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Abstract—Software-Defined Networking (SDN) allows for fast
reactions to security threats by dynamically enforcing simple
forwarding rules as counter-measures. However, in classic SDN
all the intelligence resides at the controller, with the switches
only capable of performing stateless forwarding as ruled by the
controller. It follows that the controller, in addition to network
management and control duties, must collect and process any
piece of information required to take advanced (stateful) for-
warding decisions. This threatens both to overload the controller
and to congest the control channel. On the other hand, stateful
SDN represents a new concept, developed both to improve
reactivity and to offload the controller and the control channel
by delegating local treatments to the switches. In this paper, we
adopt this stateful paradigm to protect end-hosts from Distributed
Denial of Service (DDoS). We propose StateSec, a novel approach
based on in-switch processing capabilities to detect and mitigate
DDoS attacks. StateSec monitors packets matching configurable
traffic features (e.g., IP src/dst, port src/dst) without resorting
to the controller. By feeding an entropy-based algorithm with
such monitoring features, StateSec detects and mitigates several
threats such as (D)DoS and port scans with high accuracy. We
implemented StateSec and compared it with a state-of-the-art
approach to monitor traffic in SDN. We show that StateSec is
more efficient: it achieves very accurate detection levels, limiting
at the same time the control plane overhead.

I. INTRODUCTION

Denial of Service (DoS) attacks gained momentum in the
recent years, threatening both network and web infrastructures
around the world. By using distributed spambots (DDoS)
and/or sophisticated reflection techniques (DRDoS), attackers
can easily generate traffic volumes in the order of Tbps [1],
also causing catastrophic consequences, as proven by the Dyn
attack in October, 2016 that led to major disruptions of internet
services both in US and Europe [2].

Following a recent trend, traditional network security ap-
pliances are migrating towards programmability concepts. In-
deed, Software-Defined Networking (SDN) enables an easier
network and service management, resulting an interesting
means to enforce security policies. In particular, many previous
works in the literature illustrated how to take benefit from
the flexibility of SDN in order to quickly setup counter-
measures to security threats, such as DDoS, generally by
dynamically enforcing simple forwarding rules [3]. Also, secu-
rity equipment manufacturers have already started to develop
and sell commercial products based on SDN concepts [4].
Following the classical SDN approach – all the network
intelligence resides at the controller, and the switches have
the simple task of enforcing a stateless forwarding as dictated

Fig. 1. The three main steps of the security management function, generally
implemented at the SDN controller.

by the controller – most of the state-of-the-art approaches rely
completely on the controller for dealing with threat protection
processes. In this case, a controller has to deal both with
stateful forwarding decisions and application processing, thus
risking being overloaded and failing consequently.

Recently, a novel approach called stateful SDN has been
proposed to improve reactivity and to offload the controller
and the control plane channel by delegating some local treat-
ments to the switches [5]. In stateful SDN, the forwarding
logic is modeled as multiple Finite State Machines (FSM)
implemented into switches as state tables associated with pre-
configured flow tables in the forwarding pipeline.

In this paper, we start from the stateful SDN concept as
defined in [5], and we design on top of it a novel DDoS
detection and mitigation strategy named StateSec to showcase
the benefits of such an approach. StateSec exploits the efficient
monitoring capabilities offered by stateful SDN, namely the
delegation of local processing to switches, to reduce the burden
on the controller, still achieving very accurate detection levels.
StateSec consists of three main steps, shown in Fig. 1 and
having the following properties:

• Traffic monitoring of pertinent features (e.g., IP src,
IP dst, port src, port dst) is handled inside
the switch by using stateful programming, thus allowing
scalable and very precise monitoring of traffic to feed the
detection algorithm.

• Anomaly detection is based on an entropy-based algo-
rithm [6] currently implemented on the controller side
(the detection could be integrated directly into the switch
when Extended Finite State Machine (XFSM) [7] will



be available). By feeding this algorithm with exact in-
formation about the traffic, we manage to detect and
differentiate several types of attacks with high accuracy
(e.g., DoS, DDoS, Port Scan, etc.).

• Whenever anomalies are detected, mitigation actions are
taken at the controller by setting up the most appropriate
set of reactions. For instance, DoS attacks originating
from a single source are simply filtered. However, more
complex mitigation actions can be applied in case of
evolved attacks (e.g., rate-limiting, forwarding suspicious
traffic towards a blackhole or a DPI engine, etc.).

