD diagnosis has been mainly
focused on the search for biomarkers in physiological signals. A field
much less present in  the literature is that of behavioural markers.
Furthermore, historically, behaviour assessment has been done by
means of tests and scales whereas automatic behaviour assessment
is  a  much more recent research subject.

This latest development has allowed to analyse behavioural fea­
tures, leading to multi­domain analysis. Nonetheless, these studies
use both physiological and behavioural features as independent
informations, whereas the underlying relationships between the
variables remain unanalysed.

Correlational studies of the literature between physiological and
behavioural or psychological symptoms affirm that there exist rela­
tionships between symptoms of the different domains. Examples
include the work of Tagai et al. [301], who used MRI and SPECT
imaging modalities to relate anxiety of AD patients to the brain
biomarkers or Poulin et al. [302] who also studied anxiety in rela­
tion to MRI markers. Delusions, apathy and agitation were also
compared to markers on MRI images by others [303], as well as  dis­
inhibition and eating disorders with FDG­PET. In all of these cases,

psychological and behavioural symptoms were assessed by means
of tests such as the BEHAVE­AD or the NPI.

This type of studies have highly contributed in understanding
the nature of AD. Nonetheless, as  the emergence of ubiquitous com­
puting and smart environments is very recent, there are not yet
studies in where these both types of symptoms are related using
automatic behaviour assessment methods. Therefore, such a study
would be desired, not only to increase knowledge about the disor­
ders and their effects, but also to progress towards an ubiquitous
system for the early detection of these affections.

4.2. Temporal nature of AD

Current work related to AD diagnosis is mostly cross­sectional
studies. The problem is posed as a classic supervised classification
problem, where samples of people belonging to different groups
(control, MCI and AD groups) are taken at a given time, and after
applying signal processing algorithms and feature extraction tech­
niques, part of the data is  used for training purposes for the selected
classifier whereas the remaining data is used for the final classifi­
cation and validation purposes. This way, the validity of the signals
or image modalities, the signal processing techniques, the selected
features and the chosen classifiers and other parameters used in
the classification model are evaluated. This process has allowed for
a long time to increase our understanding and knowledge levels
about the physiological process behind these disorders, as well as
to move towards an earlier and more accurate detection.

AD is a disorder that progresses over time, so that its state in a
certain point in time is not independent from the state in a previous
point in time. Nonetheless, the vast majority of the research does
not take its temporal/sequential nature into account and only a few
exceptions that have used hidden Markov models have been found
in the literature. Furthermore, latencies from triggers to the occur­
rence of symptoms are never taken into account: The correlation
between multivariate signals is only analysed taking into account
their values in paired moments, and not analyzing how they evolve
over time. Longitudinal studies allow to see these changes over the
course of time, both to analyse how the situation under investiga­
tion affects an individual or to see the group differences that can
be  found over time, as well as  to clarify the sequences in  variables
and deduce correlations and causalities.

Therefore, it is necessary to focus more on methods that exploit
the behaviour of symptoms longitudinally, treating them as tempo­
ral or sequential signals and applying the correspondent analysis
techniques, which could help discover heretofore unknown pat­
terns.

5. Useful tools for AD research

The scientific community is turning increasingly to research on
Alzheimer’s and this is partly due to the availability of data and tools
for this purpose. In this section, we briefly review the existing pub­
lic AD databases, in addition to the so necessary image processing
basics and the neuroimaging processing toolboxes which are avail­
able to researchers.

5.1. Publicly available AD datasets

In the recent years, several longitudinal studies have been car­
ried out and the resulting datasets have been made available to the
scientific community in order to facilitate the research of MCI and
AD biomarkers that could lead to  an earlier detection of the disease.

