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Modeling soil moisture±reflectance

Etienne Muller�, Henri DeÂcamps

Centre d'Ecologie des SysteÁmes Aquatiques Continentaux (CESAC), UMR C5576, CNRS, University Paul Sabatier, 29, rue Jeanne Marvig,

31055 Toulouse Cedex 4, France

Abstract

Spectral information on soil is not easily available as vegetation and farm works prevent direct observation of soil responses. However,

there is an increasing need to include soil reflectance values in spectral unmixing algorithms or in classification approaches. In most cases,

the impact of soil moisture on the reflectance is unknown and therefore ignored. The objective of this study was to model reflectance changes

due to soil moisture in a real field situation using multiresolution airborne Spot data. As the direct observation of soils is only possible in the

absence of vegetation, the effective remote sensing of soil moisture is limited to a few days each year. In such a favorable time window,

modeling the soil moisture±reflectance relationships was found possible. The proposed exponential model was not valid when all soil

categories were considered together. However, when fitted to each category, the RMS error on moisture estimates ranged from 2.0% to 3.5%

except for silty soils with crusting problems (6%). Results also indicated that, when the soils have similar colors (i.e. same hue), soil

categories can be partly grouped and the model can be simplified, using the same intercept coefficients. This study has potential application

for the definition of a more generalized model of the soil reflectance. It shows that the impact of soil moisture on reflectance could be higher

than differences in reflectance due to the soil categories.

1. Introduction

Deriving soil moisture from spectral data has important

application in agriculture and in hydrology. Early studies on

soil samples in laboratory conditions showed that the

reflectance at all wavelengths in the range 0.4±2.5 mm
decreased as the moisture content increased (Bowers &

Hanks, 1965; Hoffer & Johannsen, 1969). This general

trend was first modeled by Skidmore, Dickerson, and

Shimmelpfennig (1975), with oven-dry soil samples at the

wavelength of 1.95 mm. The authors considered that wave-

lengths other than highly moisture-sensitive ones could be

used as well. However, deriving soil moisture from remote

sensing data remains rather difficult, as the reflectance of a

soil is not just a function of moisture but is affected by

intrinsic soil factors: amount of organic matter, particle size

distribution, mineral composition, and color of soil elements

(Escadafal, Girard, & Courault, 1989; Hoffer & Johannsen,

1969; Hovis, 1966; Mattikalli, 1997; Stoner & Baumgard-

ner, 1981). Moreover, as the penetration of the signal in the

soil is small, disturbances in the superficial layer or in the

roughness of the soil aggregates modify soil reflectance

(Boissard, Pointel, Renaux, & Begon, 1989; Cierniewski,

1987; Courault, 1989). In the laboratory, soil structure is

generally destroyed prior to reflectance measurement on

samples, and in the field, soil structure is variable and

continuously modified by farm works or by the climate.

In addition, crop residues or active vegetation may drasti-

cally disturb the spectral responses of soils or prevent a

direct observation. Reflectance of soils depends also on the

sun± target ± sensor geometry. Jaquemoud, Baret, and

Hanocq, (1992) developed in the laboratory the SOILSPEC

radiative transfer model that accounts for both the soil

roughness, the solar±view angle geometry, and the intrinsic

optical properties of soils materials to compute soil bidirec-

tional reflectance from 450 to 2450 nm. One of the model's

parameters, the single scattering albedo, w, is independent of
soil roughness and measurement conditions (sun and view

angles), and depends only of the intrinsic optical properties

of soil material in a given wavelength. Jaquemoud et al.

(1992) showed that w decreases with soil moisture, but their

data set was not sufficient to propose a model that describe

the effect of soil moisture on w.
The penetration of the signal is better in the thermal

infrared and in the microwave domains and both domains

have in some circumstances a better potential for monitoring

the soil moisture (Davidson & Watson, 1995; Engman,
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1991; Schmugge, 1980, 1984; Vlcek & King, 1983). Recent

models tested for the retrieval of soil moisture using

LOTREX airborne radar (Schmullius & Furrer, 1992), AIR-

SAR (Lin, Wood, Beven, & Saatchi, 1994), or SIR-C

(Wang, Hsu, Shi, O'Neill, & Engman, 1997), gave encoura-

ging results over bare soils but not on moderately or densely

vegetated areas. Clearly, any spectral domain (e.g. reflec-

tance, thermal or microwave) has its own limitations and no

one is used to predict routinely soil moisture. However, the

reflectance domain is the most operational one, as images

are easily available at a broad range of ground resolutions.

