Möbius disjointness for models of an ergodic system and beyond

Abstract : We give a necessary and sufficient condition (called the strong MOMO property) for a uniquely ergodic model of an ergodic measure-preserving system to have all uniquely ergodic models of the system Möbius disjoint. It follows that all uniquely ergodic models of: ergodic unipotent diffeomorphisms on nil-manifolds, discrete spectrum automorphisms, systems given by some substitutions of constant length (including the classical Thue-Morse and Rudin-Shapiro substitutions), systems determined by Kakutani sequences are Möbius disjoint. We also discuss the absence of the strong MOMO property in positive entropy systems.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Contributeur : Thierry De La Rue <>
Soumis le : lundi 24 avril 2017 - 10:44:39
Dernière modification le : mardi 5 juin 2018 - 10:14:09

Lien texte intégral


  • HAL Id : hal-01512648, version 1
  • ARXIV : 1704.03506


El Houcein El Abdalaoui, Joanna Kulaga-Przymus, Mariusz Lemanczyk, Thierry De La Rue. Möbius disjointness for models of an ergodic system and beyond. 2017. 〈hal-01512648〉



Consultations de la notice