• Physiological data
Regarding physiological data, one of the best known publicly

available databases is ADNI [99]. It  is a big multi­site project and



it has been funded by the US National Institutes of Health in a
partnership with the pharmaceutical industry [304]. The initia­
tive was launched in 2003 and it’s currently on its third phase
(ADNI, ADNI GO and ADNI 2). ADNI’s main goal has been to ana­
lyse the progression of MCI and early AD by means of clinical and
neuropsychological tests, MRI and PET brain imaging modalities
and some other biological markers, so as  to  identify sensitive and
specific biomarkers for early AD detection [28]. Some remark­
able works have resulted from this database, allowing to increase
our understanding about the disease. For example, thanks to
ADNI, it is currently known that AD starts to develop many years
before symptoms are manifested [305,306], as well as the order
in which biomarkers become abnormal [307,308] or the order
in which atrophy of the brain occurs [309,310]. Identification of
new biomarkers (in blood [311], ˛­Synuclein [312],. .  .) is also in
progress. The review of Weiner et al. [313] highlights the major
findings of the ADNI database up to 2015. Besides, ADNI has also
encouraged the creation of other datasets of similar characteris­
tics [313].

Another MRI dataset available thanks to the Washing­
ton University AD Research Center, Dr. Randy Buckner at
the Howard Hughes Medical Institute at Harvard Univer­
sity, the Neuroinformatics Research Group at Washington
University School of Medicine, and the Biomedical Informat­
ics Research Network (BIRN) is the Open Access Series of
Imaging Studies [314]. It  contains both longitudinal and cross­
sectional datasets where people of different cognitive states are
included, starting from healthy subjects to elderly with mild to
moderate AD.

The Australian Imaging, Biomarker & Lifestyle Flagship Study
of Ageing [315] is a longitudinal study database and it is active
since November 2006. It includes MRI and PET imaging data of
healthy subjects, and MCI and AD diagnosed subjects, as  well as
their medical history, neuropsychological scores, blood analysis
and other non­imaging data.

The Minimal Interval Resonance Imaging in AD database is
also publicly available on the web [316] since 2013. This dataset
includes MRI scans of both AD diagnosed people and healthy­
subjects taken at different time intervals. The aim of the study
was to investigate the usefulness of MRI for clinical trials of AD
treatments.

The National Alzheimer’s Coordinating Center [317] also offers
a database with clinical evaluations, neuropathology data and
MRI imaging of people with AD or related disorders, with MCI
and healthy subjects.

• Behavioural data
Although in a much smaller amount, there are also some

behavioural datasets available for researchers. For example, the
Oregon Center for Aging and Technology [318] has made acces­
sible a database where longitudinal in­home activity sensor data
of some elder is included, as well as their health forms and neu­
ropsychological tests. Data of the Dem@care project [319] is also
available under request, where audiovisual recordings and sleep,
motion and physiological data collected in the Greek Alzheimer’s
Association for Dementia and Related Disorders and in partici­
pants’ homes can be found.

• Others
Genomics Databases such as The National Institute on Aging

Genetics of AD Data Storage Site [320] also exist.

5.2. Standard methods for medical imaging analysis

The use of the aforementioned brain imaging modalities for AD
research, involves having to  apply several image processing tech­
niques, which will be selected depending on the nature of the

images to be treated and their specific characteristics. The common
steps for medical image analysis are listed below [321]:

• Enhancement
The aim of enhancement algorithms is to reduce image noise,

to increase the contrast of structures of interest and to improve
the spatial resolution. They enhance the quality of the image, and
might ease the subsequent diagnosis both visually or by means
of (Computer Aided Diagnosis) CAD systems. Linear, non­linear,
fixed, adaptive, pixel­based or multi­scale methods exist for this
purpose. Basic image enhancement techniques are thoroughly
explained in [322].

• Segmentation
Segmentation is the process of dividing an image into regions

with similar properties [323], therefore, to subdivide the objects
in an image [324]. It allows to study the anatomical structure, to
identify ROIs, to measure tissue volumes, and so on. This group
of algorithms includes techniques like thresholding, region grow­
ing, deformable templates, edge­based segmentation and pattern
recognition techniques such as neural networks and fuzzy clus­
tering. Measurements and following processing steps rely on
segmented regions, so it is a crucial step. [325]

• Quantification
Once the images have been segmented, quantification algo­

rithms can be applied so as to obtain diagnostic information such
as the shape, size, texture, and density of tissues, musculoskeletal
angle, kinematics, and stress or ventricular motion, myocardial
strain, and blood flow [326]. The aim of quantification is to obtain
precise, fast, repeatable and objective measurements of these
properties. Refs. [327,328] explain the basics of 2­dimensional
and 3­dimensional quantitative analysis, respectively.