Several studies provide solutions for estimating soil moist-

ure using reflectance images, Digital Elevation Models,

Geographic Information Systems and specific classification

algorithms (Avila, Yoshiba, Evangelista, & Rondal, 1994;

Lindsey, Gunderson, & Riley, 1992; Shih & Jordan, 1992).

However, methods are often based on the distribution of

landcover classes, rather than on the reflectance of soils.

Spectral mixture analysis has also been proposed to extract

from heterogeneous landscapes information on each com-

ponent (Borel & Gerstl, 1994; GarcõÂa-Haro, Gilabert, &

MeliaÂ, 1996). In such algorithms, reference spectra for soils

are often considered as stable or unique, and the effect of

moisture on the spectra not included in the models because

it is not known. In the literature, there is a lack of studies on

the modeling of soil moisture using reflectance data.

The present study aims at modeling the relationships

between soil moisture in real field situation and the corre-

sponding soil reflectance in images. It was assumed that a

model could be properly identified on bare soils only (i.e. on

plots without vegetation), and that, in such restricted con-

ditions, the variation in reflectance could be attributed to

soil moisture only. In other words, disturbing factors in the

field plots such as small crop residues and local microtopo-

graphic irregularities were considered as residual in the

model. The important issues were therefore the timing for

an efficient observation of soil moisture, the identification of

the model in optimum conditions and the variation of the

model with the soil type and the ground resolution.

2. Time window for an effective reflectance of soil

moisture

We showed previously (Muller & James, 1994) that the

underlying soil spectral structure of a landscape, usually

masked by the vegetation cover, could be revealed by

specific and stable soil spectral patterns and best identified

in a time series of TM images when the dominant crops are

being sowed. Over the Garonne Valley, France, a multidate

composite image was created from several single images

acquired on distinct springs in order to concentrate the

information on bare soils (more than 75% of the area could

be analyzed using six images). In the process, image data

were normalized using a method based on pseudo-invariant

objects (Muller, 1993). The classification of the composite

image provided a good partition of the study area into four

broad soil texture categories: clay, silt, silty clay, and sand.

These results suggested that the most appropriate period for

analyzing the soil moisture±reflectance relationships should

be when the subsurface structure of the soil is made

homogeneous and without vegetation following synchro-

nized preparations for sowing crops (e.g. in Europe, in

winter for wheat and rapeseed, in spring for maize and

sunflower). In the Garonne Valley, the optimum time

window corresponds, each year, to the end of April begin-

ning of May, i.e. when the dominant spring crops are sowed.

This was confirmed by a preliminary test made over an area

of 4� 4 km, big enough for observing the four contrasted

soil categories but small enough for the soils to receive the

same rainfall. Soil moisture content was measured every 10

days, from February to May on 13 sites, with two replicates

per site, distant of about 30 m. Results showed that surface

soil moisture evolved similarly to the rainfall and that there

was no significant difference between soil categories except

on the beginning of May (P < .001 at the 5% confidence

level) when the soil surface structure became homogeneous

following synchronized field preparations for the sowing. At

the preceding dates, soil surface roughness was made

heterogeneous by the plow of February or March. At the

end of May and later, the soil structure was homogeneous

but the young seedlings were increasingly growing and

direct observation of soils was difficult.

3. Modeling the soil moisture±reflectance relationships

in optimum conditions

3.1. Method

On May 6, 1993, images were acquired from a special

airborne mission using a Push Broom RAMI sensor of the

Centre National d'Etudes Spatiales (CNES) onboard the

Avion de Recherche AtmospheÂrique et de TeÂleÂdeÂtection

(ARAT) aircraft. The study area was a section of 50 km

along the Garonne Valley in order to observe a broad range

of soil moistures in each soil category. The RAMI sensor

was primarily designed for the simulation of the XS1, XS2,

and XS3 bands of the SPOT 1±2 and 3 satellites (i.e.

without the shortwave infrared band). Data were geometri-

cally and radiometrically corrected using the absolute cali-

bration coefficients and the flight parameters, and were

further simulated at six geometric resolutions (i.e. 5, 10,

15, 20, 25, and 30 m) in the three SPOT bands using the

averaging method of Marceau, Gratton, Fournier, and Fortin

(1994). Atmospheric corrections were made using the 5 S

model (TanreÂ et al., 1986).

