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This
 
paper

 
deals

 
with

 
modeling

 
and

 
model

 
reduction

 
methods

 
intended

 
to

 
sandwich

 
structures

 
with

 viscoelastic
 
materials.

 
The

 
modeling
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is
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order

 
shear

 
deformation
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(FSDT)

 
with
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Golla–Hughes–Mc

 
Tavish
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model.
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auxiliary

 coordinates
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take
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the

 
frequency

 
dependence

 
of

 
viscoelastic

 
materials

 
which,

 
combined

 with
 
the

 
finite

 
element

 
method

 
(FEM),

 
leads

 
to

 
large

 
order

 
models.

 
This

 
paper

 
focuses

 
on

 
the

 
use

 
of

 
model

 reduction
 
methods.

 
The
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models

 
compared

 
to

 
the

 
full

 
model

 
are

 
illustrated

 
by

 
three

 
numerical

 examples
 
in

 
order

 
to

 
outline

 
the

 
performance,

 
the

 
practical

 
interest

 
of

 
these

 
methods

 
and

 
their

 
validity

 
domains.
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1. Introduction

The use of viscoelastic [1,2] sandwich structures [3] has been
regarded as a convenient strategy for many industries such as
aeronautics, marines and automotives. In fact, these structures present
a high way of vibration control in terms of lightweight and high
specific stiffness, especially when they incorporated viscoelastic
materials.

Several theories [4–7] were developed in order to approximate the
displacement and the mechanical deformation of such structures. One
of the well-known and useful theories is the classical theory of plates
(CPT), which assume that a plane section initially normal to the
midsurface before deformation remains plane and normal to that
surface after deformation. Hence, this theory neglects the effect of
shear deformations and leads to inaccurate results for laminated
plates. So, it is obvious that transverse shear deformations have to
be taken into account in the analysis. Thus, the first order shear
deformation theory (FSDT) introduced by Reissner and Mindlin [4,7]
takes into account this effect and assumes a linear variation of the
midplane displacements through the thickness of the structure. This
method has a significant advantage due to its simple implementation
and low computational cost. Another laminated theory based on
Reddy's refined [8] high order shear deformations theory (HSDT)
which includes both bending and shear effects was carried out by
Ferreira et al. [9], and by Chugal and Shimpi [10]. Unfortunately, this
method requires a prohibitive computational time which is undesir-
able for such applications. Some other researchers [11,12] have used
the layerwise theory for modeling the sandwich structures. Indeed,
this theory assumes a displacement field in the form of zigzag along
the thickness of the structure, allowing a kinematic description of each
layer as a piecewise linear function. In addition, this theory is
applicable to both thin and thick structures. Nevertheless, when the
study is intended for thin structures, the first order shear deformation
theory (FSDT) presents a suitable choice for the modeling of sandwich
structures favored by its simple implementation in most finite
element codes.

However, these structures exhibit viscoelastic damping, which
combines viscous and elastic character. Hence, this dual character
leads to a complicated behavior which requires a correct modeling
approach. More recently, Golla, Hughes and Mc Tavish [13,14] have
proposed the so-called GHM model. This model provides an
effective method which includes viscoelastic damping through
the addition of auxiliary coordinates called dissipation coordinates
as a sum of elementary mini-oscillators.

Furthermore, the GHM model, combined with the finite ele-
ment method (FEM) [15], allows the introduction of viscoelastic
material properties through element mass, stiffness, and damping
matrices. The addition of internal mini-oscillators for each viscoe-
lastic finite element allows a general description of frequency-
dependent viscoelastic materials properties behavior. The main
advantage of this method consists in its efficient modeling of
viscoelastic material behavior; but its major drawback is the
largely finite element dimension system which requires a prohi-
bitive computing time. Consequently, a model reduction should be
applied to the augmented GHM model.

The present paper proposes an alternative of model reduction
such as dynamic [16,17], Guyan [18,19], modal and modal in
physical space (SEREP) [20–23] reduction methods for this pro-
blem. The first one is based on the elimination of unwanted

variables; it partitions the full degree-of-freedom (dofs) into
master and slave dofs and uses the modal properties of the slave
part of the structure when the master dofs are grounded. Hence,
the derived slave modes are operated to enrich the dynamic basis
leading to a drastic reduction method. The simplest yet very useful
model reduction method is the well-known Guyan reduction
method. It is a particular case of dynamic reduction method
according to which the inertia associated with the slave coordi-
nates is neglected; only master dofs are retained. Thereby, the
unwanted variables are removed, leading to a reduced model
which is a subset of the original system in a restricted range of
frequency. However this method is limited by its validity domain
[24,25]. Another reduction method is the frequently used modal
reduction method according to which the derived modes asso-
ciated with the undamped structure are incorporated in the GHM
damped model, yielding an exact transformation basis. This basis
restitutes correctly the undamped modes of the original system
leading to a drastic reduction. The modal reduction method can
expand the projection from generalized coordinates system to the
physical coordinates system, leading to another strategy of reduc-
tion called modal reduction in physical space method. This method
restitutes also the first modes of the undamped structure and
partitions the modal basis into master and slave dofs. This leads to
several cases which will be tested examining both the number of
retained modes and the number of master dofs.

On the other hand, the modeling of viscoelastic sandwich
structures has attracted many researchers, but only a few papers
have dealt with the GHM model [26,27]. However, these papers
remain limited mostly to frequency domain analysis with major
uses of the space state modal reduction method for model
reduction. In fact, Trindade et al. [28] and De Lima and Rade [29]
used the modal reduction in their studies frequently. It consists in
transforming the second-order equation of motion into an equiva-
lent first-order form (space-state model). Unfortunately, this
method leads generally to a space state model of dimension at
least the double of the total dimension of the GHM model (2 N)
and the quadruple dimension of the structural dofs which requires
a prohibitive time of calculations.

Therefore, the application of the proposed reduction methods,
which are often used with the undamped structures, combined
with the GHM model allows one to add the effects of viscoelastic
components to the sandwich structures without increasing the
order of the finite element models. Furthermore, these reduction
methods can be applied to sandwich structures described kine-
matically by the other mentioned theories.

In this paper, both the theory related to the implementation of
the FSDT theory combined with the GHM method and the theory
related to its reduction methods are presented. Numerical simula-
tions applied to beam, plate and non-linear assembled beams in
both frequency and time domains are also illustrated. These
examples will highlight the performance of reduction methods
and its practical interest in the dynamic analysis of viscoelastically
damped sandwich structures.

2. Three-layer viscoelastic finite element model

Multilayer structures are typically used for its light-weight,
high specific stiffness and strength values in many engineering
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fields. In fact, there are attempts to replace components with
classical materials (steel, concrete) by laminated materials, notably
sandwich structures. Hence, the modeling of such structures has
been of particular interest of many studies [7,9–11]. In this paper,
the considered sandwich structure is constituted by three lami-
nated materials: a core generally formed by viscoelastic material of
thickness hc , incorporated between two elastic faces of thickness
hf 1 and hf 2 , respectively. The studied sandwich panel is assumed to
have length L, width b and total thickness h as shown in Fig. 1.

The modeling process of the three-layered sandwich structure
is based on the following assumptions:

� The sandwich is a laminate made of a stack of permanently
combined layers. There is no slip or delamination between the
layers, they are perfectly bonded. Consequently, the continuity
of displacements along the interfaces between the layers is
considered.

� The sandwich is a homogeneous material on a macro-scale
level, but its properties depend in turn on the properties of
each layer.
The lamina are macroscopically homogeneous, isotropic and
linearly elastic.

� Both extensional and bending deformations are considered.

It should be noted that when the lamina core is made of
viscoelastic material, an appropriate model will be used to model
such behavior.

The kinematic model of the sandwich structure is based on the
first shear deformation theory (FSDT) of Reissner–Mindlin [4,7],
which assumes that a plane section and perpendicular to the
midplane of the structure before deformation remains plane but
not necessary perpendicular to the midplane after deformation.

This theory takes into account the effect of transverse shear
deformations in both faces and core. Hence, the displacement
field of a sandwich laminate structure can be expressed as

uðx; y; z; tÞ ¼ u0ðx; y; tÞþzψ xðx; y; tÞ
vðx; y; z; tÞ ¼ v0ðx; y; tÞþzψ yðx; y; tÞ
wðx; y; z; tÞ ¼w0ðx; y; tÞ

8><
>:

9>=
>; ð1Þ

where u, v and w represent the displacements along the axes x, y
and z, respectively; u0ðx; y; tÞ, v0ðx; y; tÞ and w0ðx; y; tÞ denote the
corresponding midplane displacements in the (x,y,z) directions.
z is generally the thickness of the structure along the axis (z).
ψ xðx; y; tÞ and ψ yðx; y; tÞ are the rotations of normals to midplane
about the y and x axes.