To validate the benefits of StateSec, we compare its perfor-
mance against native OpenFlow monitoring and sFlow [8],
which is a well-known approach for traffic monitoring in
SDN. Evaluations are carried out in a controlled environment
that mimics a company-wide network deployment and the
results confirm the effectiveness of StateSec in both reducing
the overhead on the control plane and quickly detecting and
mitigating ongoing DDoS attacks.

The remainder of this paper is structured as follows. In
Section II, we discuss the related work. StateSec’s design
considerations are presented in Section III, and details on its
current implementation are given in Section IV. The evaluation
of StateSec with a DoS use case first, and then with different
DDoS attacks is presented in Section V. Finally, Section VI
draws the conclusions and points out future work.

II. RELATED WORK

Different types of DDoS attacks exist [9]. Their impact
can be significant: they are able to generate such a huge
amount of traffic causing targets to crash and the associated
service(s) to become partially or totally unavailable. Detecting
and mitigating DDoS attacks is far from being straightforward.
First, they usually do not come from a single identified source,
which makes remediation very difficult without also affecting
legitimate traffic. Second, they appear either very suddenly,
thus requiring fast reaction to counter their effects, or very
slowly, thus making the detection even more complicated [10].

Simplicity and flexibility are some of the key features
offered by SDN, making it an ideal candidate for managing
network security. Hence, multiple SDN-based DDoS detection
and mitigation schemes have been proposed in the literature.
Some of them discuss the bottlenecks introduced by SDN
(e.g., related to the flow tables exhaustion at switches and
the controller overload), focusing on the protection of the
network itself [11], [12]. Others deal more with the protection
of communication endpoints (user terminals and application
servers) [3], [13]–[16]. Similarly, in this paper we focus
on the protection of the communication endpoints by taking
advantage of SDN concepts.

In SDN, the controller has a global view of the network and
interacts with switches using a dedicated protocol (e.g., Open-
Flow [17]). For this reason, implementing a DDoS protection
application on top of the controller is somehow a standard
approach. As a result, most of the related work describe me-
thods implemented at the controller level. They mainly differ

from each other depending on how they perform the three
steps required to handle DDoS protection, namely 1) traffic
monitoring, 2) attack detection, and 3) attack mitigation. For
instance, a controller application can store information such as
host/port bindings by frequently requesting switches for ports
and flows statistics through standard OpenFlow messages [13].
It is thus possible to detect anomalies and react with Quality of
Service and Block State mitigation actions. However, perform-
ing many, yet simple, computations on the controller side has
a negative impact in terms of performance (e.g., throughput
decrease, latency increase). Another option is to replicate
the traffic towards an Intrusion Detection System (IDS) [14].
Threat identification can be performed by correlating IDS
alerts through attack graphs at the controller. Simpler yet
powerful options are to use statistical tests [18] or entropy-
based algorithms for anomaly detection [6].

Regardless of the detection strategy employed, the native
OpenFlow approach for monitoring, with the controller that
periodically gathers the flow table entries to collect counters,
has the unpleasant effect of congesting the control plane [3].
Performance can be improved by using the sampling tech-
niques of sFlow [8]. However, sFlow must be carefully confi-
gured because the gains on the control plane load trades off
the monitoring precision [19]. Another option is to delegate
as much computation as possible to the switches without
compromising their performance, letting the controller being
only in charge of mitigation [15], [16], [20]. An emerging
approach in this sense is stateful SDN [5], that implies faster
reaction times and less load over the control plane [21].
StateSec implements a stateful monitoring process running
into the switch to gather very precise information and feed
an entropy-based detection algorithm.

III. StateSec’S DESIGN BASICS

We have developed StateSec with the overall objective of
protecting the communication endpoints from various security
threats by employing SDN concepts. While throughout the
paper we focus on (D)DoS attacks, StateSec can be easily
employed to detect and mitigate other security threats such
as port scans and ICMP flooding. In the design phase, we
covered the three stages required to handle security manage-
ment function, namely monitoring, detection and mitigation as
depicted in Fig. 1. Our objective is a quick reaction time and
a reduction of the overhead induced on the control channel
by the communications between a switch and its controller.
To this end, StateSec delegates part of the processing to the
switches, following the stateful SDN principles [5].

A. Monitoring & detection: local information stays local

As it emerges from Fig. 2, most of the related works perform
all the three stages of the security management function
at the controller. Following this classical approach, a SDN
switch can be seen as a “dumb” device, with all the network
intelligence located at the controller. This implies that, in order
to monitor the traffic, the controller has to retrieve the entire



Fig. 2. Classical approaches to DDoS detection and mitigation are controller-
centric (left). StateSec delegates monitoring and detection functions to the
switch since they are performed on local information (right).

flow table entries of any controlled switch. As we will see in
Section IV-A, this approach is neither efficient nor scalable.