Potential sites for simultaneous moisture measurements

and reflectance analysis were identified during the days

preceding the flight mission and reported on a topographic

map at the scale of 1:25,000. Selected sites should meet two

conditions: (1) to be a large agricultural field recently



prepared for sowing and therefore uniformly bare, and (2) to

be located strictly at the vertical of the planned flight line in

order to avoid anisotropic disturbances in the scanning

directions of the sensor. On this basis, in addition to the

absence of clouds, no more than 59 sites could be selected

over 50 km. `Randomness' of site selection was assumed on

the basis of the unpredictability of both the site location and

the cultivation practice along independent flight lines as well

as of a strict exhaustive selection of the sites along each flight

line. Each site was further affected into one of the four broad

soil categories, i.e. clay, silt, silty clay, and sand, according to

the previous classified image (Muller & James, 1994).

Four teams of three operators went to the field during the

flight mission (i.e. between 10 a.m. and 1 p.m.). They

collected soil samples on each site located on the maps.

Six soil samples per site were taken at an approximate

distance of 5 to 10 m each, i.e. two samples along the track,

two samples on the right and two samples on the left (Fig.

1). Local variability within 1 to 2 m2 was integrated by

mixing in each sample five to six subsamples. Each sample

of about half of a kilogram of soil was collected from the

very superficial millimeters of the soil, using a metallic

scraper, and were closed in a hermetic plastic box and

weighted. The boxes were opened in the laboratory and

dried in an oven at 105°C during 24 h. A drying test over 3

days showed that 24 h allowed obtaining stable dry weights.

Boxes with dry soils were then weighted and the corre-

sponding soil moisture was computed as percentage of dry

soil weight. For control purposes, the field operators had

also to draw quickly, on each site, a sketch map showing the

locations of the six soil samples and indicating the view

points and directions of at least two photographs taken with

a standard 24� 36 mm camera. This information was

crucial for better locating each sampling site in the image.

A third picture was taken vertically to provide information

on the superficial structure of the soil.

4. Results

4.1. Variation of soil moisture and reflectance

The surface soil moisture ranged from 1.9% to 32.4% of

dry soil weights over the 59 random sites (Fig. 2a). Such an

exceptional large range of soil moisture followed very

localized rains during the 48 h before the flight mission,

Fig. 1. Field sampling method for soil moisture measurements. At each site,

six soil samples were taken at distances of about 5 to 10 m, i.e. two samples

along the presumed flight line (black arrow), two samples on the left and

two samples on the right. Dotted lines show (possible) positions for the six

nested pixels extracted over the site with spatial resolutions of 5, 10, 15, 20,

25, and 30 m, respectively.

Fig. 2. Local variation of soil moisture and reflectance over the 59 sites,

ranked by increasing order of mean moisture. (a) Mean moisture value and

standard deviation (S.D.) are plotted together with the minimum and the

maximum within-site moisture value. (b) The CV computed by site for the

soil moisture (over the six samples), and for the reflectance in bands XS1,

XS2, and XS3 (over the six nested pixels and the 36 adjacent pixels).



including early showers on the day of the flight. The local

variation of soil moisture, computed for each site by the

standard deviation (S.D.) over the six independent soil

samples collected by site, fluctuated from 0.1% to 3.9%.

It only exceeded 2% on five sites where the local surface

irregularities were slightly higher than in other sites. The

mean value of the S.D. over the 59 sites was 1.1% (0.95%

when the five heterogeneous sites were excluded). There-

fore, on average, soil moisture remained rather homoge-

neous within a site (S.D. � 1%), and no pattern of

increasing or decreasing S.D. with increasing moisture

was observed.