• Registration
The aim of image registration is  to “determine a spatial trans­

formation that will bring homologous points in images being
registered into correspondence” [329]. Registration of images
is usually required to  enable comparisons between both cross­
sectionally and longitudinally obtained images. The algorithms
used for this purpose should overcome distortion problems
caused by differences in imaging methods, their artifacts, soft tis­
sue elasticity and variability among subjects. Specially, PET [330]
and MRI [331] modalities are affected by this type of distortions,
due to hardware imperfections, motion of subjects and to the
intrinsic physics behind the image acquisition and reconstruc­
tion process. A  throughout review of medical image registration
techniques was recently published by Oliveira and Tavares [332].

• Visualization
Graphics hardware and software specifically designed to facil­

itate visual inspection of medical data should be mentioned
herein. Objectives of visualization algorithms are to generate
realistic displays for presentation of images and other informa­
tion in three or more dimensions, to develop interactive and
automated methods for manipulation of images and other data,
to implement measurement tools for quantitative evaluation and
to design and validate models that ease the interpretation and
decision­making process from the images [333,334].

• Compression, storage and communication
Storage of medical images should be done in an efficient man­

ner so as to facilitate their sharing, and this implies the use
of compression algorithms, specialized formats and standards.
Compression of images requires to adopt a  trade­off between
the storage size and information loss. Examples of compression
standards include JPEG, MPEG, and Wavelet and Fractal Com­
pression, while standards like DICOM and HL­7 are defined for
communication and storage purposes. The use of these standards
is recommended to ensure interoperability. For further informa­
tion, the reader can refer to [335,336].



            

5.3. Neuroimaging processing toolboxes

Although some years ago neuroimaging analysis was done by
visual inspection, currently, there exist methods that allow to carry
out an objective (quantitative) analysis. The automated analysis
of brain images requires good image processing skills, as well as
a sound knowledge about brain anatomy. In order to ease this
process, researchers can take advantage of the variety of freely
available toolboxes.

The statistical parametric mapping (SPM) [337] is a  toolbox for
the voxel­based morphometry (VBM) analysis of the brain from
fMRI, PET, SPECT, EEG and MEG data sequences. It entails a  voxel­
wise comparison of local brain volumes and it performs spatial
normalization, segmentation, modulation, and smoothing [338]. It
is probably the most commonly used software for brain imaging
analysis in AD research. The first release was published in 1991
and the current version is the SPM12 and during all these years it
has highly contributed to AD research [110,338,339].

Extensions to SPM are also available, for example, the “com­
putational anatomy toolbox” [340], which allows to apply diverse
morphometric methods such as VBM, surface­based morphom­
etry, deformation­based morphometry (DBM), and region­based
or label­based morphometry. Another example is the “individual
brain atlases using statistical parametric mapping software” [341],
which is an MRI segmentation tool based on MATLAB and SPM. It
allows to automatically segment brain structures and to compute
the volume of gross anatomical structures.

FreeSurfer [342] is an open source tool for processing and ana­
lyzing MRI images, but it also allows to  work with fMRI data.
Among its features are segmentation, cortical thickness estimation,
surface reconstruction, both cross­sectional and longitudinal data
processing, etc. In contrast to the VBM which is based on volumet­
ric techniques, FreeSurfer uses geometry to perform inter­subject
registration.

SurfStat [343], is a Matlab­based toolbox for the statistical anal­
ysis of univariate and multivariate surface and volumetric data for
VBM, DBM and PET data. It  enables to deal with repeated­measure
data by applying mixed­effects and random­field modeling.

The “extensible Matlab medical image analysis” [344] toolbox
allows to perform this kind of image processing in Matlab, while
“data processing assistant for resting­state fMRI” [345] enables
the application of several popular analyses on MINC files. Besides,
FMRIB Software Library [346] is an independent library that allows
to analyse fMRI, MRI and DTI data.