Instead, StateSec delegates monitoring and (in the near
future) detection directly into the switches. Since both traffic
monitoring and anomaly detection involve only local informa-
tion, they can be done not necessarily at a central location
(e.g., the controller). When an anomaly is detected, the switch
notifies the controller so that counter-measures can be elabo-
rated and applied, potentially network-wide. On the one hand,
this model does not break the SDN philosophy: the controller
retains the full control of the network management (e.g., by
orchestrating mitigation actions when needed). On the other
hand, switches have to become smarter in order to handle some
local processing in place of the controller.

Since monitoring and detection are tightly coupled, one may
want to process the monitored information directly where ob-
served. StateSec targets this objective, thus saving the commu-
nications required to collect the information at a different place
before processing it. However, delegating both monitoring and
detection to a switch is not straightforward, since it depends
on the abstraction used for the in-switch processing.

B. In-switch Processing Abstraction
StateSec relies on OpenState [22], an open source imple-

mentation of the stateful SDN concept originally proposed
in [5]1. In-switch processing benefits from three additional
components at the switch, as detailed in Fig. 3:

1) State table: linked to a Flow table configured as stateful,
the State table associates a configurable key (e.g., a
src IP) to a state. Whenever a feature of the received
packet matches one of the keys, the associated state
value is added to the packet’s metadata and forwarded
to the Flow table.

2) State match field: an additional field to match on in
the Flow table. Using the state of a packet (carried
in metadata) as a match field allows applying state-
dependent policies to packets.

3) Set state action: a new action to update the state for a
configurable key (e.g., a src IP) inside the State table.
For instance, this action could be employed to increase
the counter associated with a given src IP key.

1OpenState is developed on top of the Ryu controller and the ofsoftswitch13
software switch.

At the foundation of StateSec resides a programmable control
loop embedded into the switch. State transitions are confi-
gured in the Flow tables and different actions can be applied
depending on the state of a packet. The bottom line is that
this stateful implementation allows the switch to 1) keep states
associated with packet features, and 2) apply programmatically
forwarding actions to packets according to these states. This
approach goes in the direction of delegating tasks to the switch
by programming it to perform conditional actions without
resorting to the controller. OpenState also defines OpenFlow-
compatible messages (by using the experimenter field) for
the controller to configure and operate the above-mentioned
structures in the switch (e.g., to get the state table entries).

C. What is possible today, what to expect for tomorrow?

The current OpenState implementation allows the switch
to run only simple Finite State Machines (FSMs), where
transitions are limited to a change of state. Even if this
abstraction is already powerful (e.g., examples of applications
are proposed in [22]), it does not allow the switch to perform
comparisons or complex computations yet. As a consequence,
the detection process, which consists in comparing values
against some thresholds, cannot be implemented inside the
switch at the current stage of development. However, authors
of OpenState are currently working on an extended abstraction
to allow performing simple computations and memory opera-
tions during state transitions [7]. StateSec is ready by design
for this evolution. Indeed, we made the choice of a simple
enough detection algorithm to be easily implemented with the
operations that will be available in the extended abstraction.
We expect its rapid integration into the switch as soon as the
extended in-switch processing abstraction will be available.

IV. StateSec’S IMPLEMENTATION

Following the design decisions explained before, in this
section we give an overview of the implementation of StateSec.
We describe the three main stages required to handle the secu-
rity management function, namely monitoring, detection and
mitigation. StateSec implements the whole DDoS detection
and mitigation process. In order to offer efficient, fast and
reliable protection, it targets delegating both the monitoring
and detection processes to the switch, while the controller
elaborates and orchestrates the mitigation actions.

A. Monitoring

Information about traffic flows must be gathered in order
to feed the detection algorithm. In particular, StateSec needs
to collect information about each traffic feature taken into
account in the detection. In our evaluations, we considered
four main traffic features, namely dst IP, dst port, src
IP, src port along with the information on the type of
transport layer protocol employed (e.g., TCP, UDP, etc.). These
features are employed in the detection process, so the switch
needs to monitor them all.

Several methods already exist in SDN environments for traf-
fic monitoring. In the following, we will list these approaches,



Fig. 3. StateSec switch architecture.

highlighting also their drawbacks in terms of switching perfor-
mance and control plane overhead. In effect, they turn out to
be far from optimal for listing traffic features (e.g., destination
IP addresses) and counting how many times they appear during
a time interval. On the contrary, we developed a monitoring
scheme that makes the tracking of traffic features quick and
efficient, by exploiting the standalone reconfiguration of state
tables offered by stateful in-switch processing.