Each site was characterized by two sets of reflectance

data: (1) six strongly dependent nested pixels, respectively

of 5, 10, 15, 20, 25, and 30 m resolution, and (2) the 36

adjacent 5-m pixels included in a pixel of 30 m and

presumed independent. For comparisons between the two

sets of data and between these two sets and the correspond-

Fig. 3. Exponential regression of the reflectance in XS1 on the soil moisture, over 59 points for all soil categories, 27 points for silt, and 23 points for silty clay

and clay.



ing variation of soil moisture, the unitless coefficient of

variation (CV) was computed within each site as the ratio of

the standard deviation by the mean value. Obviously, all CV

did not have the same meaning, but together they could

provide an indication on the range of local variation (Fig.

2b). As expected, the range of variation of reflectance was

slightly higher with the 36 adjacent pixels than with the six

nested pixels. Little difference was observed from one

spectral band to the other. The CV of reflectance remained

very low over the 59 sites, never exceeding 4% (mean 0.6%)

over six nested pixels and 9% (mean 2%) over 36 adjacent

pixels whatever the site or the spectral band. Such results

clearly indicate a strong local homogeneity of the reflec-

tance within a pixel of 30 m and strong redundancies

between spectral bands. In contrast, soil moisture CV

fluctuated from 0.6% to 45%, with a mean close to 11%

(i.e. 6 to 20 times higher than reflectance CV). Moreover,

soil moisture CV were lower on moist soils (6%) than on

dry soils (12%), the two types of soils being separated by a

soil moisture of 15%. Therefore, modeling the soil moist-

ure±reflectance relationships on dry soil is de facto more

difficult than on wet soils.

4.2. Soil moisture±reflectance relationships

The general trend of decreasing reflectance with increas-

ing moisture was not clearly observed in the soil moisture±

reflectance relationships in combining all soil sites together

(Fig. 3a). Exponential models, provided slightly better

regressions than linear models but coefficients of determi-

nation (R2) never exceeded .59 whatever the spectral band

considered. Results could not be improved by using the

three spectral bands in a multilinear regression or by

changing the geometric resolution. In the plot diagrams,

the length of each dot in the Y-axis corresponds to the range

of variation of the reflectance within the six nested pixels

Fig. 4. Comparison of parameters in exponential models obtained for

different soil categories by regressions of reflectance in XS1 on soil

moisture. RMS errors were computed for inverse models using soil

moisture as the dependent variable.

Fig. 5. Continuation for XS2.



extracted over the site. This indicates that the influence of

the spatial resolution of images is negligible on the models.

Assuming that soil reflectance varies not only with soil

moisture but also primarily with soil type, regressions were

computed by soil category. Again, exponential models

provided better regression fits than the linear models. There

was no significant difference in fit between spectral bands

and no improvement with multilinear regression using the

three spectral bands. However, important differences were

noted from one soil category to the other. In Figs. 4±6, the

comparison of the coefficients of determination showed that

the best exponential regressions for a single category were

obtained with sand or clay. The poorest results were with silt

and silty clay.

According to our results, the general model for moist-

ure±reflectance relationships is as follows (Eq. (1)):

rs�l� � rso�l�exp�as�l�M� �1�

where rs(l) is the reflectance of the wet soil s in the spectral

band l, as(l) is the reflectance attenuation factor for the soil

s in the spectral band l due to the soil moistureM, and rso(l)
is the theoretical reflectance of the soils in the spectral band

l, with a soil water content at air dryness.

Regression models using the soil moisture as the depen-

dent variable had similar R2 coefficients and RMS errors in

the estimation of soil moisture ranging between 2.3% and

6.6%, depending on the category of soil and the spectral

band (Figs. 4±6). The poorest precision was obtained with

all soil categories together or with silty soils. Results also

indicate that the soil categories may be partly combined

without degrading the model. The precision of the model

was 3.3% and 3.4% with XS1 and XS2, respectively, when

silty soils were excluded.

5. Discussion

The local variation in soil moisture, at the site level, was

rather low in terms of standard deviation (mean S.D. � 1%

over 59 sites). However, the CV for soil moisture was up to

20 times higher than for the reflectance. As already men-

tioned by Foody (1991), difficulties exist for the determina-

tion of `true' soil moisture in the field, especially as no

instrument can measure the soil moisture content within a

micrometer or less (i.e. the probable penetration depth in the

reflectance domain). Little could be expected for modeling

the relationships between soil moisture and reflectance

when considering all soil categories together. Soil texture

must be considered as a driving factor for modeling the soil

moisture, and each soil category is better characterized by

its own specific model.

