Decomposing a Graph into Shortest Paths with Bounded Eccentricity

Abstract : We introduce the problem of hub-laminar decomposition which generalizes that of computing a shortest path with minimum eccentricity. It consists in decomposing a graph into several paths that collectively have small eccentricity and meet only near their extremities. The problem is also related to that of binning appearing in biology in the context of metagenomics. We show that a graph having such a decomposition with sufficient long paths can be decomposed with approximated guar-anties on the parameters of the decomposition.
Type de document :
Pré-publication, Document de travail
MAP5 2017-18. 2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01511357
Contributeur : Léo Planche <>
Soumis le : jeudi 20 avril 2017 - 18:38:57
Dernière modification le : jeudi 15 juin 2017 - 09:09:19

Fichier

WG_2017_paper_63 (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01511357, version 1

Collections

Citation

Etienne Birmelé, Fabien De Montgolfier, Léo Planche, Laurent Viennot. Decomposing a Graph into Shortest Paths with Bounded Eccentricity. MAP5 2017-18. 2017. <hal-01511357>

Partager

Métriques

Consultations de
la notice

149

Téléchargements du document

44