More accurate complex multiplication for embedded processors
Claude-Pierre Jeannerod, Christophe Monat, Laurent Thévenoux

To cite this version:

HAL Id: hal-01512760
https://hal.archives-ouvertes.fr/hal-01512760v2
Submitted on 11 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
More accurate complex multiplication for embedded processors

Claude-Pierre Jeannerod*, Christophe Monat†, Laurent Thévenoux*

*Inria – Laboratoire LIP (CNRS, ENS de Lyon, Inria, UCBL), Université de Lyon, France
† STMicroelectronics, Compilation Expertise Center, Grenoble, France

Abstract—This paper presents some work in progress on the development of fast and accurate support for complex floating-point arithmetic on embedded processors. Focusing on the case of multiplication, we describe algorithms and implementations for computing both the real and imaginary parts with high relative accuracy. We show that, in practice, such accuracy guarantees can be achieved with reasonable overhead compared with conventional algorithms (which are those offered by current implementations and for which the real or imaginary part of a product can have no correct digit at all). For example, the average execution-time overheads when computing an FFT on the ARM Cortex-A53 and -A57 processors range from 1.04x to 1.17x only, while arithmetic costs suggest overheads from 1.5x to 1.8x.

I. INTRODUCTION

Complex arithmetic is ubiquitous in scientific computing and signal processing applications, and for recent embedded processors with floating-point units it is in general supported by the compiler via direct floating-point translations of the usual formulas. For example, given four floating-point numbers \(a, b, c, d\), the sum and the product of the complex numbers \(a + ib\) and \(c + id\) are obtained by evaluating in floating-point the real and imaginary parts of \((a + c) + i(b + d)\) and \((ac - bd) + i(ad + bc)\), respectively.

For complex addition this is entirely satisfactory: assuming that the available floating-point units comply with the IEEE 754 standard [1], both \(a + c\) and \(b + d\) will be computed with perfect accuracy as \(\text{RN}(a + c)\) and \(\text{RN}(b + d)\), with \(\text{RN}\) denoting round to nearest. For complex multiplication, however, evaluating \(ac - bd\) and \(ad + bc\) as

\[
\text{RN}(\text{RN}(ac) - \text{RN}(bd)) \quad \text{and} \quad \text{RN}(\text{RN}(ad) + \text{RN}(bc))
\]

can result in one of these two quantities having no correct digit at all. For example, in double precision, taking \(a = 1 + 2^{-51}\), \(b = 1 + 3 \cdot 2^{-52}\), \(c = 1 - 2^{-53}\) and \(d = 1 - 3 \cdot 2^{-53}\) gives

\[
\text{RN}(\text{RN}(ac) - \text{RN}(bd)) = 0,
\]

while the exact result \(ac - bd\) equals \(7.2 \times 10^{-103}\) is \(1.72 \times 10^{-31}\). In other words, the computed real part has relative error 1 and thus not even a single correct digit.

With a fused multiply-add (FMA) instruction, which evaluates expressions of the form \(ab + c\) with one rounding as \(\text{RN}(ab+c)\), things can be even worse. Indeed, not only all the digits of \(ac - bd\) but also its sign can be computed incorrectly, depending on the product chosen to be fused. For example, with the same inputs as before we now have

\[
\text{RN}(ac - \text{RN}(bd)) = 1.11 \ldots \times 10^{-16},
\]

\[
\text{RN}(\text{RN}(ac) - bd) = -1.11 \ldots \times 10^{-16}.
\]

Our goal here is to propose to replace these conventional schemes by ones which are proved to be always highly accurate, and to show that the price to pay for such numerical quality is, in practice, reasonably low. Specifically, we have implemented in GCC two alternative complex multiplication algorithms, \textsc{CMULCHT} and \textsc{CMULKAHAN}, capable of producing both the real and imaginary parts with high relative accuracy. These algorithms rely on the use of FMA instructions for computing efficiently (some of) the rounding errors of the products \(ac, bd, ad, bc\), and then refining the accuracy of \(ac - bd\) and \(ad + bc\), as proposed by Cornea, Harrison, Tang [2] and Kahan [3]. Although \textsc{CMULCHT} and \textsc{CMULKAHAN} require 2.3x and 2x more floating-point operations than their conventional counterparts (without or with an FMA, respectively), we show that for typical applications like complex FFTs on ARM Cortex-A53 and -A57, the average execution-time overheads range from 1.04x to 1.17x only.