In this study, the models were developed in optimum

conditions, including the artificial (but uncontrolled) homo-

genization of the surface soil structure by the farmers, i.e.

almost simultaneously using similar machines. In modern

farming, soil preparation for sowing is very uniform and

Fig. 6. Continuation for XS3.

Fig. 7. In the simplified exponential model, attenuation coefficients vary

with the soil categories and with the spectral bands, while the intercept is

the same.



potential difference on superficial soil structure due to

difference in soil texture is considerably reduced. Difference

may rather exist from one farmer to another or even from

one field to another, depending on the orientation of the very

small ridges and furrows. Such uncontrolled variations were

considered as residual in the models.

The main difference between the models was in the

attenuation factor as(l), rather than in the Y-axis intercept

rso(l). The rso(l) coefficients were very similar. This sug-

gests a simplified model (Fig. 7) using the same Y-axis

intercepts ro(l) for all soil categories, in a spectral band l
(Eq. (2)):

rs�l� � ro�l�exp�as�l�M� �2�

The approximation rso(l)� ro(l) can be justified by the

homogeneity of the colors of the soils in the study area. In

the Munsell color chart, soils are described by three

parameters: hue, value, and chroma (Munsell Color, 1975).

The hue notation relates to primary colors, the value to

lightness, and the chroma to strength. In this study, the

colors of the soils were very close. They had the same hue

(2.5Y), with values ranging from 4/ to 6/ and chroma from

/3 to /4. Clay soils were dark grayish brown/olive brown

(2.5Y 4/3) or olive brown/light olive brown (2.5Y 4.5/4),

sandy soils were light olive brown (2.5Y 5/4) or light

yellowish brown (2.5Y 6/4), and silty soils were light

yellowish brown (2.5Y 6/4). According to Escadafal et al.

(1989), increasing clay and moisture content in soils

decreases value (and chroma) but does not modify the hue.

The unity in the hue of the soils in the Garonne Valley can

probably be explained by the fact that soils have a similar

origin. The valley is characterized by large subhorizontal

geomorphologic units (i.e. Pleistocene terraces and Holo-

cene deposits in the floodplain) and alluvial deposits came

from the same area in the Pyrenees. As a consequence, all

possible combinations of soil elements do not actually

exist. Therefore, when soils have a similar origin and have

evolved under similar constraints, they may have the same

hue and therefore be modeled using the same constant

ro(l). In the models, the reflectance attenuation factors as(l)
due to the soil moisture characterizes each soil category

specifically. As noted, when two or three soil categories

are grouped together (silt excepted), the models remain

rather good (Fig. 4). It also is of importance that this study

revealed very small differences between exponential and

linear models. This suggests that linear models can be

accepted as good approximations of the exponential

models, at least over a limited range of moisture.

In this study, images were acquired between 10 a.m. and

1 p.m., and the measurements sites were samples at the

vertical of the flight lines. In other words, the effect of the

sun±soil±sensor geometry on the reflectance was not con-

sidered. As mentioned, this effect was addressed by Jaque-

moud et al. (1992), who developed a more general soil

reflectance model, the SOILSPEC radiative transfer model.

In the laboratory, they analyzed 26 soils in 42 different view

angles with five simulated TM bands, but for only three

moisture levels. Therefore, they considered that future

studies should try to relate the single scattering albedos wl

to the soil moisture content. Our soil moisture±reflectance

model based on field data and airborne images gives

indication on the type of relationships that could be used

in the SOILSPEC model.

6. Conclusion

Our study shows that there exists a relationship between

soil moisture in the field and reflectance data in images.

Therefore, the limitation of using reflectance data for

quantifying soil moisture should not be attributed to the

absence of such relationships. It can be analyzed and

modeled if remote sensing data are acquired in a favorable

time window, which varies with the study area. Our study

provides a general method to analyze and model the

reflectance changes due to soil moisture in real field situa-

tions. The proposed two-parameter exponential model has a

simple but universal structure. As any model, it needs to be

fitted to local situations in order to determine the locally

valid parameters for the model. Once the model is known, it

can be further integrated in coupled soil and vegetation

radiative transfer models, in spectral unmixing algorithms or

in classification approaches. It may therefore facilitate

extraction of information in mixed soil-vegetated areas.