1) Native OpenFlow Monitoring: the OpenFlow protocol
defines the messages exchanged between the controller and
a switch [17]. The controller can natively gather the content
of flow tables, including packet and byte counters associated
to each entry, using the FlowStatsRequest message. While
interesting for gathering aggregate flow statistics, the native
OpenFlow monitoring does not scale well when listing and
counting many traffic features with small granularity (e.g.,
statistics over each src IP or src port), as required for
DDoS detection. Indeed, for any individual feature to monitor,
this approach requires inserting a new flow rule in the flow
table of the switch. A direct effect dictated by the increased
size of flow tables is a reduction in forwarding performance.
For instance, let consider one traffic feature: the destination IP
address. Monitoring (e.g., listing and counting occurrences) all
the destination IP addresses seen in packets’ headers requires
inserting one forwarding rule per IP address (a second flow
rule may also be created for each IP address as source
when the source IP address traffic feature is monitored). The
same principle applies to each monitored traffic feature. With
this approach, flow tables at switches are quickly overfilled,
impacting negatively the performance of forwarding.

2) sFlow Sampling: sFlow is a well-known monitoring
approach relying on packet sampling [8]. An sFlow agent
integrated into the switch is in charge of both sampling packets
at a configurable rate [23] and transmitting their header to
a collector, logically running near the controller. Many SDN
equipment manufacturers have already integrated sFlow agents
in their products. Moreover, one of the reference software
switches, Open vSwitch (OVS), is also sFlow-compatible.

sFlow offers significant benefits when compared to the

native OpenFlow approach, since the monitoring functionality
is totally decoupled from forwarding, i.e., it is not necessary
to add flow rules to ensure both forwarding and monitoring of
flows. Based on sampled packets, the sFlow collector allows
performing DDoS detection by maintaining an up-to-date list
of features and counters. However, sampling may introduce
a significant approximation, potentially harming the detection
accuracy. Indeed, the configuration of the sampling rate is very
important [19], as we will show in Section V. Obviously, by
lowering the sampling rate the precision decreases. On the
other hand, a too high sampling rate concurs in overloading the
control plane channel. Indeed, it is of paramount importance –
and most of the time this step requires a fine tuning – to find
the right tradeoff between detection accuracy and overhead on
the control channel.

3) StateSec’s State-Based Monitoring: we developed a new
system that relies on stateful in-switch processing to im-
plement forwarding-independent and modular monitoring of
traffic features. StateSec’s monitoring uses the state and flow
tables in an OpenState-compliant switch to list features and
count the exact number of times they appear, independently
from the forwarding rules. Considering a single traffic feature,
e.g., src IP, the controller initializes the following elements
in the switch (cf. Fig. 3):

• a flow table is configured as stateful, and the controller
inserts in the associated state table an entry to make any
unknown key associated to the ‘DEFAULT’ state (in the
case of counting packets, the ‘DEFAULT’ state is 0),

• the lookup scope extracts from the packet headers the
field corresponding to the monitored traffic feature (src
IP in this example),

• the update scope looks at the same field as the lookup
scope, corresponding to the monitored traffic feature.

Finally, we extended OpenState in order to perform in-
cremental state updates. Indeed, the OpenState implemen-
tation offers a single function to update a state, namely
set_state(newState), which requires to pre-configure
the value of the newState value in the flow table. This function
is adapted to FSMs where states and transitions are known in



TABLE I
ENTROPY VARIATIONS RESULTING FROM DIFFERENT TYPE OF ATTACKS.

Type of Attack Dst IP Dst Port Src IP Src Port
DoS flooding ↘ ↘ ↘ ↘

DDoS flooding ↘ ↘ ↗ ↘
DoS flooding
with spoofed src port ↘ ↘ ↘ ↗

DDoS flooding
with spoofed src port ↘ ↘ ↗ ↗

ICMP DoS flooding ↘ ↘
ICMP DDoS flooding ↘ ↗

Port Scan ↘ ↗ ↘ ↘
Port Scan with
spoofed src port ↘ ↗ ↘ ↗

advance. For traffic monitoring applications, in order to count
the amount of packets having the same traffic feature, the next
value of a state is simply an increment by one of its current
value. We developed an efficient inc_state() action to
perform such a state update, calling this action in a default flow
table entry that matches all packets, whatever their state is. As
a consequence, the state associated to the src IP (in general,
the monitored traffic feature) of the packet is updated in the
state table (a new entry is created for the first occurrence).
This process is repeated for each monitored traffic feature,
and different tables are linked to form a pipeline where each
State table monitors one traffic feature, independently from
forwarding.2

This process allows the switch to count the exact number of
times each symbol appears for each traffic features one wants
to monitor, ensuring thus a high accuracy of the detection
algorithm. Regardless of where it is deployed, the detection
algorithm can access this information through a new StateSec
control message that atomically retrieves and flushes (to reset
counters values after the lecture) the content of state tables.
By periodically gathering the traffic feature keys and the asso-
ciated states/counters from state tables, the detection algorithm
can perform its duties.