This theory is well applicable for thin and moderately thick
plates and allows the compromise: good capacity of prediction/
moderate computational time for large manufactories investiga-
tions. Besides, it offers the feasibility of easy implementation in
many finite elements codes.

Thus, the finite element formulation uses an eight-node shell finite
element with five dofs per node called the Serendip element [15]. The
choice of this element is based on the investigations realized by Chee
[30], which proved that this element provides an excellent perfor-
mance for the modeling of composites structures, notably sandwich
structures. Furthermore, this element is adapted for the majority of
laminated theories, especially first order shear deformation theory
(FSDT).

It is a quadratic element belonging to the isoparametric
elements family and it uses a bilinear shape function whose
coordinates in elementary and local system are presented in Fig. 2.

Therefore, the displacement field can be discretized in local
coordinates as follows:

uðξ;η; z; tÞ
vðξ;η; z; tÞ
wðξ;η; z; tÞ

8><
>:

9>=
>;¼ ½AðzÞ�ð3�5Þ½Nðξ;ηÞ�ð5�40ÞfueðtÞgð40�1Þ ð2Þ

where ½AðzÞ�ð3�5Þ is the matrix of z coordinates along the thickness
axis; ½Nðξ;ηÞ�ð5�40Þ is the shape functions matrix; fueðtÞgð40�1Þ is the
elementary nodal displacement vector.

Based on the hypotheses of the stress-states assumed for each
layer, the stress–strain relations can be obtained and kinetic
energies of the sandwich plate finite element are formulated [31].
Then, the variational Hamilton principle is used considering the
nodal displacements and rotations as generalized coordinates,
leading one to derive the element’s stiffness and mass matrices as

Fig. 2. Serendip finite element in (a) elementary coordinates and (b) local coordinates.

Fig. 1. Sandwich structure geometry.
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follows:

½Me� ¼
Z
Ve

ρðkÞ½N�T ½A�T ½A�½N�dVe ð3aÞ

½Ke� ¼ ∑
Nc

k ¼ 1

Z 1

ξ ¼ �1

Z 1

η ¼ �1

Z zkþ 1

z ¼ zk
ð½Bb�T ½Ce

b�ðkÞ½Bb�þ½Bs�T ½Ce
s �ðkÞ½Bs�ÞJ dz dη dξ

ð3bÞ
where the subscript k denotes the kth layer of the laminated
structure; ρðkÞ is the corresponding lamina density; and Nc denotes
the number of laminated layers. Herein, Nc is considered equal to 3.
zk denotes the thickness of the kth sandwich layer; ½Bb� and ½Bs�
refers to the strain–displacement matrices where the extensional,
bending, plane shear and transverse shear effects are uncoupled
separately.

½Ce
b�ðkÞ and ½Ce

s �ðkÞ refers to the strain–stress matrices associated
to each layer k where the extensional, bending, plane shear effect
(subscript b) and transverse shear effect (subscript s). dVe indicates
the elementary variation volume and J is the Jacobian matrix.

After derivation of the element mass and stiffness matrices
using the Gaussian quadrature integration, the corresponding
global matrices are assembled accounting for the connectivity
using the standard assembling procedure and the equation of
motion of undamped structure is established as follows:

½M�f €qgþ½K�fqg ¼ fFg ð4Þ
where ½M�ARN�N is the mass matrix (symmetric and positive
definite), ½K�ARN�N is the stiffness matrix (symmetric and non-
negative definite), fqg is the displacements vector and fFgARN�1 is
the external load vector.

Nevertheless, when the sandwich structure is made of viscoe-
lastic material, this equation of motion is unable to describe the
frequency-dependence of such materials. Indeed, it omitted the
damping effect. Hence, the use of a consistent model across a
broad range of frequencies should be considered.

Several approaches are presented in the literature to describe
this behavior such as the anelastic displacement fields model
proposed by Leisuture [32], Fractional derivatives models pro-
posed by Bagley and Torvik [33] and especially the Golla–Hughes–
Mc Tavish (GHM) model [13,14]. Hence, the GHM model can be
developed for direct incorporation into the finite element method.

3. GHM viscoelastic approach

For a sandwich structure incorporating viscoelastic materials,
the stiffness matrix can be decomposed as follows:

½K� ¼ ½Ke�þ½KV ðsÞ� ð5Þ
where ½Ke� is the stiffness matrix corresponding to the purely
elastic layers and ½KV ðsÞ� is the stiffness matrix associated with the
viscoelastic layer. The inclusion of the frequency-dependent beha-
vior of the viscoelastic material can be made by generating ½KV ðsÞ�
for specific types of elements (beams, plates, etc.) considering
initially constant moduli (EðsÞ or GðsÞ). Then, using the elastic-
viscoelastic correspondence principle [34,35], these moduli are
factored out of the stiffness matrix reflecting the frequency
dependence of viscoelastic materials.

Hence, the viscoelastic stiffness can be written as

½KV ðsÞ� ¼ GðsÞ½KV � ð6Þ
Golla–Hughes and Mc Tavish [13,14] introduced the so-called GHM
model to describe the shear modulus of viscoelastic structure as a
series of mini-oscillator terms:

GðsÞ ¼ G0 1þ ∑
NG

i ¼ 1
αi

s2þ2ζiωis
s2þ2ζiωisþω2

i

!
ð7Þ

where G0 is the static modulus; s is the Laplace complex variable;
ðαi; ζi;ωiÞ are the parameters of the ith mini-oscillator, and NG is
the number of mini-oscillators. The parameters ðαi;ζi;ωiÞ are
identified from the experimental fit curves of the corresponding
viscoelastic material [26,34]. In fact, different viscoelastic materi-
als have different frequency dependence and so have a different
number of terms NG of the GHM fit.

Substituting Eq. (6) into Eq. (5) and replacing GðsÞ by its
expression, the equation of motion can be written as follows:

ðs2½M�þs½D�þ½Ke�þ½K0
V �Þ qðsÞ� �þ½K0

V � ∑
NG

i ¼ 1
αi

s2þ2ξiωis
s2þ2ξiωisþω2

i

!

fqðsÞg ¼ fFðsÞg ð8Þ

Now, by adding extra-coordinates fzigð1; :::;NGÞ called dissipation
coordinates as

ziðsÞ
� �¼ ω2

i

s2þ2ζiωisþω2
i

( )
qðsÞ� � ð9Þ

The equation of motion may be rewritten, in the Laplace domain,
as two coupled second order equations:

ðs2½M�þs½D�þ½Ke�þ½K1
V �Þfqg�α½K0

V �fzg ¼ fFg ð10aÞ

s2fzgþ2sζωfzg�ω2fqgþω2fzg ¼ f0g ð10bÞ
where ½K0

V � ¼ G0½KV � and ½K1
V � ¼ ½K0

V �ð1þ∑NG
i ¼ 1αiÞ are, respectively,

the static or low-frequency stiffness matrix and the dynamic or
high-frequency stiffness matrix corresponding to the viscoelastic
layer.

The matrix ½D� represents the structural damping of the
structure without the viscoelastic effect.

After some manipulations and back to time domain, the
following equation of motion in the Laplace domain is obtained:

s2
½M� 0
0 ½Mz�

" #
þs

½D� 0
0 ½Dz�

" #
þ

½Kq� ½Kqz�
½KT

qz� ½Kz�

" #( )
qðsÞ
zðsÞ

( )
¼ FðsÞ

0

� �
ð11Þ

Or in compact form:

fs2½MG�þs½DG�þ½KG�gfqGg ¼ fFGðsÞg ð12Þ
The derived second-order time domain equation of motion is
expressed as

½MG�f €qGgþ½DG�f _qGgþ½KG�fqGg ¼ fFGg ð13Þ
where ½MG�; ½DG� and ½KG�ARnG�nG , with nG ¼Nð1þNGÞ, are, respec-
tively, the mass, damping and stiffness matrices of the global
viscoelastic GHM model expressed as follows:

½MG� ¼

½M� 0 … 0
0 α1

ω2
1
½K0

V � 0 ⋮

⋮ 0 ⋱ 0
0 ⋯ 0

αNG
ω2

NG

½K0
V �

2
666664

3
777775; ½DG� ¼

½D� 0 … 0

0 2α1ζ1
ω1

½K0
V � 0 ⋮

⋮ 0 ⋱ 0

0 ⋯ 0
2αNG

ζNG
ωNG

½K0
V �

2
666664

3
777775

½KG� ¼

½Ke�þ½K1
V � �α1½K0

V � … �αNG ½K0
V �

�α1½K0
V �T α1½K0

V � 0 ⋮
⋮ 0 ⋱ 0

�αNG ½K0
V �T ⋯ 0 αNG ½K0

V �

2
66664

3
77775; fFGg ¼

F

0
⋮
0

8>>><
>>>:

9>>>=
>>>;; fqGg ¼

q

z1
⋮
zNG

8>>>><
>>>>:

9>>>>=
>>>>;

¼ q

z

� �

ð14Þ
The dissipative coordinate fzg appears as an augmenting state
variable which increases considerably the order of the differential
equation of motion. In fact, the dimension of the system is at least
doubled and the computational time is notably increased. This
motivates the use of model reduction methods, as an alternative
solution for this problem, which will be presented in the following
section.
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4. Model reduction methods

Model reduction is necessary to reduce the high order finite
element models to a smaller size so that direct dynamic analysis
can be performed. Several model reduction methods have com-
monly been used including dynamic [16,17], Guyan [18,19], modal
and modal in physical space [20–23] reduction methods. They can
be classified either by type of reduction approach or by type of
reduced space coordinates.