Other tools [347–349] are also available, and the selection of
one or the other depends on the images to be processed, the char­
acteristics or features to  be generated and the requirements and
dependencies of each tool. An extended list of free software solu­
tions for neuroimaging and medical imaging analysis can be found
in the “neuroimaging informatics tools and resources clearing­
house” website [350].

6. Real­world datasets’ issues

Currently existing datasets for AD research, such as  the ones
mentioned in Section 5.1, contain huge amounts of data. Data Min­
ing and Machine Learning algorithms are being applied to these
data in order to find out new biomarkers that could lead to an ear­
lier detection of  the disease. It is generally accepted that better
results can be achieved, if quality of the dataset is ensured.

Quality of the data will be considered satisfactory when some
conditions are fulfilled [351]. In this section, two common issues
related to the use of multimodal and multi­site real world datasets
which might jeopardize the quality of the datasets and therefore,
of the results, are discussed.

6.1. Mislabeled data

Supervised learning algorithms rely on the labels of the training
data to learn the underlying relationships and patterns that may
exist. Hence, incorrectly labeled data might deteriorate the system
performance due to the presence of noise and increase its com­
plexity since non­real patterns may also be modeled [352]. This
incorrectly assigned labels are known as “class noise”, “misclassi­
fications” or “mislabeling”. Some authors also consider to be class
noise the data outliers that might be correctly labeled but are quite
rare instances. Of course, attributes’ or features’ noise can also affect
the results of learning algorithms, but the greater importance that
the class labels have on this issue has been demonstrated both in
[353,354].

Class noise itself can be distinguished into two different prob­
lems: contradictory examples and mislabeled examples. While the
former happens when different labels are assigned to the same
attributes’ values, the latter concerns the case when the instances
are assigned to a different class than the real one.

Mislabeling is a  typical problem in real­world datasets and may
be  caused by several issues [355]. For instance, data might be  incor­
rectly labeled due to  human errors. When an expert physician is
asked to label a big dataset, he might easily get confused due to
time pressure, due to not paying enough attention to each individ­
ual case, etc. When labeling is  done by machines, design faults or too
similar cases can lead them to incorrectly label the data. Classes can
also be  wrongly introduced when datasets are being digitalized, or
might be  lost or incorrectly copied if  manipulation and backing up
is not done carefully. Furthermore, in the multi­domain and multi­
modal approach being proposed herein, sources of contradictory
labeling multiply. The unified analysis of data coming from very
different sources, requires dealing with labeling done by different
experts, scores resulting from different cognitive assessment tests
or evaluation done by any other different criteria. Therefore, the
multi­modal and multi­domain analysis leads to an even higher
ambiguity.

As said in  Section 1, the only 100% reliable AD diagnosis is
achieved by a  post­mortem analysis of the brain, which is nor­
mally no an option when collecting data for publicly available
datasets. Therefore, there is a risk that existing datasets are incor­
rectly labeled, and this is an important issue for practical machine
learning [356,357]. These datasets are commonly accompanied by
an MMSE score, but other assessment scores are also used, for
example Clinical Dementia Rating or GDS. Sometimes, more than
one of these scales are assigned to the same data, which can provoke
an ambiguous labeling. Or it might also happen that data of different
modalities of the same subject is  labeled following a different crite­
rion or different experts’ opinion: for example, AD severity might be
evaluated using MR images by an expert physician, and a different
cognitive score might be given by another expert when evaluating
PET images of the same subject.

Even if  handling the data cautiously, taking the necessary time
to analyse each instance of the data and defining clear and unified
criteria to label the data might help, it is assumed that class noise
will always exist in a greater or lesser extent. So as  to overcome this
problem, several approaches have been developed in  the recent
years [357]. Some of them aim at filtering the misclassified data
before applying the classification algorithms [352,358–360], while
others aim at performing a  robust classification despite the class
noise (the so called “noise­tolerant” techniques) [361–363]. This
type of approaches have been applied in the medical diagnostics’
domain with satisfactory results [355,351,364].