B. Detection

In order to validate the benefits of the in-switch moni-
toring offered by StateSec, we adapted a simple statistical-
based algorithm from the literature [6]. One advantage of
this strategy is that it is directly applicable to the traffic
features that are offered by the switch. Moreover, once XFSM
will be available, this lightweight detection algorithm could
be easily integrated into the switch. Indeed, unlike pattern-
based detection tools, statistical approaches do not require
large memory nor high processing power. We thus developed
StateSec’s detection process using an entropy-based algorithm,
a statistical approach for detecting anomalies in a distribution.

1) Entropy-based Algorithm: entropy measures the unpre-
dictability of a distribution. Sudden variations in the measured
entropy allow detecting anomalies in the distribution of traffic
features. To this end, we employed the normalized entropy

2Note that the forwarding table can stand either at the beginning or at the
end of the pipeline.

Time (s)

E
nt

ro
py

 D
st

 IP

0 25 50 75 100 125 150

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Entropy variations for the dst IP traffic feature: an UDP flooding
attack is performed around t = 90s towards a single node. This generates a
significant drop in the entropy, that returns back to normal levels after detec-
tion and mitigation of the attack (traffic from malicious hosts is discarded).

formula given below, where pi stands for the probability of the
symbol i to appear, and n represents the number of symbols.

H(X) = −
n∑

i=1

pi
log2(pi)

log2(n)

A statistically high incidence for a given symbol to appear
leads to a reduced entropy (and to a slightly more concen-
trated distribution). Conversely, low and dispersed incidences
translate to higher entropy values. It follows that entropy-based
algorithms are widely used for the detection of attacks in
communication networks [3], [6]. By identifying significant
changes in the randomness of consecutive traffic features
distributions, this statistical approach can detect several type of
attacks, including (D)DoS, with better accuracy than methods
based on volume metrics [6].

Next, we correlate different traffic features entropy varia-
tions to identify the type of attack. Table I shows that moni-
toring the entropy of four traffic features distributions (dst
IP, dst port, src IP, src port) allows differentiating
between multiple types of attacks. For instance, a significant
decrease of the entropy for both the dst IP and the dst
port features may be observed when a (D)DoS attack occurs.
Increases or decreases in the entropy of the src IP feature
qualify whether or not the attack is distributed. Similarly, the
src port may be employed to detect spoofing attacks.

Fig. 4 serves to illustrate the variations in entropy induced
on the dst IP traffic feature while a UDP DoS flooding
attack occurs around t = 90s. The detected drop in the
entropy value results from the fact that the target of the DoS
attack represents a large share of the destination traffic seen
at the switch. However, some IP addresses or ports may also
send or receive more packets than others in real networks,
e.g., servers providing very popular services. In this case, a
hefty drop in entropy for the dst IP traffic feature might
be related to certain properties of legitimate traffic and not to
malicious actions (e.g., unexpected flash crowds arising after
major events). Hence, selecting a good detection threshold and
implementing additional protection mechanisms is paramount
to avoid detecting potential false positives.



2) Detection Thresholds and Sensitivity: the sensitivity of
the detection process is one of the key elements allowing
to identify threats with a limited number of false positives.
We employed a statistical model to define the lowest and
highest acceptable values of entropy. For any given traffic
feature to monitor, the initial entropy values collected by the
detection algorithm bootstrap a learning phase – assuming
no attack occurs during the bootstrap, these samples can be
considered as a snapshot of the steady-state situation. After
the bootstrapping phase is completed, any new entropy value
is compared against statistics from the sample of entropy
values collected so far (learning never stops, but abnormal
entropy values are discarded from reference samples). The
statistics computed from this sample are the mean µe and the
standard deviation σe. From the normal distribution defined
by N (µe, σe), we identify the upper and lower bounds that
determine whether or not the last computed entropy results
from a legitimate situation. Following the normal distribu-
tion, detection thresholds can be configured to be located at
µe ± m · σe with m ∈ N. The value of m relates to the
algorithm sensitivity. For instance, if the system is configured
to use thresholds one σe away from the mean (m = 1), it will
be very sensitive but may generate more false positives than
with thresholds three σe away from the mean (m = 3).