The former can be further divided into two categories as the
elimination dofs approach and the modal projection approach.
Indeed, the elimination dofs approach is based on the partition of
the full dofs of the structure into ‘m’ master and ‘s’ slave dofs.
In the reduction process, master dofs are retained and slave dofs
are removed. This category includes notably dynamic and Guyan
reduction methods. For the modal reduction approach, a partition
of the modal matrix for the associated undamped model is
established. The lowest modes are retained and all else are
removed. Both modal reduction and modal reduction in physical
space belong to this category. The concept of physical, generalized
and hybrid coordinates will be clarified in the latter type of
reduction.

In fact, based on the type of coordinates retained as the
reduced order coordinates, the existing model order reduction
methods fall into three basic categories:

� Physical coordinates reduction.
� Generalized coordinates reduction.
� Hybrid coordinates reduction.

In the physical coordinates model method, the reduced model
is obtained by removing part of the physical coordinates of the full
model. Thus, the coordinates of the reduced model are a subset of
the full model. This is the most straightforward model reduction
among the three categories. Guyan and modal in physical space
reduction methods belong to this type of coordinates.

In the generalized coordinates model reduction, all the coordi-
nates that are not physical coordinates are generally referred to as
generalized coordinates. The modal reduction method is one of the
frequently used generalized coordinates.

The hybrid coordinates model reduction uses a combination of
physical and generalized coordinates. Thus, this technique pro-
vides a good representation of the dynamic behavior of the
sandwich structures. One very useful method belonging to this
type is the dynamic reduction method.

Each method is attached to the definition of a transformation
matrix ½T�ARnG ;nc , relating the nG full dofs of the viscoelastic
sandwich structure to the nc reduced dofs where nc⪡nG Thereby,
the displacement vector fqGg can be written as a linear combina-
tion of the subspace elements presented by the columns of ½T � as
fqGg ¼ ½T �fqcg ð15Þ
where fqGgARnG�1 is the displacement vector of the full GHM
model. fqcgARnc�1 is the vector of reduced coordinates through
the projection on ½T �. ½T�ARnG�nc is the transformation matrix.

This transformation takes various forms depending on the used
reduction technique.

The equation of motion in full space Eq. (12) is then written in
reduced space as follows:

ð½T �T ½MG� ½T �Þf€qcgþð½T �T ½DG� ½T �Þf_qcgþð½T �T ½KG� ½T �Þfqcg ¼ ½T �T fFcg
ð16Þ

Hence, the reduced mass, stiffness and damping matrices, as well
as the reduced load vector can be written as

½Kc� ¼ ½T �T ½KG�½T �

½Mc� ¼ ½T �T ½MG� ½T �
½Dc� ¼ ½T �T ½DG� ½T �
fFcg ¼ ½T �T fFGg ð17Þ
For each type of reduction process, the transformation from the
full space to the reduced space is established through the partition
of structural displacement vector fqg into two subvectors as
follows:

fqg ¼
qm

qs

( )
ð18aÞ

where the subscript m is related to the master dofs and the
subscript s is related to the slave dofs.

Following the master and slave dofs partitioning and assuming
that only the master dofs are loaded, the external load vector fFg
can be written as

fFg ¼ Fm

0

( )
ð18bÞ

Consequently, the dynamic equilibrium of the associated
undamped system can be expressed as

Kmm Kms

Ksm Kss

" #
�λ

Mmm Mms

Msm Mss

" #!
qm

qs

( )
¼ Fm

0

( )
ð19Þ

Thus, the definition of transformation matrices for each type of
reduction method is based on the use of the equilibrium
equation (Eq. (19)) as will be shown in the following sections.

4.1. Dynamic reduction method

This method was proposed by Leung [16] and then by Peters-
mann [17]. It uses jointly the modal synthesis method and the
dynamic reduction method, similar to the substructuring techni-
que proposed by Craig and Bampton [36] in the component modal
synthesis context.

Using the second part of rows of Eq. (19), the sub-vector of
slave dofs fqsg can be expressed in terms of master dofs fqmg as
fqsg ¼ �ð½Kss��λ ½Mss�Þ�1ð½Ksm��λ ½Msm�Þ fqmg ð20Þ
It should be noted that this expression is defined when the slave
dynamic stiffness ZðλÞ ¼ ð½Kss��λ ½Mss�Þ is nonsingular. Indeed, this
condition is satisfactory for each frequency, else the eigenfrequen-
cies (λaσυ; υ¼ 1 : s) of the slave problem are defined as follows:

ð½Kss��συ½Mss�Þfφυg ¼ 0 ð21Þ
where Σ ¼ diagðσυÞ and ½Φ� ¼ ½⋯ fφυg ⋯ �; υ¼ 1;…; s are the
spectral and modal matrices, respectively.

This leads to defining the dynamic contribution of the slave
dofs as

½TdðλÞ� ¼ �ð½Kss��λ ½Mss�Þ�1ð½Ksm��λ ½Msm�Þ ð22Þ
As can be seen, this relation (22) is an exact dynamic relation
which depends strongly on the value of the unknown eigenvalue
λ. This leads to resolving a non-linear eigenvalue problem. Never-
theless, the viscoelastic behavior of the structure is linearized [35],
so it is necessary to approximate this relation to be adequate for
the linear viscoelastic problem.

Hence, according to Leung and Petersmann method [16,17], the
hybrid projection coordinates can be expressed as follows:

fqsg ¼ �½Kss��1½Ksm�fqmgþ½Φp�fcg ð23Þ
where ½Φp� is the p truncated modal basis of the slave structure
with p⪡s.

This hybrid formulation is similar to the Craig–Bampton
method applied in the case of the sub-structuring procedure.
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Thus, the master dofs are the junction dofs and the slave dofs are
the interior dofs.

While this dynamic reduction formulation was developed for
undamped systems, a straightforward application of the above
developments to the viscoelastic damped sandwich structures
yields the following expression of the slave displacement vector:

fqsg ¼ �½Kss
q ��1½Ksm

q �fqmg�½Kss
q ��1 Ksm

qz Kss
qz

h i
fzgþ½Φp�fcg ð24Þ

Hence, the reduction of the full dofs to the reduced dofs is
achieved as follows:

qm

qs

z

8><
>:

9>=
>;¼

I1 0 0
t1 t2 Φp

0 I2 0

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
½TDyn �

qm

z

c

8><
>:

9>=
>; ð25Þ

where ½TDyn� is the dynamic transformation matrix; ½I1� and ½I2� are
the identity matrices of appropriate size;½t1� ¼ �½Kss

q ��1½Ksm
q � and

½t2� ¼ �½Kss
q ��1½Ksm

qz Kss
qz � represent the static contribution of the

structure and Φp basis represents the dynamic contribution of the
structure.

For the damped GHM model, the slave problem can be written
as follows:

ð½Kq
ss��συ½Mss�Þfφυg ¼ 0 ð26Þ

The reduced mass, stiffness and damping matrices can then be
written in the form of Eq. (17) using Eq. (25).

This method can predict well the dynamic behavior of viscoe-
lastic sandwich structures combining static and dynamic contri-
butions through hybrid reduced coordinates. Nevertheless, it
requires the computation of p truncated modes which increase
the size order of the system and leads to less additional CPU time.

4.2. Guyan reduction method

The simplest, yet very useful, model reduction method is the
Guyan reduction method, which was introduced by Guyan [18]
and Iron [19] in 1965. This method is an approximation of the
dynamic reduction method, according to which the inertia asso-
ciated with the slave coordinates is neglected. Thus, applying this
static reduction procedure for the damped sandwich structures,
the relationship between the full dofs and the reduced dofs can be
expressed as follows:

qm

qs

z

8><
>:

9>=
>;¼

I1 0
t1 t2
0 I2

2
64

3
75

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
½TSt �

qm

z

� �
ð27Þ

where ½TSt � is the static (or Guyan) transformation matrix ½I1�; ½I2�;
½t1� and ½t2� are the same quantities as defined for Eq. (25).

Under this form, it appears that Guyan reduction is a particular
case of dynamic reduction when no slave modes are taken into
account.

The reduced mass, stiffness and damping matrices can then be
written in the form of Eq. (17) using Eq. (27).