Therefore, it is of great importance to be aware of the prob­
lem that class noise poses to all classification problems which deal
with real­data, but specially to the medical domain, where peoples’
health and life are at risk. It is necessary to take the sufficient time to



            

analyse the ambiguities of the data and to apply class noise filter­
ing algorithms or noise­tolerant classifiers. Hopefully, a standard
to assess cognitive impairment levels with a high reliability will be
available within few years so that the problem of class noise can be
reduced.

6.2. Multi­site neuroimaging data

In order to achieve an improved statistical power in investigat­
ing neuroanatomic correlates of AD, it is necessary to collect the
larger number of samples possible. The most practical solution for
this purpose is to obtain data from different patient populations and
pool the collected data across multiple sites [365]. Furthermore,
this type of datasets increase the options to  acquire geographically
distributed data, to have a  wider variety of patient types, etiolo­
gies, and range of symptoms, being better representatives of the
population under study.

Nevertheless, a big challenge exists in pooled datasets and stud­
ies: technology­related variability in the images must be minimized
[366] because it might limit the power to model AD progression and
to find reliable biomarkers. Data interpretation might be affected
due to variation across centres, even if the same scanner model
is being used, as they might slightly differ, for example in MRI
scanners, in field inhomogeneity effects [367].

In order to control this type of variance, standardized phantom
studies should be used and strict quality imaging protocols must
be assured [368]. The Morphometry BIRN [369] Testbed is one of
the projects that aims at developing methods for data collection,
combination and sharing from imaging protocols. They have ana­
lysed the feasibility of pooled analyses of MRI data in normal aging
and AD, using rigorous data curation, image analysis and statisti­
cal modeling methods on data of three different sites. They have
concluded that MR data from multiple sites can be satisfactorily
pooled to investigate questions of scientific interest. Furthermore,
they found out that the use of methods such as  mixed­effects mod­
els considering site as a random effect, allows to take advantage of
expected comparability of age­related effects while accounting for
site specific effects.

Despite this major challenge, the number of multi­site clini­
cal trials has dramatically increased in the last years [370]. This
is an indicator of the recognition that policy makers and funding
organizations give them, and a sign that they understand that all
the scientific, clinical and financial investment on these type of
datasets is worthy. ADNI [99] is an example of a  successful multi­
site database in the case of AD, but other similar databases for
other diseases also exist, for instance, the Collaborative Initiative
on Fetal Alcohol Spectrum Disorders [371] or The Pediatric Brain
Tumor Consortium [372].

7. Conclusions

AD is a disorder that affects millions of people in the world, and
this number will continue increasing according to all prospects.
Other than it is a serious problem that still today there is no cure
for this disease, it is of even much more concern the lack of reli­
ability and the tardiness in the diagnosis. Two main problems have
been spotted: on one hand, patients and their family members and
friends do not realize about AD symptoms until being too late,
so when they attend specialists the treatments for delaying the
symptoms are not already effective. On the other hand, specialists
have real difficulties for diagnosing AD, because not all physiolog­
ical changes can be easily detected and furthermore, most of the
biomarkers are not unique to AD. A solution capable of dealing with
these problems is needed in order to achieve early AD diagnosis that
could improve the life quality of the patients and of the people close

to them, reducing the effects of the disease and increasing their life
expectancy.

Due to the fact that most of AD symptoms are not unique to AD,
it is necessary to find a unique combination of biomarkers for this
disease, which could allow to make a reliable diagnosis, at the most
earliest stage as  possible. This combination will not be found using
signals or images of a  single type: a multimodal system must be
implemented in order to take full advantage of all kinds of symp­
toms, detect even the smallest changes and combine them, so as to
detect AD as  early as possible.

This system, must be able to  continuously monitor the elderly
at risk of AD, so as to  detect symptoms that the patients them­
selves and the people nearby miss. Therefore, an ubiquitous and
transparent monitoring system is desired.

The multimodal symptomatology, as well as systems for mon­
itoring and detecting them have been reviewed in this article.
A summary of the reviewed literature can be found in  Table 7.
It has been seen that cognitive and psychological symptoms can
currently only be measured by means of tests or questionnaires,
and therefore, cannot be  integrated in an automated continuous
monitoring environment. Consequently, such a system must be
based on physiological and behavioural symptoms’ measurements.
While behavioural changes can be monitored ubiquitously, and in
a completely unobtrusive and transparent way for the user, being
an essential part of an early diagnosis methodology, physiologi­
cal changes must be mandatorily monitored and identified for the
diagnosis to be reliably done.