The rest of the paper is organized as follows. After some reminders about floating-point arithmetic in Section II, we describe algorithms \textsc{CMULCHT} and \textsc{CMULKAHAN} in Section III, together with their main numerical features. The practical performances of these algorithms are demonstrated and analyzed in Section IV. We conclude in Section V with several extensions that this preliminary study suggests.

II. BACKGROUND

Hereafter, inputs and computed values will be floating-point numbers in base 2 and precision \(p\), that is, elements of the set \(\mathbb{F} = \{0\} \cup \{M \cdot 2^E : M, E \in \mathbb{Z}, 2^{p-1} \leq |M| < 2^p\}\).

For simplicity, we shall ignore exceptions like underflow and overflow by leaving the exponent range unbounded.

We write \(\text{RN}\) to denote \textit{round to nearest even}, which maps any \(t \in \mathbb{R}\) to the unique \(f \in \mathbb{F}\) satisfying the following properties: \(f\) is nearest \(t\) and, in case of a tie, its integer significant \(M\) is even. This corresponds to the rounding-direction attribute \textit{roundTiesToEven} of the IEEE 754 standard [1] and is the default way of rounding in many applications.

\[
\text{RN}(a) = a. \quad \text{RN}(ac - bd) = 1.11 \ldots \times 10^{-16}.
\]

\[
\text{RN}(\text{RN}(ac) - bd) = -1.11 \ldots \times 10^{-16}.
\]
We assume floating-point arithmetic over \(\mathbb{F} \), correctly rounded according to RN. This means that for \(a, b \in \mathbb{F} \) and \(\text{op} \in \{+, -, \times, \div\} \), instead of returning the exact result \(r = a \text{op} b \), we return the floating-point number \(\hat{r} \) defined by
\[
\hat{r} := \text{RN}(a \text{op} b).
\]

Each basic operation is thus performed with high relative accuracy. Indeed, it is well known that the exact result \(r \) and its rounded value \(\hat{r} \) are related as follows (see [4, p. 232]):
\[
\hat{r} = (a \text{op} b)(1 + \delta), \quad |\delta| < 2^{-p} =: u.
\]

This implies that the relative error \(|\hat{r} - r|/|r|\) is upper bounded by the quantity \(u \), called unit roundoff, independently of the values of \(a \) and \(b \). For the usual IEEE 754 formats, \(u \) is tiny: \(u = 2^{-24} \approx 5.9 \times 10^{-8} \) for single precision, and \(u = 2^{-53} \approx 1.1 \times 10^{-16} \) for double precision.

Similarly, when an FMA is used to evaluate \(ab + c \), we have
\[
\hat{c} := \text{RN}(ab + c) = (ab + c)(1 + \delta), \quad |\delta| < u.
\]

Furthermore, since for \(a, b \in \mathbb{F} \) the error \(e := ab - \text{RN}(ab) \) is itself in \(\mathbb{F} \) (see for example [5]), we see that a correctly-rounded product and its exact error term can be obtained in just two floating-point operations as follows:
\[
e := \text{RN}(ab), \quad e := \text{RN}(ab - c).
\]

This is the key property underlying algorithms CMULCHT and CMULKAHAN (which are detailed in the next section together with the conventional ones).

III. COMPLEX MULTIPLICATION ALGORITHMS

We describe here the four algorithms we consider for our experiments and recall their main accuracy properties.

A. Algorithm CMUL

This algorithm implements the classical scheme for complex multiplication, which evaluates the real part \(R = ac - bd \) and the imaginary part \(I = ad + bc \) as follows:
\[
\hat{R} := \text{RN}(ac - bd); \quad \hat{I} := \text{RN}(ad + bc);
\]

Writing \(z = R + iI \) and \(\hat{z} = \hat{R} + i\hat{I} \), it was shown in [6] that the normwise relative error \(|\hat{z} - z|/|z|\) is at most \(\sqrt{5}u \) and thus always tiny. However, we have seen in introduction that the componentwise relative error, defined as the maximum of \(|\hat{R} - R|/|R|\) and \(|\hat{I} - I|/|I|\), can be 1, which means that all the digits of \(\hat{R} \) or \(\hat{I} \) can be wrong.