The model may even have more potential applications on

natural ecosystems with low percentage vegetation cover

than on agricultural areas, due to changes in soil surface

structure with farm works in the case of crops.

Our results indicate that:

(1) The efficiency of the individual spectral bands SPOT

XS1, XS2, and XS3 are very similar, and band combina-

tions do not improve the models.

(2) In a fluvial landscape characterized by large and

uniform subhorizontal units, the models can be consid-

ered as robust for a ground resolution varying from 5 to

30 m.

(3) Best models are exponential, but linear models are

good approximations. Models are more efficient when

computed by soil category, but the efficiency remained

when soils are partly grouped excluding silt soils: soil

moisture can be estimated with a mean error of 3.3%.

(4) In the proposed models, the intercept rso(l) is repre-
sentative of the specific hue of the soil (i.e. of intrinsic stable

soil characteristics) and the reflectance attenuation factors

as(l) characterizes the impact of soil moisture on the

reflectance changes with each soil category.

(5) The reflectance seems to be a poor indicator of

the soil moisture when soils are dry (i.e. with moisture

below 10%).

(6) When soil moisture varies from 30% to � 0%,

reflectance may increase up to 100%, while differences in

reflectance due to soil categories only remain within a 50%



variation. This situation clearly shows that subtle reflectance

variations due to intrinsic soil parameters can be masked by

changes in soil moisture.

Acknowledgments

This research was supported by the Centre National de la

Recherche Scientifique (CNRS), the French MinisteÁre de

l'AmeÂnagement du Territoire et de l'Environnement (sub-

vention DGAD/SRAE 94190), and the Conseil ReÂgional

Midi-PyreneÂes (Project 9300081). It was included in the

Program ARAT (Avion de Recherches AtmospheÂriques et

de TeÂleÂdeÂtection). Special thanks are due to the Centre

National d'Etudes Spatiales (CNES) who was actively

involved in the acquisition and correction of the airborne

SPOT data, and to the colleagues and students who

participated in the field work during the flight. The authors

are also grateful to the anonymous reviewers for their

helpful comments and recommendations.

References

Avila, V. E., Yoshiba, M., Evangelista, M. A. M., & Rondal, J. L.

(1994). A methodology for soil moisture condition detection using

remotely sensed data. Asian Pacific Remote Sensing Journal, 7 (1),

109±118.

Boissard, P., Pointel, J. G., Renaux, B., & Begon, J. C. (1989). Zonage et

quantification de la stabiliteÂ structurale de sols cultiveÂs baseÂs sur des

donneÂes du satellite Landsat-TM, Application au cas d'une parcelle

d'orge en Beauce. Comptes Rendus de l'Academie des Sciences Paris,

SeÂrie II: PeÂdologie, 309, 145±152.

Borel, C. C., & Gerstl, S. A. W. (1994). Nonlinear spectral mixing models

for vegetative and soil surfaces. Remote Sensing of the Environment, 47,

403±416.

Bowers, S. A., & Hanks, R. J. (1965). Reflection of radiant energy from

soils. Soil Science, 2, 130±138.

Cierniewski, J. (1987). A model for soil surface roughness influence on the

spectral response of bare soils in the visible and near-infrared range.

Remote Sensing of the Environment, 23, 97±115.

Courault, D. (1989). Etude de la deÂgradation des eÂtats de surface du sol

par teÂleÂdeÂtection, analyses spectrales, spatiales et diachroniques. p.

237. Paris: Collection Sols, Institut National Agronomique.

Davidson, D. A., & Watson, A. I. (1995). Spatial variability in soil moisture

as predicted from Airborne Thematic Mapper (ATM) data. Earth Sur-

face Processes, 20, 219±230.

Engman, E. T. (1991). Applications of microwave remote sensing of soil

moisture for water resources and agriculture. Remote Sensing of the

Environment, 25, 213±226.

Escadafal, R., Girard, M. C., & Courault, D. (1989). Munsell soil color and

soil reflectance in the visible spectral bands of Landsat MSS and TM

data. Remote Sensing of the Environment, 27, 37±46.