4.2.1. Validity domain
This method is valid and useful in an accurate domain. This

domain is limited by the cutoff frequency [24,25]. It is the smallest
frequency determined by the resolution of the eigenvalue problem
(26) defined as f 1 ¼ f c . Thereby, in the practice of applications, the
validity domain of the Guyan reduction method is ½0 : f c=3�, which
reflects the “effective” frequency band.

Consequently, the quality of Guyan approximation depends on
the good selection of master dofs which defines its validity
domain. In practice, an optimal selection of master dofs must be
based on the maximization of the cutoff frequency f c . Out from the
validity domain of this method, the accuracy of the obtained
results is not well controlled.

4.3. Modal reduction method

Modal reduction consists in the derivation of ½Λ� spectral
matrix and ½Q � modal basis corresponding to the eigenvalues and
eigenvectors of the associated undamped system Eq. (4). Then,
these matrices are divided into two parts as follows:

½Q � ¼ Q1 Q2
� �

; ½Λ� ¼
Λ1 0
0 Λ2

" #
ð28Þ

The displacement vector is presented as a combination of the p
first eigenvectors contained in ½Q1�ARN;p:

fqg ¼ ½Q1�fcg ð29Þ

Applying this procedure to damped viscoelastic sandwich struc-
tures, the full model can be reduced through the projection in the
generalized space as follows:

q

z

� �
¼ Q1 0

0 I

	 

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

½TMod �

c

z

� �
ð30Þ

where ½TMod� is the modal transformation matrix.
The reduced mass, stiffness and damping matrices can then be

written in the form of Eq. (17) using Eq. (30).
This method uses non-physical coordinates and the truncation

can induce errors in the evaluation of dynamic responses.
In practice, the modal reduction method leads to good accuracy
results when the p first modes are chosen typically from 1.5 to
3 times the frequency band of interest.

4.4. Modal reduction in physical space

This method was proposed by O' Callahan [20]. It is based on
the modal projection in the physical coordinates. O' Challahan
[21,22] marked that this technique allows, after expansion, to
return from the reduced model p exact solutions of the full model.

Indeed, the base ½Q1� is partitioned into m master dofs and s
slave dofs as follows:

fqg ¼
qm

qs

( )
¼

Q1m

Q1s

" #
fcg ð31Þ

The first line of Eq. (31) leads to

fqmg ¼ ½Q1m�fcg with ½Q1m�ARN�p ð32Þ

According to the used m master dofs and p retained undamped
modes, three cases can be highlighted:

(a) m¼ p and ½Q1m� is nonsingular:
Eq. (32) can be solved exactly as

fcg ¼ ½Q1m��1fqmg ð33aÞ

(b) mop:
This case leads to infinity of solutions of fcg which is not
accurate.
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(c) m4p and ðrankð½Q1m�Þ ¼ pÞ is maximal:
Eq. (32) can be solved in the sense of linear least squares as

fcg ¼ ½Q1m�þ fqmg ð33bÞ
where ½Q1m�þ ¼ ð½Q1m�T ½Q1m�Þ�1½Q1m�T is the Moore Penrose
pseudo inverse.

Thus, by substituting Eq. (33b) into Eq. (31), the structural
vector dofs can be written as

fqg ¼ Q1mQ1m
þ

Q1sQ1m
þ

" #
fqmg ð34Þ

Hence, the relationship between full and reduced dofs through the
projection in physical coordinates for viscoelastic sandwich struc-
tures can be expressed generally when mZp as follows:

qm

qs

z

8><
>:

9>=
>;¼

Q1mQ1m
þ 0

Q1sQ1m
þ 0

0 I

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½TSP �

qm

z

� �
ð35Þ

where ½TSP � is the modal transformation matrix defined in
physical space.

Consequently, the reduced mass, stiffness and damping
matrices can then be written in the form of Eq. (17) using
Eq. (35). The definition of a transformation matrix using a number
of master dofs either equal to or up the number of undamped modes
(as mentioned in the case a or c) leads to the use of maximum rank
sub-basis. In fact, the rank of a matrix is defined by the number of
rows or columns linearly independent. Numerically, this linear inde-
pendence is evaluated by the conditioning number.

O' Challahan [20–22] and Friswell [23] shows in their previous
studies, that using a sub-basis ½Q1m� with high conditioning

number (4107; 108) can affect the accuracy of results and can
generate erroneous responses. So, the process of selection of
master dofs is achieved such that ½Q1m� has the minimum
conditioning number.

The modal reduction in physical space method allows the
derivation of a reduced model which is a subset of the original
model expressed in physical coordinates. Furthermore, this tech-
nique provides an expanded choice of master dofs but it remains
limited by the minimum conditioning condition.

5. Numerical applications

In this section, numerical applications are presented in order to
illustrate the finite element procedure used for viscoelastic sand-
wich beam and plate models and outline the practice interest of
the proposed reduction strategies. Hence, we consider one mini-
oscillator (NG¼1) of viscoelastic sandwich beam and plate which
are constituted by two elastic layers (faces) in aluminum and a
viscoelastic layer (core) of the nuance 242F01. The material and
geometrical characteristics of the used sandwich structures are
shown in Table 1.

The values of the parameters of the viscoelastic commercially
available 242F01, manufactured by 3M™ used at 25 1C for one
mini-oscillator, are presented in Table 2 [29].

5.1. Viscoelastic sandwich beam

The used FE mesh for the viscoelastic sandwich beam involves
2 elements through the width and 20 elements along the length,
having a total number of 1600 dofs. The excitation point is selected
in the extremity of the beam (point P, dof of translation uz) and the
responses are depicted in two different points P and K (dof of
translation uz) as shown in Fig. 3.

In the remainder of this section, the results derived from the
implementation of the GHM model, as well as the responses of
reduced models used the reduction techniques described as above
will be presented both in frequency and in time domains.

5.1.1. Frequency domain evaluation
The interest herein is focused on the frequency-domain

responses for both full and reduced GHM models.
The full GHM model response can be derived directly using

Eq. (11) in order to calculate the frequency response function (FRF)
matrix as follows:

HðωÞ ¼ fag½ZðωÞ��1fbgT ð36Þ
where ½ZðωÞ� ¼ �ω2½MG�þ jω½DG�þ½KG� is the dynamic stiffness
matrix associated with the damped viscoelastic structure; fbgT is
a column vector which defines among all discretized dofs of the
structure the position of the selected excitation degree of freedom;
fag is a row vector containing the coordinates where the responses
are taken into account.

Table 1
Mechanical and geometrical characteristics of the viscoelastic sandwich structures.

Elastic layer (1) Viscoelastic core Elastic layer (2)

Lbeam ¼ Lplate ¼ 500 mm Lbeam ¼ Lplate ¼ 500 mm Lbeam ¼ Lplate ¼ 500 mm
bbeam ¼ 38 mm=bplate ¼ 400 mm bbeam ¼ 38 mm=bplate ¼ 400 mm bbeam ¼ 38 mm=bplate ¼ 400 mm
hf 1 ¼ 4:5 mm hc ¼ 0:2 mm hf 2 ¼ 0:5 mm

Gf 1 ¼ 70:3� 109 N=m2 Gc (GHM modulus) Gf 2 ¼ 70:3� 109 N=m2

ρf 1 ¼ 2750 kg=m3 ρc ¼ 1099:5 kg=m3 ρf 2 ¼ 2750 kg=m3

υf 1 ¼ 0:3 υc ¼ 0:5 υf 2 ¼ 0:3

Table 2
Parameters of the GHM viscoelastic model identi-
fied for material 242F01 3M™ for one mini-
oscillator.

Mini-oscillator (i¼1) Value

αi 1.047
ζi 3911.89
ωi ½rad=s� 4943.06
G0 ½MPa� 0.079

Response points 

Excitation point 

P 

K

Fig. 3. Clamped–free (C–F) sandwich beam finite element.
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Fig. 4 depicts the frequency responses of the full GHM model
plotted in the points P and K in the frequency band of interest
[0–700] Hz.

The frequency responses represented by Fig. 4(a) and (b) are
considered as the reference for the full GHM model. Indeed, the FRF
amplitudes in [dB] have been computed using a convenient reference
factor through the relation Amplitude½dB� ¼ 20 log 10ðjHðωÞj=1e�6Þ.

These responses can be determinate by the resolution of Eq. (8),
which describes the shear modulus as a rational function as well
as by Eq. (11) which derives the problem as a second order
differential equation. In fact, the mathematical development
established in order to derive a second order equation of motion
(Eq. (12)) has interest in time domain analysis while the frequency
analysis can be carried out directly by the resolution of Eq. (8).

Fig. 5 represents the FRFs derived from the resolution of
Eqs. (8) and (11) plotted for the point P.

It can be observed that the two frequency responses derived
from the resolution of Eqs. (8) and (11) are perfectly identical. This
ensures the equivalence of the two equations.