Some physiological signals and images seem to be more adapted
for this purpose than others. The reviewed results suggest that
MRI is among the most powerful tools for detecting AD, but other
methods such as the use of EEG, DTI and eye dynamics seem to  be
promising for the earliest signs. Furthermore, they are not invasive
methods as could be PET or SPECT imaging techniques or blood and
CSF tests.

Regarding the behavioural monitoring, smart homes provide a
powerful tool that can be easily integrated in  the real life of the
elderly, automatically detecting the behavioural symptoms from
the very beginning, without obstructing their daily activities. Like­
wise, gait anomalies, wandering and other symptoms can also be
detected through the use of wearables or smartphones.

In the critical analysis of the state of the art, two gaps have
been identified: on one hand, the lack of multimodal systems for
AD detection, and on the other hand, the absence of ubiquitous
systems that monitor patients continuously and analyse their tem­
poral data.

Tools that might help in the development of a  system of these
characteristics exist. In this line, both physiological and behavioural
datasets of AD patients are available to the research commu­
nity. The processing and analysis of biomedical images involve
consideration of some standard steps that have been reviewed
herein. Moreover, even if the analysis of neurological images might
suppose a  trouble for researchers who are not experts in image
processing and neuroanatomy, toolboxes to ease this process exist
and are freely available. Nonetheless, some basic skills about these
subjects remain necessary for their proper use.

Some issues might appear when working with multimodal
datasets, as proposed in this paper. On one hand, datasets are
labeled using different criteria, and therefore, their combination
might not be trivial. Furthermore, this criteria has rarely been the
result of the post­mortem diagnosis of AD patients, which may
imply some data to be incorrectly labeled. Methods to overcome
this “noisy labeling” exist: both filtering methods to detect and
remove these erroneous data and machine learning algorithms
that get over this drawback. Therefore, it is important to take into
account the possible presence of noisy data when working with our
datasets and to apply the appropriate method for each case. Mixing



Table 7

Reviewed literature.

Reference Dataset Subj. Signal Feature red. Classification Best results

[113] OASIS 90 MRI – ANN CTL vs AD: 83%
[26] ADNI 218 MRI – SVM + Bayes + SVM CTL vs AD: 87, MCI vs AD: 72.23, MCI vs CTL:

78.22
[28] ADNI 818 MRI Thresholding

(intensity > 10% max.
intensity)

SVM AD vs CTL: 88.49, AD vs MCI: 78.92, MCI vs
CTL: 85.4

[373] ADNI 800 MRI – SVM AD vs CTL: 85.7, MCI vs CTL: 78.2
[56] ADNI 834 MRI – LDA &SVM AD vs CTL: 89, pMCI VS CTL: 84, pMCI vs sMCI

68
[112] OASIS 457 MRI – ANN 89.22
[30] ICBM + Centro San

Giovanni
299 MRI – SVM, LDA, QDA 82 (SVM)

[105] ADNI 829 MRI PCA, k­best SVM AD vs CTL: 98.95, AD vs MCI: 87.3, MCI VS CTL:
90.64

[114] ADNI 60 MRI (long.) DA SVM (RBF) AD vs CTL: 91.7
[115] ADNI 132 MRI (Long.) Lasso regularization Logistic regression

(LR)
MCI vs AD: 60 in males, 83.78 in females

[134] ADNI 40 fMRI – SVM 97.5
[135] Washington Univ.