3) Outliers Protection: a key step consists in identifying the
victim(s) (e.g., target hosts and service ports), and, if possible,
the attacker(s), (e.g., hosts and source ports) that generate the
attack. No matter the value chosen for m, in order to reduce
further the impact of false positives we enforce an additional
mechanism to protect outliers. In effect, in any network some
legitimate hosts (e.g., IP addresses) or services (e.g., ports) are
much more solicited than others (e.g., an HTTP server receives
a lot more traffic at its address on port 80). This evidence
does not sit well with a detection based only on statistical
methods, and additional care should be taken in order to limit
the occurrence of false positives. For this reason, when the
last computed entropy for a traffic feature resides in-between
the upper and the lower bounds, then no entropy violation is
detected (we assume being in a legitimate situation). Similarly
to the entropy detection phase, the algorithm computes the
mean µd and the standard deviation σd, this time directly
on the dictionary of symbols and their associated counters.
Symbols below or above the µd ± m · σd thresholds are
considered as outliers (e.g., IP addresses that are much more
solicited than the others, in a non entropy-violation situation)
and will be stored. Then, whenever an entropy violation is
detected, an additional step is taken to verify whether the
suspects are from these stored values. If that is the case, an
alert is launched only if the counters are outside µd ±m · σd.

4) Detection Process Primer: the detection process consists
in computing the entropy of each monitored traffic feature
(src addr, src port, dst addr, dst port), based
on the list of symbols and their associated counters. Then,
the algorithm computes the upper and lower thresholds and
evaluates whether the entropy value is below or above these

bounds, individually for each traffic feature. If the entropy of
one or multiple traffic features generates a drop or raise that
crosses thresholds, an anomaly is detected. In any case, outlier
values are stored to improve the detection in the future.
This process is repeated at regular interval of times, called
Time Window in the rest of the paper. When an anomaly is
detected, the variations in the entropy for the different traffic
features are analyzed, taking also into account the outliers,
combined to identify the attack (following Table I), and the
mitigation process takes place consequently.

C. Mitigation

Finally, mitigation action(s) are elaborated to protect legi-
timate users. Once a violation is detected, new flow rule(s)
are installed into the switch with a high priority to match
suspicious packets. The precision of mitigation rule(s) depends
in large extent on the precision of the information identified
in the detection phase (source and destination IP addresses
and ports). The controller installs mitigation rules into the
switch through standard OpenFlow functionalities. Existing
actions allow to drop, queue, prioritize, blackhole or even
forward traffic towards an IDS. We can also imagine many
more complex actions: for instance, suspicious traffic could be
forwarded towards a Deep Packet Inspection (DPI) device (or
Virtual Network Function) running somewhere in the network
for a further analysis conditioning a final remediation decision.

V. StateSec’S EVALUATION

We evaluated StateSec’s performance in terms of false
positives, detection accuracy and control plane overhead over a
real testbed. This allows identifying and discussing the tradeoff
between the cost of a precise monitoring and the detection
efficiency. Since the core contribution of the paper concerns
the efficiency of the monitoring phase, we compare StateSec’s
results to those obtained with the same entropy-based detection
strategy coupled with sFlow for monitoring.

A. Experimental Testbed Setup

The evaluation has been carried out in a controlled en-
vironment composed of two virtual machines (VMs): one
running an extended version of the Ryu controller (3 vCPUs
clocked at 2GHz, with 16 GB RAM), and the other (2 vCPUs
clocked at 2GHz, with 8 GB RAM) running Mininet [24], a
powerful tool used to emulate complex data plane topologies.
In our experiments, Mininet emulates one switch running
either our extended version of OpenState, or a standard
Open vSwitch (OVS) coupled with an sFlow agent3, one
replaying host, several attacker hosts, and one application
server as depicted in Fig. 5.

B. Scenario and Parameters

In our experiments, host h1 replays legitimate traffic taken
from the “BigFlows” trace (available at [25]), which captures
a real network traffic on a busy private network’s access point

3We used OVS for experiments with sFlow because this software switch
can integrate an sFlow agent while ofsoftswich13 cannot.
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Fig. 5. Testbed topology: host h1 replays legitimate traffic from the trace
“BigFlows” [25] with tcpreplay. Each attacker host generates a DoS attack
towards the HTTP/TFTP server.

to the Internet. This approach makes it possible to mimic
a much more complex topology than the one presented in
Fig. 5. The employed trace contains 50000 packets and has
been chosen to include a significant number of hosts (679) that
exchange diverse types of legitimate traffic (9605, 40249 and
118 packets for UDP, TCP and ICMP respectively), making
it comparable to the traffic generated in a large company. The
trace is indefinitely replayed at the speed of 3.3 Mb/s.