The next step consists in the determination of damped and
undamped frequencies of the sandwich beam which is carried out
by the resolution of the eigenvalue problem associated with the
damped Eq. (11) and the undamped Eq. (4) systems, respectively.
Table 3 represents the five first undamped and damped frequen-
cies of the viscoelastic sandwich beam.

Fig. 6 shows the frequency responses corresponding to the
damped and undamped systems plotted for point P. This will
illustrate the effect of viscoelastic damping.

5.1.1.1. Elimination dofs reduction approach. Now, we will compare
the dynamic and Guyan reduction methods belonging to the
elimination dofs approach with the full model for the viscoelastic
sandwich beam.

At the beginning, we choose m¼30 master dofs for both
reduction methods such that we obtain two transformation
matrices having the same dimension: Dimð½TDyn�Þ ¼Dimð½TSt �Þ and
the size of each transformation is equal to (1600�830). For the
Guyan reduction method, the choice of m¼30 master dofs is
constituted by the uz dofs which are the translation dofs normal to
the midplane of the sandwich beam. Furthermore, this choice is
carried out maximizing the cutoff frequency. Then, the reduction
process is applied and the reduced mass, stiffness and damping

Fig. 4. FRFs of the full GHM model plotted in (a) point P and (b) point K.

Fig. 5. FRFs of full model derived from two mathematical tools.

Table 3
Undamped and damped eigenfrequencies of the sandwich beam.

Frequency Undamped eigenfrequencies [Hz] Damped eigenfrequencies [Hz]

f 1 18.17 14.65
f 2 113.83 91.75
f 3 318.62 256.92
f 4 420.80 343.94
f 5 624.35 503.72

Fig. 6. FRFs of the damped and the undamped GHM model for the sandwich beam.
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matrices as well as the external load vector corresponding to each
reduction method are calculated. The reduced dynamic stiffness is
evaluated as follows: ½ZcðωÞ� ¼ �ω2½Mc�þ jω½Dc�þ½Kc� and the
reduced model corresponding to each reduction method com-
pared to the full model is presented. Fig. 7(a) and (b) shows the
corresponding FRFs plotted for points P and K, respectively.

From both Fig. 7(a) and (b), the frequency response for the
dynamic reduced model is identical to that of the full model while
the Guyan reduced model agreed well with the full model for the
two first modes of vibration but deviated after the cutoff frequency
ðf c ¼ 165 HzÞ which defined the validity domain of the Guyan
reduction method. After this cutoff frequency, the reduced model
does not agree with the full model but follows it shape curve. This
leads to the conclusion that the Guyan reduction method has the
capacity to reproduce the original system but it remains limited by
its validity domain. Nevertheless, the dynamic reduction method
enriched by the first slave modes (s¼10) provides a very satisfac-
tory agreement with the full model, making it a suitable method
for prediction of the dynamic behavior of viscoelastic sandwich
structures.

Table 4 shows the frequency values corresponding to the full
and the Guyan reduced model. This affirms that the reduced
model derived from the Guyan reduction method is able to
reproduce only the two first modes of the full model and outlines
that the validity domain of this method is limited by the cutoff
frequency.

5.1.1.2. Modal reduction approach. Here, the frequency responses
derived from modal and modal in physical space reduction methods
are compared to the full model. Indeed, we determine first the
number of modes associated with the undamped structure, which
covers 1.5 the frequency band of interest (1.5fu¼1100 Hz) and (p¼17
modes). Then a projection on the physical coordinates is achieved by
the partition of the modal basis into master and slave dofs where

m¼p¼17 (case a in Section 4.4) and we inverse directly the modal
basis corresponding to the mater dofs contribution such that ½Q1m� has
the minimum conditioning number. Let condð½Q1m�Þ ¼ 50. Thus, we
obtain two transformation matrices having the same size Dim
ð½TMod�Þ ¼Dimð½TSP �Þ with the dimension of each basis being equal
to (1600�817).

Fig. 8(a) and (b) depicts the frequency responses for full and
reduced models.

As expected, the frequency responses curves for reduced model
and full model are in good agreement for the points P and K as
shown in Fig. 8(a) and (b). This leads to the conclusion that modal
reduction projected in generalized or in physical coordinates is a
viable method for the prediction of the dynamic behavior of
structures incorporating viscoelastic materials.

5.1.1.3. Physical coordinates approach. An overlap of elimination
dofs reduction approach and modal reduction approach is
realized through the projection of the physical coordinates
leading to a comparison of the Guyan reduction method to
modal reduction in physical space with the full model. Hence,
the two transformation matrices must have the same size to
compare them such that the master dofs of the Guyan reduction
method is equal to the master dofs of modal reduction in the
physical space method. Let the number of master dofs m¼30
which is higher than the number of modes p¼17. Consequently,
we test the case where m4p (case c in Section 4.4) for modal
reduction in physical space method. This leads to two
transformation matrices as Dimð½TSP �Þ ¼Dimð½TSt �Þ with size
(1600�830).

Fig. 9(a) and (b) represents the corresponding frequency
responses comparison.

As can be seen, the frequency response derived from the modal
reduction method is in good agreement with the reference while
the frequency response of the Guyan reduction method deviates
after the cutoff frequency in both Fig. 9(a) and (b). This affirms that
the Guyan reduction method is limited by its validity domain but it
can generally predict the dynamic behavior of viscoelastic struc-
tures with less accuracy than modal reduction in physical space
method, which needs an additional time of evaluation relative to
the Guyan method.

Consequently, through the projection on physical coordinates
both Guyan and modal reduction in physical space are viable
methods which can reproduce the original model. However, for
the Guyan reduction method the optimal choice of master dofs is
conditioned by the maximum of cutoff frequency.

Fig. 7. FRFs for full and reduced models: dynamic/Guyan reduction methods: (a) point P and (b) point K of the viscoelastic sandwich beam.

Table 4
Full and Guyan reduced eigenfrequencies for the viscoelastic sandwich beam.

Frequency Full
frequencies [Hz]

Guyan reduced
frequencies [Hz]

f 1 14.65 14.65
f 2 91.75 91.73
f 3 256.92 283.94
f 4 343.94 354.48
f 5 503.72 563.75
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The performance of all proposed reduction methods in terms of
CPU time is shown in Table 5.

Table 5 shows the total computing time for full and reduced
models. This time, evaluated for each reduction method, includes
the calculations of the transformation matrix and the FRF response
which is obtained by solving linear equations at each frequency
point. For the clarity of comparison, it should be mentioned that
all reduced models have the same size 830. Hence, as can be
remarked, while the reduction ratio in terms of models dimension
is about 50%, it is so advantageous in terms of CPU time. In fact,
this ratio reaches 87% with the Guyan reduction method and 80%
with the dynamic reduction method while it does not exceed 75%
with the modal reduction method and 70% with modal reduction
in physical space. The additional CPU time for the modal reduction
method in generalized or physical space can be explained by the
calculation requirements of undamped modes and the verification
of minimum conditioning number in the case of projection on

physical space. Hence, these reduction methods allow generally a
drastic reduction, making them a suitable choice to handle both
the prohibitive computational effort and the viscoelasticity, espe-
cially for complex structures with a large finite element model or
in optimization procedure when the dynamic calculations of such
models become more complicated. Consequently, the application
of these direct reduction methods in the frequency domain can
save time considerably, leading to the applicability and the
efficiency of these methods in time domain.

5.1.2. Time domain evaluation
The interest here is intended to time domain analysis for the

viscoelastic sandwich structures. In fact, the prediction of the
dynamic behavior of such structures remains until now focused on
the frequency analysis more than time analysis. Here both steady
state and transient analysis are carried out.

The resolution of temporal equation of motion Eq. (13) is per-
formed using Newmark's integration technique [37] with an uncondi-
tionally stable scheme. This technique is used in order to derive the
time responses for both full and reduced models which will be
compared for each reduction method. These comparisons are per-
formed through static tools called temporal prediction indicators.

5.1.2.1. Temporal prediction indicators. Results comparison tools are
based on the statistic indicator calculations associated with the full

Fig. 9. FRFs for full and reduced models: Guyan/Modal in physical space reduction methods: (a) point P and (b) point K of the viscoelastic sandwich beam.

Table 5
Performance of the proposed reduction methods in frequency domain.

Total CPU time [min]

Full Guyan Dynamic Modal Modal in physical space

263 35 52 65 78
Reduction ratio (%) – 87 80 75 70

Fig. 8. FRFs for full and reduced models: Modal/Modal in physical space reduction methods: (a) point P and (b) point K of the viscoelastic sandwich beam.
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and reduced responses. In fact temporal moments are usually used
to quantify a temporal signal in order to compare several transient
responses [38]. Hence, the ith order of the temporal moment of a

response yðtÞ is defined as [39]

Mi ¼
Z þ1

�1
ðt�tsÞiðyðtÞÞ2 dt ð37Þ

where ts represents the temporal shift and i the moment
index order.