B. Algorithm CMULFMA

This is the algorithm obtained by using the FMA operation in the obvious way:
\[
\hat{R} := \text{RN}(ac - bd); \quad \hat{I} := \text{RN}(ad + bc);
\]

Of course, three variants of this scheme are possible, depending on the products to which RN is applied. But without a priori knowledge of \(a, b, c, d \) and due to the symmetry properties of \(\mathbb{F} \) and RN, their worst-case error properties are the same. Consequently, we have chosen to implement only the scheme shown above, where RN is applied to \(bd \) and \(bc \).

Algorithm CMULFMA uses fewer floating-point operations than CMUL, but its worst-case numerical behavior is essentially the same: its normwise relative error is tightly bounded by \(2u \) (as shown in [7]), while its componentwise relative error can be 1 or more (as seen in introduction). Again, this implies that \(\hat{R} \) or \(\hat{I} \) can be totally inaccurate.

C. Algorithm CMULCHT

This algorithm is the accurate counterpart of CMUL and consists of two calls to the CHT algorithm from [2]:
\[
p_1 := \text{RN}(ac); \quad p_2 := \text{RN}(bd);
\]
\[
e_1 := \text{RN}(ac - p_1); \quad e_2 := \text{RN}(bd - p_2);
\]
\[
\hat{R} := \text{RN}(\text{RN}(p_1 - p_2) + \text{RN}(e_1 - e_2));
\]
\[
p_3 := \text{RN}(ad); \quad p_4 := \text{RN}(bc);
\]
\[
e_3 := \text{RN}(ad - p_3); \quad e_4 := \text{RN}(bc - p_4);
\]
\[
\hat{I} := \text{RN}(\text{RN}(p_3 + p_4) + \text{RN}(e_3 + e_4));
\]

The rounding error analysis of the CHT algorithm implies that \(|\hat{R} - R| \leq 2u|R|\) and \(|\hat{I} - I| \leq 2u|I|\); see [8]. Hence both \(\hat{R} \) and \(\hat{I} \) are computed with high relative accuracy.

D. Algorithm CMULKAHAN

If instead of CHT we use Kahan’s technique [3], we obtain the following accurate counterpart of CMULFMA:
\[
p_1 := \text{RN}(ac);
\]
\[
\hat{R} := \text{RN}(\text{RN}(p_1 - bd) + \text{RN}(ac - p_1));
\]
\[
p_3 := \text{RN}(ad);
\]
\[
\hat{I} := \text{RN}(\text{RN}(p_3 + bc) + \text{RN}(ad - p_3));
\]

Again, three variants could be considered, depending on which products are chosen to set up \(p_1 \) and \(p_3 \). Furthermore, it follows from [9] that the relative errors of both \(\hat{R} \) and \(\hat{I} \) are at most 2u.

IV. EXPERIMENTAL RESULTS

In this section we first describe the experimental environments we use both in terms of hardware and software. Then we illustrate the performance of our alternative complex multiplication algorithms through the case study of some Fast Fourier Transform (FFT) code. Performance measurements are provided by hardware counters by means of GCC’s function instrumentation facility and the PAPI library [10].

A. Experimental environment description

We focus on ARMv8 hardware such as Cortex-A53 (CA53) and Cortex-A57 (CA57), in the 64-bit AArch64 execution state. The CA53 is an 8-stage (up to 10) pipelined processor with 2-way superscalar, in-order execution pipeline. The CA57 is a 15-stage (up to 24) pipelined processor with 3-way superscalar, out-of-order execution pipeline. Since there is no...
publicly available ARM documentation detailing these micro-architectures, we consider that the CA53 and CA57 follow the micro-architecture of their predecessors, the Cortex-A7 and Cortex-A15, as alleged in [11, p. 476]. We use an ARM Juno r1 development board to perform our measurements. On this board, the CA53 (revision r0p3) runs at 850 MHz and has two L1 caches of 32 KB and one L2 cache of 1 MB. The CA57 (revision r0p1) runs at 1.1 GHz, has one L1 instruction cache of 48 KB, one L1 data cache of 32 KB, and one L2 cache of 2 MB. Moreover, the board gets 7.8 GB of DDR3.