The attacker(s) generates a (D)DoS flooding attack towards
the server listening on ports 69 (TFTP) and/or 80 (HTTP), by
using hping3 [26] (1 pkt/1200 µs). During each experiment,
we captured the traffic exchanged between the switch and
the controller (control plane traffic) using tcpdump, and we
observed also the reaction time of the detection process.
We evaluate the performance of StateSec and sFlow for
different values of three key parameters:

• Time Window: the time interval in seconds between two
calls to the detection algorithm. With StateSec, the con-
troller has to gather first the counters for the monitored
traffic features from the switch, then it can trigger the
detection algorithm. With sFlow, samples are gathered in
real-time with sflowtool. In both cases, the Time Window
parameter has a direct impact on both reactivity and
control overhead.

• Detection Sensitivity: the sensitivity value m that defines
the thresholds to be used in the detection process (both
for StateSec and sFlow), as described in Section IV-B. A
fine tuning of this parameter is required in order to avoid
as much as possible the presence of false positives.

• Sampling Rate: the period used to sample packets with
sFlow. Its value defines how many packets must be seen
before picking a sample and sending it to the collector.
The sampling rate [23] is configured with values ranging
from 1 (high – a sample for each packet) to 100 (low –
a sample each 100 packets) in our experiments.

For each set of parameters, we ran the experiments 30 times
with a fixed initial time (26 s) of the (D)DoS attack in order
to highlight the particular interactions between the sampling
rate value and the detection accuracy.

C. DoS Experiments Results

First, we analyze the impact of the detection sensitivity
value m on the amount of false positives at stationary regime
without attacks, by replaying the traffic trace and counting de-
tections. The fine tuning of detection thresholds is particularly
critical in order to cut down the number of false positives,
thus preventing artificial denial of service to legitimate users
while preserving sensitivity to real attacks. Fig. 6 gives an
idea of the values at stake (note the logarithmic y-axis). As a
result, in order to avoid as much as possible false positives,
in the following we will use a detection sensitivity set to
m = 3 if not explicitly mentioned. Fig. 6 highlights also
two clear trends: 1) by increasing the Time Window value,
the sensitivity value without false positives decreases; and
2) for increasing sampling levels (sFlow only), regardless of
the sensitivity value, the amount of false positives decreases.
Unfortunately, as we will see later, longer Time Window and
higher sampling rates imply increased control overhead.

We confirm this observation by looking at Fig. 7 that
represents the average traffic flowing on the control plane
channel during one Time Window. The overhead for StateSec
includes the messages exchanged to gather counters from
the state tables, whose size depends on the variety of traffic
flowing through the switch. Instead, with sFlow it includes
the packet samples sent from the agent to the collector. In
this case, the control plane traffic depends rather on the data
traffic throughput at the switch. We observe that with frequent
sampling (e.g., sampling rate set to 1), sFlow overloads the
control plane. This is the price to pay for using sFlow with
the same precision level offered by StateSec, which in turns
provides always exact counters. On the other side, StateSec
generates less load on the control plane than sFlow with
sampling rates set both to 5 and 10 and Time Window values
higher than 2 seconds. So, unless using sFlow with very low
sampling rates (e.g., a sample every 50 or 100 packets) in
exchange for the penalty of a lower precision, StateSec is more
efficient: it generates less overhead maintaining very precise
monitoring information.

Ultimately, the detection rate is the most meaningful para-
meter for any credible (D)DoS protection strategy. At the
same time, reactivity plays a major role, since it relates
to the expected outage time of targets before a threat is
mitigated. In that sense, Fig. 8 depicts the average attack
detection rates for StateSec and sFlow for different sampling
rates and Time Window intervals in case of an attack. We
differentiate the reactivity performance by considering two
types of detection, namely whether an attack is detected within
two Time Windows or not. As expected, sFlow with low
sampling rates leads to poor detection rates, implying also
longer reaction times. In a nutshell, low sampling rates lead
to less accurate detections and lower reactivity. Moreover, we
note that sFlow performance depends heavily on the interplay
between Time Window and sampling rates. Generally, longer
time intervals permit sFlow to sample multiple suspicious
packets increasing thus the detection likelihood (e.g., compare



Time Window = 1 s

Sensitivity

fa
ls

e 
po

si
tiv

es
 (

%
)