In this case, the temporal moment Mi is defined for ts ¼ 0 and
normalized as follows:

E¼M0; Energy ðm s2Þ
T ¼ M1

M0
; Central time ðcentroidÞ ðsÞ

D2 ¼ M2
M0

� M1
M0

� �2
; Root means square duration ðsÞ

8>>><
>>>: ð38Þ

Thereby, this triplet of indicators (E, T and D) enables one to
determine the error generated both in the amplitude and in the
time scales. Indeed, E is used to identify the error in the amplitude
of the response; T and D are used to identify the error in the
periodicity of the response.

Gerges [40] proved that a relative error of order of 74% in
energy E, 72% in central time T and 74% in root mean square D
are admissible in order to validate the reduced model compared to
the full model.

In the remainder and for good clearance, it should be noticed
that all time responses will be plotted only on point P.

5.1.2.2. Steady state analysis. The sandwich beam is subjected to an
harmonic load of the form fFðtÞg ¼ F0 sin ðωtÞ where F0 ¼ 1N and
ω¼ 50π rad=s; (f¼25 Hz). The steady state response is established
after 1 s of transient response and the oscillations are well stable
over a period of time from 2 to 3 s. Therefore, in the following, the
time response derived from a harmonic excitation will be
presented in the interval of time [2–3] s.

The same procedure of comparison for reduced and full models
presented in Section 5.1.1 is also carried out in this section with the
time domain analysis. For each type, the size of the reduced
models is kept the same as mentioned in the previous sections.

Fig. 10. Steady state responses for full and reduced models: dynamic/Guyan reduction methods of viscoelastic sandwich beam: (a) (fo f c) and (b) (f 4 f c).

Table 6.1
Temporal moments for the steady state responses of the viscoelastic sandwich
beam (fo f c).

E T D

Full 9.3002E�6 1.3804 0.8220
Dynamic 9.3000E�6 1.3804 0.8220
Guyan 9.3586E�6 1.3808 0.8218

Table 6.2
Temporal moments for the steady state responses of the viscoelastic sandwich
beam (f4 f c).

E T D

Full 4.65001E�6 0.6902 0.4110
Dynamic 4.65000E�6 0.6902 0.4110
Guyan 4.58005E�6 0.6700 0.3889

Fig. 11. Steady state responses for full and reduced models: Modal/Modal in
physical space reduction methods of the viscoelastic sandwich beam.

Table 7
Temporal moments for the steady state responses of modal reduction approach of
the viscoelastic sandwich beam.

E T D

Full 9.3002E�6 1.3804 0.8220
Modal 9.2904E�6 1.3804 0.8220
Modal in physical space 9.2904E�6 1.3804 0.8220
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5.1.2.3. Steady state responses for elimination dofs reduction
approach. The time responses for full and reduced models are
presented in Fig. 10(a) and (b).

Fig. 10(a) shows that the time responses curves for the full
model and those of reduced models are in good correlation over a

period of time of 1 s. Here, the Guyan reduction method agrees
well with the full model because the excitation frequency in which
the sandwich beam is subjected is less than the cutoff frequency
(f o f c). So, the excitation covers the validity domain of this
method, leading to good agreement with the reference.

Furthermore, Table 6.1 shows that the relative error in energy E
between the full model and the Guyan reduced model is of order
of �0.62% while this error does not exceed 0.002% with the
dynamic reduced model. This confirms the visual impression in
amplitudes.

In addition, the relative error in central moment T and means
square root D does not exceed 0.04% for the Guyan reduced model
and it is practically equal to zero for the dynamic reduced model.
Consequently, the obtained results in the case where (fo f c)
presents a satisfactory accuracy compared to the full model, thus
enabling a validation of the reduced models.

However, when the excitation frequency is higher than the
cutoff frequency (f4 f c), the obtained results for full and reduced
models of viscoelastic sandwich beam subjected to harmonic load
under a frequency excitation f ¼ 300 Hz are depicted in Fig. 10(b).

As can be seen, in this case, the results start to lose their
accuracy. Indeed, the reduced Guyan response presents an appar-
ent deviation in both amplitudes and time scales (Table 6.2). The
deviation in amplitudes scale is indicated by a relative error which
reaches 1.5% in energy E. In the time scale, the relative error has
the order of 5% in D and 3% in T. These values are significant
compared to the case where (fo f c) and leads one to conclude that
the Guyan reduction method is limited by its validity domain.
Hence, beyond the cutoff frequency, the Guyan reduction method
is less accurate. Nevertheless, the dynamic reduction method
preserves its capacity to reproduce the full steady state response
in both cases, leading to affirm the performance of this reduction
method in the prediction of the dynamic behavior of viscoelastic
sandwich structures.

5.1.2.4. Steady state results for modal reduction approach. For modal
reduction methods the obtained results are shown in Fig. 11.

Fig. 12. Transient responses for full and reduced models: dynamic/Guyan reduction
methods of the viscoelastic sandwich beam.

Table 8
Temporal moments for the transient responses of eliminated dofs reduction
approach of the viscoelastic sandwich beam.

E T D

Full 1.0387E�6 0.2055 0.0498
Dynamic 1.0387E�6 0.2055 0.0498
Guyan 1.0403E�6 0.2054 0.0498

Fig. 13. Transient responses for full and reduced models: Modal/Modal in physical
space reduction methods of the viscoelastic beam.

Table 9
Temporal moments for the transient responses of modal reduction approach of the
viscoelastic sandwich beam.

E T D

Full 1.0387E�6 0.2055 0.0498
Modal 1.0369E�6 0.2055 0.0498
Modal in physical space 1.0369E�6 0.2055 0.0498

Table 10
Performance of the proposed reduction methods in time domain.

Total CPU time [min]

Full Guyan Dynamic Modal Modal in physical space

365 40 65 85 92
Reduction ratio (%) – 88 82 77 75

E 

x 

y 

Fig. 14. FE model for the viscoelastic sandwich plate with the position of the
optimal master dofs (�).
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It can be observed in Fig. 11 that the time responses of steady
state motion for the reduced models are in good agreement with
the full model. This is confirmed by the values of the three central
temporal moments. In fact, Table 7 shows that the relative error in
E does not exceed 0.1% while the relative error in T and D is
practically zeros. This leads to validation of the reduced models
which allows a perfect reproduction of the original model in
amplitude and time scales.

The comparison of the Guyan reduction method with the
modal reduction method in physical space for steady state
responses is also carried out. The obtained results indicate a
relative error in energy E of 0.1% for modal reduction in physical
space which reaches 0.6% for the Guyan reduction method. This
implies that through the projection on physical space, the modal
reduction method in physical space has the capacity to reproduce
the original model better than the Guyan reduction method.

5.1.2.5. Transient analysis. In this section, the viscoelastic beam is
subjected to an impulse load of duration Timpulse ¼ 2 ms and
amplitude equal to 10 N. The same strategy of comparison
between the different reduction methods is carried out.
Furthermore, as mentioned in the previous sections, for each
reduction approach the equality of reduction basis is provided.

5.1.2.6. Transient results for elimination dofs reduction approach. The
comparison between reduced models and full model is shown in
Fig. 12.

The time responses to an impulse excitation at the point P of
the viscoelastic sandwich beam are well correlated before and
after reduction. Besides, the three central moments reflect that the
dynamic reduction method is a viable method that reproduces
entirely the original model. Since the frequency spectrum of the
impulse excitation covers the validity domain of the Guyan
reduction method, the reduced response derived from this method
agrees well with the original while it represents a relative error in
E of the order of 0.15% and a relative error in T of the order of 0.04%
(Table 8). Thus, these values can validate the Guyan reduced
model. As a result, this method presents a suitable choice in terms
of simplicity, feasibility of implementation and also satisfactory
accurate results.

5.1.2.7. Transient results for modal reduction approach. The derived
transient results for both reduced and full models are presented in
Fig. 13.

Fig. 13 shows the transient responses for the reduced models
derived from modal and modal in physical space reduction
methods compared to the full model. It can be observed that
these responses are identical. In fact, the modal reduction method
returns the p first exact modes of the associated undamped model,
allowing a reproduction of the original model through a general-
ized coordinate projection while modal reduction in physical space
method allows a reproduction of the full model through a projec-
tion in physical coordinates. This is affirmed by the three central
moments (Table 9), which indicates that both reduced models
preserve the periodicity of the full response with a relative error in
the energy E, which does not exceed 0.17%, leading to the
validation of these two reduction methods in temporal domain.

Table 10 presents the performance of the proposed reduced
models compared to the full model in time domain. There is a
significant reduction ratio in total CPU time required for the
evaluation of reduced basis and temporal responses at each
iteration which justifies the efficiency of these reduction methods
in time domain.