The four algorithms of Section III have been implemented in GCC and a new option has been introduced (-fcx-lr-select=cht|default|fma|kahan), which allows us to select one of them. The main contribution concerns the complex multiplication expansion. It occurs when complex operations a discrete Fourier transform (DFT) [14]. Assuming that the complex exponential terms are given complex numbers and $\omega = e^{-\frac{2\pi i}{N}}$; see [14].

Figure 1 shows the performance overheads due to using CMulCHT and CMulKahan instead of CMul and CMulFMA, for double precision and on the CA57. Measurements are done for $N \in \{2^3, 2^4, \ldots, 2^{18}\}$ and the four main optimization levels -O0, -O1, -O2, -O3 of GCC.
optimization level. Therefore, the more code size is reduced thanks to compiler optimizations, the more the extra floating-point operations used by the accurate algorithms become apparent. For example, in -0.3 and for $N = 2^{10}$, the number of executed instructions for CMUL is 202,074, while CMULCHT executes 246,173 of them.

Algorithm 1 Pseudocode for the Cooley–Tukey algorithm.

```python
procedure FFT(A, N, s)
    if N = 1 then
        X(0) ← A(0)
    else
        X(0, . . . , N/2 − 1) ← FFT(A, N/2, 2s)
        X(N/2, . . . , N − 1) ← FFT(A + s, N/2, 2s)
        for k = 0 to N/2 − 1 do
            t ← X(k)
            X(k) ← t + e^{-2πik/N} . X(k + N/2)
            X(k + N/2) ← t − e^{-2πik/N} . X(k + N/2)
        end for
    end if
    return X(0, . . . , N − 1)
end procedure
```

The bottom plots in Figure 1 show that, on the other hand, the execution time overheads are quite reasonable. On average (in the sense of the geometric mean), CMULKAHAN is only 1.04x slower than CMULFMA, and CMULCHT is only 1.17x slower than CMUL. We remark that overheads constantly grow until $2^8 \leq N \leq 2^{10}$ and then do not vary much for larger values of N. Indeed, for $N \in [2^8; 2^{10}]$, the data have size ranging from 32 KB to 128 KB and do not fit in L1 cache anymore. Memory transfer costs, for larger values of N, compensate part of the introduced overhead. We also remark that these overheads observed in practice are smaller than those suggested by mere flop counts. For example, the theoretical overhead (in flops) of CMULCHT over CMUL is 1.8x, while measurements expose overheads ranging from 0.98x to 1.35x. This is mainly due to the instruction-level parallelism exploited by the pipelines of the CA57.

For this case study, the results we have obtained for single precision and the CA53 are similar. Focusing on the execution-time overhead, a global summary is given in the table below. On average, we see that the overhead due to using CMULCHT is of about 17%, while it is less than 10% for CMULKAHAN.

<table>
<thead>
<tr>
<th>overhead target</th>
<th>CMULKAHAN / CMUL Cortex-A53</th>
<th>CMULKAHAN / CMUL Cortex-A57</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>1.1589</td>
<td>1.0952</td>
</tr>
<tr>
<td>double</td>
<td>1.1702</td>
<td>1.0543</td>
</tr>
</tbody>
</table>

V. CONCLUDING REMARKS

This work in progress shows encouraging results concerning the overhead of highly accurate complex floating-point multi-

plication. Accuracy improvement overheads are reasonable thanks to exploitation of the FMA and to the code generation that GCC provides. Overhead minimization is also partially due to the instruction-level parallelism provided by the multi-pipelined execution units of the CA53 and CA57. The FFT case study illustrates that computing with more accuracy only slows down the execution time by a factor from 1.04x to 1.17x on average.

In a future work, we will extend this study to other complex arithmetic operations such as division. We also plan to reduce the overheads by providing still accurate but faster specialized algorithms, as for example the multiplication of a complex number by its conjugate (which can be done faster than the original CMUL itself). Since all our algorithms are implemented in GCC, we plan to study their performances on other architectures as well, notably the x86. Finally, these improved multiplication algorithms are available as a patch on top of the GCC compiler, along with specific test cases and documentation. We intend to propose these changes to be integrated upstream in the near future.

ACKNOWLEDGMENT

This research was partly supported by Programme Nano 2017. Access to the Juno board used in this paper was gracefully granted by Laboratoire LIG and Inria.

REFERENCES