0.5 1 1.5 2 2.5 3 3.5
0.01%

0.1%

1%

10%

●

●

●

●

●

●

●

●

●

Time Window = 2 s

Sensitivity

0.5 1 1.5 2 2.5 3 3.5
0.01%

0.1%

1%

10%

●

●

●

●

●

● ●

●

●

Time Window = 3 s

Sensitivity

0.5 1 1.5 2 2.5 3 3.5
0.01%

0.1%

1%

10%

●

●

●

●

●

● ●

Time Window = 4 s

Sensitivity

0.5 1 1.5 2 2.5 3 3.5
0.01%

0.1%

1%

10%

●

●

●

●

●

●

●

●

●

Time Window = 5 s

Sensitivity

0.5 1 1.5 2 2.5 3 3.5
0.01%

0.1%

1%

10%

●

●
●

●

●

●

● ●StateSec & sFlow (s=1) sFlow (s=5) sFlow (s=10) sFlow (s=25) sFlow (s=50) sFlow (s=100)
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the improvement of detection rates for sFlow). On the other
hand, lower sampling rates coupled with longer Time Windows
tends to smooth out the entropy variations, reducing signifi-
cantly the detection rate for the magnitude of attack that we
tested (an example of this event can be seen in Fig. 8 for Time
Window 5s and sampling rate 50).

D. Distributed DoS Experiments Results

We extend the DoS scenario used so far to evaluate how
StateSec detects and mitigates multiple DDoS attacks.
DDoS Attacks: in principle, DDoS attacks have a distributed
source. If attackers are limited in number compared to the
legitimate hosts, StateSec is able to identify most of the
attackers. In that case, StateSec filters out each attacker as
it was generating a simple DoS attack towards a unique
target. On the other hand, whenever the DDoS attack is
much stronger, i.e., it is generated by a number of attackers
comparable to the number of hosts sending legitimate traffic,
StateSec still can detect the attack without being able always
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Fig. 8. Detection rates with detection sensitivity set to m = 3. Note the hefty
drop in detection with sFlow for large Time Window and low sampling rates.

to identify attackers. In order to evaluate this, we replayed
the same traffic trace as for the DoS evaluation, this time
employing multiple attacking hosts, and we observed that
StateSec mitigates precisely simultaneous attacks from up to
35 hosts (out of the 679 total hosts in the BigFlows trace).
In case the number of attackers is larger, StateSec protects
the application service by temporarily dropping all the traffic
towards the victim.
Slow DDoS Attacks: by using slow traffic that appears
legitimate in terms of protocols and rates, slow DDoS attacks
try to pass undetected by traditional statistical strategies [10].
Indeed, when entropy variations are not pronounced enough,
the algorithm will not detect any anomaly. This traffic, harm-
less at first sight, aims at exhausting the victims resources.

We extended StateSec to detect also this type of attacks by
comparing the last computed entropy value not only to the
distribution of the whole history of entropies, but also to the
distribution of the history excepting the last n values (in our
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evaluations, we considered n = 4). If there is a significant
decrease in the current entropy value compared to values seen
in the past, a slow DDoS attack is detected.

We compared how StateSec and sFlow face slow DDoS
attacks using a Time Window of 5 seconds, and a detection
sensibility set to m = 2 (entropy variations are not significant
enough to use thresholds 3 times away from the mean). To
do so, we emulated a slow DDoS attack with 20 attackers
flooding UDP packets towards the same destination and port.
Only one attacker is present at the beginning of the attack,
and a new attacker starts flooding every 5 seconds with a low
intensity attack (1 pkt/10000 µs). Fig. 9 shows that StateSec
offers detection rates near 80%. When StateSec detects the
attack, nearly 85% of attackers are identified and the traffic
they send is blocked. In addition, this result highlights again
the consequence of a low precision in the monitoring: when
the attack comes slowly, it is even clearer that sFlow used
with low sampling rates cannot accurately detect and mitigate
threats.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented StateSec, a novel approach
based on stateful SDN to protect communication endpoints
from (D)DoS attacks. StateSec relies on in-switch processing
capabilities to delegate the traffic monitoring phase to the
switch. We developed the required extensions to make this
scheme a reality, and evaluated its performance on a real
testbed. Comparisons against sFlow confirm that StateSec is
efficient in terms of control plane occupation, while it is clearly
better in terms of monitoring precision, and, as a consequence,
on detection accuracy.

Future work consists in adapting StateSec to the extended
in-switch processing abstraction that authors of OpenState
are currently developing, in order to actually integrate our
entropy-based detection process into the switch. We also plan
to elaborate more sophisticated mitigation actions, potentially
taking network-wide decisions over more complex topologies.
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