Chemical degradation of a numerical material - Application to a Fontainbleau sandstone
Kajetan Wojtacki, Loïc Daridon, Yann Monerie

To cite this version:
Kajetan Wojtacki, Loïc Daridon, Yann Monerie. Chemical degradation of a numerical material - Application to a Fontainbleau sandstone. InterPore - 8th International Conference on Porous Media & Annual Meeting, May 2016, Cincinnati, United States. hal-01511167

HAL Id: hal-01511167
https://hal.archives-ouvertes.fr/hal-01511167
Submitted on 20 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Carbon Capture and Storage (CCS) consists of injecting large quantities of CO₂ in supercritical form directly into deep geological formations e.g. saline aquifers. During geological storage, chemical dissolution induces important and irreversible changes of the rock properties.

Objective: to propose a methodology which allows us to predict the evolution of effective mechanical behaviour of saline aquifers caused by microstructural changes due to CCS.

Advanced Morphological Analysis of Sandstone

The starting point is CT scan of microstructure of Fontainebleau sandstone of size 256x256x 256 px, where 1 px = 5.01 microns.

Numerous types of morphological descriptors: porosity, sizing (granulometry), covariance function, connectivity (tortuosity).

Granulometry Function:
\[G_r(X) = 1 - \frac{|X \circ B_r|}{|X|} \]
- \(X \) solid phase
- \(B_r \) structuring element of size \(r \)
- \(\circ \) erosion/dilation
- \(|\cdot| \) measure

Covariance Function:
\[C(X, h) = P \left\{ x \in X, x + h \in X \right\} \]
- \(P(\cdot) \) probability
- \(X \) porous phase
- \(x \) arbitrary point
- \(h \) translation vector

Numerical Dissolution by Morphological Dilation

Chemical dissolution of porous matrix is homogeneous at sample scale [Egermann et al, 2006]. We investigate two different scenarios of dissolution:

Isotropic: \(X_i = X_{i-1} \oplus B \)

Percolated Network: \(X_i = \{X \circ E\} \oplus B \)

Normalized elastic moduli

\[P(M) = P_0 + \frac{\alpha}{M} \]
- \(P(M) \) computed elastic moduli
- \(M \) resolution
- \(P_0 \) searched value

CT scan is naturally discretised (regular cubic mesh). The influence of such discretization on the estimation of elastic moduli is given by [Garboczi and Day, 1995]:

Permeability - Elasticity Coupling

Darcy’s law:
\[K = \frac{\mu Q L}{\Delta P A} \]
- \(K \) permeability
- \(\mu \) dynamic viscosity
- \(Q \) flux
- \(A \) surface area
- \(L \) sample length
- \(\Delta P \) grad. of pressure

Coupling: \[P(K) = 1 - \frac{K^K}{\alpha} \]

Constant characteristic size

Increasing characteristic size