5.2. Viscoelastic sandwich plate

In this example, the interest is focused on the validity domain
extension of the Guyan reduction method. In fact, after meshing
the plate into 20�15 finite elements as shown in Fig. 14, the
master dofs, which are translation dofs uz , are chosen such that the
cutoff frequency is maximal. Hence, the distribution of the chosen
master dofs (m¼40) is illustrated in Fig. 14.

The plate is clamped on the four sides (C–C–C–C). The FE
discretization scheme leads to 8310 dofs in total number. The
excitation and the responses are depicted in point E as presented
in Fig. 14.

5.2.1. Frequency domain analysis
The frequency analyses for the sandwich plate are carried out

in the same manner as mentioned in the previous sections. In fact,
for each type of reduction, the equality of bases is assured.

Table 11
Undamped and damped frequencies for the viscoelastic sandwich plate.

Frequency Undamped frequencies [Hz] Damped frequencies [Hz]

f 1 264.26 213.07
f 2 463.78 374.13
f 3 604.83 488.05
f 4 788.08 636.37
f 5 1095.50 885.47
f 6 1125.20 908.92
f 7 1226.53 991.01
f 8 1300.83 1051.70

Fig. 15. FRFs for full and reduced models: Guyan/dynamic reduction methods for
the viscoelastic sandwich plate.

Fig. 16. FRFs for full and reduced models: Modal/Modal reduction in physical space
methods for the viscoelastic sandwich plate.
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For the elimination dofs reduction approach, Guyan and
dynamic basis are constructed such that the two bases have the
same size (8310�4195). Then, modal and modal in physical space
bases belonging to the modal reduction approach are also con-
structed such that the size of each basis is equal to (8310�4180),
with p¼25 modes which covers 1.5 the frequency band of interest
[0–1200] Hz ð1:5f u ¼ 1800 HzÞ.

Table 11 presents the eight first damped and undamped
frequencies of the viscoelastic sandwich plate. Indeed, the differ-
ence between the damped and undamped frequencies values
indicates the effect of the viscoelastic damping.

5.2.1.1. Elimination dofs reduction approach. The obtained results
for the viscoelastic sandwich plate are presented in Fig. 15.

As can be seen, the frequency response derived from the Guyan
reduction method has the capacity here to reproduce the fre-
quency response of the full model for the first four modes.
Furthermore, beyond the cutoff frequency which is equal to
806 Hz, the Guyan reduced response follows the shape curve of
the full model with small difference. This implies that the Guyan
reduction method is a viable method for the prediction of the
dynamic behavior of viscoelastic sandwich structures, when the
choice of master dofs is optimal. So, more the choice is optimal,
more the results are accurate. For the dynamic reduction method,
its frequency response is in good agreement with the response of
the full model. This affirms the efficiency of this method in the
reproduction of the full model dynamics.

5.2.1.2. Modal reduction approach. Fig. 16 shows the frequency
responses for the reduced models derived from modal and
modal reduction in physical space methods compared to the
full model.

It can be observed that the two reduced frequency responses
derived from modal and modal reduction in physical space are
identical to the frequency response of the full model. This leads to
confirm that modal and modal reduction method in physical space
have the capacity to reproduce the original coordinates of the
sandwich structures through a projection on the generalized
coordinates as well as on the physical coordinates with good
accuracy.

5.2.2. Time domain analysis
In this section, the time responses are focused on the steady

state analysis for the viscoelastic sandwich plate in order to show
the performance of the Guyan reduction method. Indeed, the
viscoelastic sandwich plate is subjected to a harmonic load of
amplitude equal to 1 N under an excitation frequency equal to

Fig. 17. Steady state response for the full and reduced models: Guyan/dynamic methods of the viscoelastic sandwich plate: (a) (f o f c) and (b) (f 4 f c).

Table 12.1
Temporal moments for the steady state responses (f o f c) of eliminations dofs
reduction approach of the viscoelastic sandwich plate.

E T D

Full 1.8377E�8 0.2428 0.0218
Dynamic 1.8377E�8 0.2428 0.0218
Guyan 1.8516E�8 0.2428 0.0218

Table 12.2
Temporal moments for the steady state responses (f4 f c) of eliminations dofs
reduction approach of the viscoelastic sandwich plate.

E T D

Full 2.1123E�8 0.3578 0.0412
Dynamic 2.1123E�8 0.3578 0.0412
Guyan 2.1128E�8 0.3578 0.0412

Fig. 18. Steady state response for the full and reduced models: Modal/Modal in
physical space methods of the viscoelastic sandwich plate.

Table 13
Temporal moments for the steady state responses of modal reduction approach of
the viscoelastic sandwich plate.

E T D

Full 1.8377E�8 0.2428 0.0218
Modal 1.8375E�8 0.2428 0.0218
Modal in physical space 1.8375E�8 0.2428 0.0218
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400 Hz (around the second mode of vibration for the sandwich
plate). The steady state response is reached after 0.15 s of transient
oscillations and where the oscillation becomes more stable, the
time responses are plotted.

For the Guyan reduction method, two cases are tested: the first
one examines the steady state responses of the sandwich plate
where it is subjected to excitation frequency less than the cutoff
frequency and the second shows the other case where the plate is
subjected to an excitation frequency higher than the cutoff
frequency.

5.2.2.1. Case 1: fo fc. Fig. 17(a) shows the steady state responses of
the Guyan and dynamic reduced models compared to the full
model. It can be seen that the dynamic response presents a
satisfactory agreement with the full model. This is clarified by
the values of the three central moments (E, T, D) (Table 12.1),
which is identical to those of the full model. Thus dynamic
reduction method remains a good choice of reduction methods.
For the Guyan reduction method, the steady state response
reproduces the original response with a relative error in energy
E which does not exceed 0.007% as shown in Table 12.2 while the
central moments T and D, indicators of error in periodicity, are
identical to those of the full model. Hence, the Guyan reduction
method is validated for each frequency excitation less than the
cutoff frequency.

5.2.2.2. Case 2: f4 fc. When the sandwich plate is subjected to a
harmonic excitation frequency higher than the cutoff frequency
f ¼ 1100 Hzð Þ, the steady state response of the Guyan reduced
model presents a little shift relative to the full model while
dynamic reduced response preserves its capacity to reproduce
the full response (Fig. 17(b)). In fact, the reduced response derived
from the Guyan reduction method presents a few relative errors in
energy E of order of 0.02% while it preserves the periodicity of the
full model as shown in Fig. 17(b). Consequently, the Guyan
reduction method can predict with good accuracy the
viscoelastic behavior of sandwich structures when the choice of
master dofs is optimal. So, compared to the case of sandwich beam
where the excitation frequency is high than the cutoff frequency,
the Guyan reduction method presents in the case of the plate more
satisfactory results.

For the modal reduction approach, the obtained results are
presented in Fig. 18.

The reduced responses obtained from modal and modal reduc-
tion in physical space methods are identical to the full model. This
is affirmed by the values of the three central moments (E, T, D)
presented in Table 13. In fact, the relative error for each moment
for the three compared responses is practically equal to zero. This
leads to the conclusion that modal and modal reduction in
physical space are viable methods for predicting the dynamic
behavior of viscoelastic sandwich plate.

The transient analysis for the viscoelastic sandwich plate
subjected to an impulse excitation is also established. Indeed,
the transient reduced responses present a good agreement with
the full model for each type of reduction. This can be explained for
the Guyan reduction method by the frequency spectrum of the
impulse excitation which covers the validity domain of this
method. Hence, the optimal choice of master dofs is an important
step in all reduction procedures, notably for the Guyan reduction
method in order to predict well the dynamic behavior of viscoe-
lastically damped structures.

For this example and for the sake of brevity, only the CPU time
evaluated in time domain is illustrated (Table 14).

The dynamic potential of the proposed reduction methods is
more highlighted with the viscoelastic plate example. In fact, the

saved time required for calculating the full and reduced models
increase by increasing the degrees of freedom. Furthermore, these
calculations take into account the evaluation of reduced basis and
the iterative procedure generated by the use of the Newmark
scheme in time domain for each applied reduction method. Hence,
these reduction methods constitute an efficient solution to gain
time and to handle large finite elements models with viscoelastic
components. On the other hand, these methods are used in the
direct reduction context and they improve their efficiency notably
in terms of CPU time, leading to performing both frequency and
temporal analysis. So, when more than one structure is used and
takes into account the non-linear behavior of the most structures,
the use of model reduction method in the substructuring context
or component mode analysis [36] for viscoelastic sandwich struc-
tures appears quite attractive.