ADRC
41 fMRI + MRI Symmetrical

uncertainty
(correlation)

Improved RF AD vs CTL: 88, AD1 vs AD2 vs CTL: 80.5, AD1 vs
AD2 vs CTL1 vs CTL2: 87 (only fMRI)

[136] – 41 fMRI Symmetrical
uncertainty
(correlation)

RF AD vs CTL: 95.5, AD1 vs AD2 vs CTL: 87, AD1 vs
AD2 vs CTL1 vs CTL2: 93

[19] – 73 DTI ReliefF algorithm SVM (RBF) MCI vs CTL: 92.9, MCIna vs MCIa vs CTL:92.785
[173] Duke­UNC BIAC 27 DTI +  fMRI – SVM (mixed

kernel)
MCI vs CTL: 96.3

[174] – 137 DTI +  MRI Information gain (IG)
criterion

SVM (RBF) AD vs CTL: 80.3 FA, 83.3 MD, 82.7 WMD, 89.3
GMD

[82] ADNI 375 18F­FDG­PET – SVM (linear &RBF) AD vs CTL: 94.6 (LDA, linear SVM), AD vs MCI:
81 (PCA, RBF), MCI vs CTL: 79.7 (LDA, RBF)

[83] ADNI 57 11C­PiB­PET
&18F­FDG­PET

PCA SVM (multi­kernel) CTL vs AD: 94.12, CTL vs MCI: 82.05

[84] ADNI 219 + 91 PET &SPECT – SVM linear
&quadratic

96.7 AD vs CTL quadratic &SPECT

[86] – 60 + 79 PET &SPECT – Bayes 98.3 PET, 88.6 SPECT
[85] ADNI 401 PET – SVM AD + MCI vs CTL: 77.97, AD vs CTL: 88.24, MCI

vs CTL: 70.21
[97] Virgen de las Nieves

Hospital
52 SPECT

99mTcECD
FDR SVM (RBF) 90.38

[98] Virgen de las Nieves
Hospital

79 SPECT
99mTcECD

– SVM (RBF) 96.91

[94] Virgen de las Nieves
Hospital

79 SPECT
99mTcECD

t­test with feature
correlation weighting

SVM (linear) 98.3

[196] – 286 EEG ANOVA IFAST (ANN) CTL vs MCI: 93.16
[198] Rome’s Neurology Unit

of Policlinico Campus
Bio­Medico

272 EEG MS­ROM kNN, naïve Bayes,
QDC

AD vs CTL: 93.48, AD vs MCI: 94.05, CTL vs
MCI: 97.88

[197] – 295 EEG IFAST noise elimination IFAST (ANN) AD vs MCI: 92.33
[195] – 143 EEG IFAST IFAST (ANN) MCI vs MCI/AD: 85.98
[199] – 35 EEG – SVM (RBF) AD vs CTL: 79.9, AD vs CTL (personal): 86.97
[35] – EEG Manual SVM (quadratic) MCI vs CTL: 96.8, AD vs CTL: 96.9, AD vs MCI:

90.9, AD vs MCI vs CTL: 85.4
[211] – 41 MEG – ANFIS (fuzzy) AD vs CTL: 85.37
[212] – 62 MEG – 77.42 (SSE)
[213] – 41 MEG – 87.8
[214] – 24 MEG – 70.83
[284] – Speech –
[27] – 40 Speech – SVM, LDA, DT 90 (SVM &DT)
[286] – 40 Speech – MLP 93.02
[40] – 40 Speech – SVM 97.7
[221] – Eye movement – SVM (RBF), Bayes,

LR
87 MCI vs CTL SVM

[229] – 25 Eye movement –
[255] ORCATECH 97 Smart homes Remove­one­feature

process
SVM AUC of the ROC curve of 0.97 and AUC of the

precision­recall curve of 0.93
[256] CASAS 18 Smart homes – SVM cognitively best vs worst: 71.75
[113] OASIS 98 MRI – ANN 83
[252] – 14 Smart homes – –  –
[254] – 14 Smart homes – –  –
[253] – 109 IADLs – –  –
[270] – 16 Gait – –  –
[271] – 427 Gait – –  –
[272] – 57 Gait – –  –



            

data of different sites might also pose a  problem due to differences
in hardware or imaging protocols, but as it has been seen shown in
this paper, standardized phantom studies, rigorous data processing
and statistical modeling can successfully help in overcoming this
issue.

An unobtrusive and transparent early AD diagnosing method is
yet to be developed. This article has reviewed the state of the art in
AD diagnosis, emphasizing in automatic and CAD systems, in order
to facilitate and accelerate the design and development of such a
system that can overcome the current biggest challenge of AD.
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