Foody, G. M. (1991). Soil moisture content ground data for remote sensing

investigations of agricultural regions. International Journal of Remote

Sensing, 12, 1461±1469.

GarcõÂa-Haro, F. J., Gilabert, M. A., & MeliaÂ, J. (1996). Linear spectral

mixture modelling to estimate vegetation amount from optical spectral

data. International Journal of Remote Sensing, 17, 3373±3400.

Hoffer, R. M., & Johannsen, J. (1969). Ecological potentials in spectral

signature analysis. In: P. L. Johnson (Ed.), Remote sensing in ecology.

Athens University of Georgia Press Athens (Georgia, USA) (Chapter 1).

Hovis, W. A., Jr. (1966). Infrared spectral reflectance of some common

minerals. Applied Optics, 5, 245±248.

Jaquemoud, S., Baret, F., & Hanocq, J. F. (1992). Modeling spectral and bi-

directional soil reflectance. Remote Sensing of the Environment, 41,

123±132.

Lin, D. S., Wood, E. F., Beven, K., & Saatchi, S. (1994). Soil moisture

estimation over grass-covered areas using AIRSAR. International Jour-

nal of Remote Sensing, 15, 2323±2343.

Lindsey, S. D., Gunderson, R. W., & Riley, J. P. (1992). Spatial distribution

of point soil moisture estimates using Landsat TM data and fuzzy-c

classification. Water Resources Bulletin, 28 (5), 865±875.

Marceau, D. J., Gratton, D. J., Fournier, R. A., & Fortin, J. P. (1994).

Remote sensing and the measurement of geographical entities in a

forested environment: 2. The optimal spatial resolution. Remote Sensing

of the Environment, 49, 105±117.

Mattikalli, N. M. (1997). Soil color modeling for the visible and near-

infrared bands of Landsat sensors using laboratory spectral measure-

ments. Remote Sensing of the Environment, 59, 14±28.

Muller, E. (1993). Evaluation and correction of angular anisotropic effects

in multidate Spot and Thematic Mapper data. Remote Sensing of the

Environment, 45, 295±309.

Muller, E., & James, M. (1994). Seasonal variation and stability of soil

spectral patterns in a fluvial landscape. International Journal of Remote

Sensing, 9, 1885±1900.

Munsell Color. (1975). Munsell soil color charts. Baltimore, MD: Macbeth

Division of Kollmorgen.

Schmugge, T. J. (1980). Survey of methods for soil methods estimation.

Water Resources Research, 16, 961±979.

Schmugge, T. J. (1984). Microwave remote sensing of soil moisture. In:

Proceedings of the 11th international symposium on remote sensing of

environment ( pp. 859±875). Ann Arbor, MI: ERIM.

Schmullius, C., & Furrer, R. (1992). Some critical remarks on the use of C-

band radar data for soil moisture detection. International Journal of

Remote Sensing, 17, 3387±3390.

Shih, S. F., & Jordan, D. D. (1992). Landsat mid-infrared data and GIS in

regional surface soil-moisture assessment. Water Resources Bulletin, 28

(4), 713±719.

Skidmore, E. L., Dickerson, J. D., & Shimmelpfennig, H. (1975). Evaluat-

ing surface-soil water content by measuring reflectance. Soil Science

Society of America Proceedings, 39, 138±242.

Stoner, E. R., & Baumgardner, M. F. (1981). Characteristic variations

in reflectance of soils. Soil Science Society of America Journal, 45,

1161±1165.

TanreÂ, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, J. J., Perbos, J., &

Deschamps, P. Y. (1986). Simulation of the satellite signal in the solar

spectrum (5 S). Lille: Laboratoire d'Optique Atmospherique, UniversiteÂ

des Sciences et des Techniques (148 pp.).

Vlcek, J., & King, D. (1983). Detection of subsurface soil moisture

by thermal sensing: results of laboratory, close-range and aerial

studies. Photogrammetric Engineering and Remote Sensing, 49

(11), 1593±1597.

Wang, J. R., Hsu, A., Shi, J. C., O'Neill, P. E., & Engman, E. T. (1997). A

comparison of soil moisture retrieval models using SIR-C measure-

ments over the Little Washita River watershed. Remote Sensing of the

Environment, 59, 308±320.