5.3. Temporal analysis with localized nonlinearities in the
substructuring context

In this section, attention is focused on assembled viscoelastic
sandwich structures. Indeed, the bolted joints are usually modeled
by non-linear elements in the junctions of such structures. There-
fore, local nonlinearities are introduced to take into account this
effect. However, this is done at the price of generation firstly a
large systems dimension induced by viscoelastic components and
secondly time consuming due to the resolution scheme which
become more complicated with the introduction of local non-
linearities. So, it remains challenging to develop an efficient
reduction strategy that can overcome this problem. For that, we
propose combining the Guyan reduction method with the modal
synthesis method for local non-linear viscoelastic structures in the
substructuring context. This is done by the addition of a non-linear
term in the equation of motion Eq. (13). In fact, the form of this
equation as a standard temporal second-order equation leads to
introduction of local nonlinearities in a simple and soft way.
Thereby, the obtained temporal non-linear equation of motion
can be written as follows:

½MG�f €qGgþ½DG�f _qGgþ½KG�fqGgþff nlðqGÞg ¼ fFGg ð39Þ
where ff nlðqGÞg indicates the added non-linear load, where its ith
component can be expressed by the Duffing oscillator as follows:

ff nlðqGÞgi ¼ ∑
m

j ¼ 1
μj½ðqGÞi�ðqGÞj�3 ¼ ½KnlðqGÞ�fqGg ð40Þ

Table 14
CPU time of the viscoelastic sandwich plate.

Total CPU time [min]

Full Guyan Dynamic Modal Modal in
physical space

1440 168 258 324 356
Reduction ratio (%) – 88 82 77 75

SS1 

SS2 

Non-linear springs 

A 

Fig. 19. FE model of the global non-linear assembled viscoelastic sandwich beam.
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m represents the number of attached non-linear springs depend-
ing on the ith dof; μj represents the non-linear stiffness factor for
each non-linear spring and ½KnlðqGÞ� is the non-linear stiffness
matrix contribution.

The application of the proposed reduction strategy leads to the
following non-linear reduced model:

½Mc�f€qcgþ½Dc�f_qcgþ½Kc�fqcgþ½Knlc�fqcg ¼ fFcg ð41Þ
where ½Mc�; ½Dc�; ½Kc�; ½Knlc� and fFcg represent respectively the
reduced mass, damping, linear and non-linear stiffness matrices
and the reduced load vector obtained by the application of the
Guyan transformation matrix which is described in Section 4.2
with master (m) and slave (s) dofs expressed for the direct method
being replaced, respectively, by junction (j) and interior (i) dofs for
the substructuring procedure.

The FE model of the global viscoelastic sandwich beam is
illustrated in Fig. 19.

The used FE model of the global viscoelastic sandwich beam
involves 80 elements with 320 nodes and 5 dofs per node, leading
to 3200 total dofs. This beam is clamped at its two edges and the
mechanical and geometrical properties for each substructure (SS1)

or (SS2) are the same as described for the viscoelastic sandwich
beam in Table 1. The value of each used non-linear spring
coefficient is μ¼ 109 N=m3.

First, we start from the knowledge of the dynamic behavior of
each substructure (SS1) and (SS2) which are reduced separately by
the application of the Guyan reduction method.

5.3.1. Guyan reduction of substructure (SS1)
The displacement vector fqGg SS1ð Þ of the viscoelastic substruc-

ture (SS1) is decomposed according to the junction (j) and interior
(i) dofs partition as follows:

fqGgðSS1Þ ¼
qj

qi

z

8><
>:

9>=
>;

ðSS1Þ

¼ ½TSt �
qj

z

( )
ð42Þ

½TSt � is the Guyan transformation matrix as defined in Section 4.2.
Then, the reduced system is obtained by substituting Eq. (42) into
Eq. (17). Thus, the size of the reduced model for the substructure
(SS1) is 805 for the studied example. The choice of junction dofs
(j¼5), which are translation dofs uz, is carried out on maximizing
the cutoff frequency of the viscoelastic substructure (SS1), which is
equal to 165 Hz.

5.3.2. Guyan reduction of substructure (SS2)
In the same manner, the displacement vector of the second

viscoelastic substructure (SS2) is partitioned in terms of junction

Fig. 20. Temporal responses of full and reduced models of the non-linear assembled viscoelastic sandwich beam: (a) fo fc and (b) f4 fc.

Table 15
Performance of the non-linear assembled viscoelastic sandwich beam.

CPU time [min]

Full Reduced

684 61
Reduction ratio (%) 92
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(j) and interior (i) dofs as follows:

fqGgðSS2Þ ¼
qj

qi

z

8><
>:

9>=
>;

ðSS2Þ

¼ ½TSt �
qj

z

( )
ð43Þ

The reduced model is obtained in the form of Eq. (17) using
Eq. (43). Thereby, its dimension is equal to 805 with j¼5 dofs.
Furthermore, the cutoff frequency of the viscoelastic substructure
(SS2) is equal to 165 Hz.

After that, the reduced matrices are assembled taking into
account the localized nonlinearities in the junctions between the
two viscoelastic substructures (SS1) and (SS2) leading to a global
reduced system of order 1610. The obtained temporal results of
the global viscoelastic sandwich beam, which is subjected to a
harmonic load in point A of amplitude 50 N to arise effectively the
non-linear behavior, in terms of displacement and velocity, are
presented in Fig. 20(a) and (b).

As can be seen, Fig. 20(a) shows that the temporal responses in
terms of displacement and velocity are in good agreement in the
case of a harmonic excitation (f¼25 Hz) less than the cutoff
frequency of the non-linear assembled viscoelastic (fc¼165 Hz).
Furthermore, the evaluation of the three temporal moments (E, T,
D) provided identical values for both full and reduced models,
leading to validate the visual correlation. For the case of high
excitation (f¼300 Hz) relative to the cutoff frequency (fc¼165 Hz),
the full and reduced models present a shift in amplitude and time
scales. This shift is about 3% in energy E, 0.1% in T and 0.2% in D for
the displacement responses and 5% in E, 0.3% in T and 0.1% in D for
the velocity responses. This leads to validate the applicability of
the proposed method for non-linear viscoelastic structures in time
domain. On the other hand, while the reduction ratio in terms of
systems order is around 50% for such as a non-linear example, the
accuracy of the obtained results in terms of displacement and
velocity is satisfactory. Hence, this reduction method presents an
efficient tool to handle non-linear structures with viscoelastic
materials in time domain, which enables one to perform the
frequency analysis with more specific techniques such as the
harmonic balance method.

The performance of the proposed method in terms of CPU time
is shown in Table 15.

There is a significant CPU reduction ratio of 92%, leading to the
conclusion that the proposed reduction method for non-linear
viscoelastic sandwich structures enables one to bring two levels:
viscoelasticity and nonlinearity for the compromise good accuracy
and time efficiency.

It should be mentioned that from the studied examples of
viscoelastic sandwich (beam, plate, assembled beams) which are
academic structures, the reduction ratio in terms of systems
dimension does not exceed 50% but it can be possible to increase
this ratio further with more complex structures.

6. Conclusions

In this paper, finite element procedures are combined to first-
order shear deformation theory (FSDT) and to the GHM model for
the modeling of viscoelastic sandwich structures. The introduction
of internal variables or dissipation coordinates through a series of
mini-oscillators to take into account the viscoelastic damping is
achieved. Unfortunately, this was done at the expense of increas-
ing the model order. Consequently, model reduction methods have
been proposed as a convenient alternative for this problem. First,
the dynamic reduction method based on the elimination of slave
dofs and enrichment of the transformation basis with first slave
modes is developed. As a result, the reduced model reproduces
well the original model with good accuracy and less CPU time,

making it the best choice of model reduction methods for the
compromise accuracy-time gain in the direct reduction procedure.
Next, the Guyan reduction method is expressed by a static basis,
neglecting the inertia associated with the slave coordinates. This
method allows a simple implementation in the most finite
elements codes with a significant reduction ratio in terms of CPU
time and a good capacity of prediction of the original model,
especially in the substructuring context where the necessity of an
efficient reduction method becomes twice reinforced first by the
large systems dimensions induced by viscoelastic components and
second by the consuming time generated by the introduction of
local nonlinearities. Then, the modal reduction method based on
the derivation of the first modes associated with the undamped
structure is established. This method constitutes a good represen-
tation of the original model with reduced CPU time, making it a
suitable choice for the reduction of sandwich structures incorpor-
ating viscoelastic materials. Finally, modal reduction in the physi-
cal space method is outlined as a projection of modal basis in
physical coordinates system. Thereby, the projection on physical
space is realized, leading to good results. However, this method
needs an additional time compared to other reduction methods
and requires verifying the minimum conditioning number
condition.

In all reduction procedures, the proposed methods provided
good accuracy results and a satisfactory agreement with the full
model in both frequency and time domains. On the other hand,
even the reduction ratio in terms of systems size did not exceed
50%; it reached 90% in terms of CPU time, which makes these
methods a suitable choice in handling viscoelastic sandwich
structures in an accurate and efficient way. Furthermore, the
kernel of the idea to use model reduction methods in time domain
can be explained by the temporal interest of the GHM model
which allows transformation from a frequency rational shear
modulus function to a temporal resolved second-order equation
which improves its importance notably in the substructuring
context for structures with local nonlinearities.
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