Solving nonlinear diffusive problems in buildings by means of a Spectral Reduced-Order Model

Abstract : This paper proposes the use of a Spectral method to simulate diffusive moisture transfer through porous materials as a Reduced-Order Model (ROM). The Spectral approach is an a priori method assuming a separated representation of the solution. The method is compared with both classical Euler implicit and Crank-Nicolson schemes, considered as large original models. Their performance - in terms of accuracy, complexity reduction and CPU time reduction - are discussed for linear and nonlinear cases of moisture diffusive transfer through single and multi-layered one-dimensional domains, considering highly moisture-dependent properties. Results show that the Spectral reduced-order model approach enables to simulate accurately the field of interest. Furthermore, numerical gains become particularly interesting for nonlinear cases since the proposed method can drastically reduce the computer run time, by a factor of 100, when compared to the traditional Crank-Nicolson scheme for one-dimensional applications.
Type de document :
Pré-publication, Document de travail
42 pages, 22 figures, 2 tables, 51 references. Other author's papers can be downloaded at http://.. 2017
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01513304
Contributeur : Denys Dutykh <>
Soumis le : lundi 16 avril 2018 - 17:19:13
Dernière modification le : jeudi 28 juin 2018 - 12:38:02

Fichiers

SG_JB_DD_NM-Spectral1-2018.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License

Identifiants

  • HAL Id : hal-01513304, version 2
  • ARXIV : 1704.07607

Collections

Citation

Suelen Gasparin, Julien Berger, Denys Dutykh, Nathan Mendes, Arxiv Org, et al.. Solving nonlinear diffusive problems in buildings by means of a Spectral Reduced-Order Model. 42 pages, 22 figures, 2 tables, 51 references. Other author's papers can be downloaded at http://.. 2017. 〈hal-01513304v2〉

Partager

Métriques

Consultations de la notice

183

Téléchargements de fichiers

45