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by proceeding along the lines of the analysis for similar single-degree-of-freedom oscil
lators [13, 14]. This type of analysis exploits the linearity of the equations of motion within 
each time interval where the system possesses constant characteristics. As expected [10], 
this extension is not a trivial task. A key feature that permits this generalization is the 
derivation of a suitable expression for the form of the solution of the linear problem. 

The basic steps of the present analysis are briefly outlined in the following three sections. 
First, a suitable solution form is obtained for a general discrete linear system under 
harmonic excitation. This solution form then presents the basis for determining exact 
periodic motions of the non-linear system, as well as their stability. The analysis developed 
can be applied in a number of different areas. Here, the validity and effectiveness of the 
method is tested by applying it to two classes of important engineering problems. In this 
way, useful information is also obtained for the dynamics of the examples considered, 
which are vibration absorbers with elastic stops and other oscillators under internal 
resonance. The results of the numerical study reveal that some parameter combinations 
lead to a periodic or quasi-periodic response, while others lead to chaotically modulated 
motions. Comparison with the response of oscillators with continuous non-linearities is 
also made. 

2. MECHANICAL MODEL AND SOLUTION FORM 

The system examined is modeled as a general linear multiple-degree-of-freedom oscilla
tor, including a component carrying elastic stops with damping and restoring forces, 
expressed by 

Fi . {ci+kx, 
(x, x)= c'x+k'x+(k-k')xs. x>xs. 

(1) 

In equation (1), x is the relative displacement of the oscillator carrying the stops with 
respect to the component of the system these stops collide with. An example of such a 
system with c =eN, c' =eN+ Cs, k = kN and k' = kN+ ks is presented in Figure 1. In general, 
the position of the stops within the overall system can be arbitrary. 

~ + X~tfl +XN-t,fN-l + XN,{N 
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Figure 1. A mechanical model of the system. 

The components of the system are subjected to forcing: /,(t) = F; cos (wt + l/J; + ljJ ), 
where 4> is an unknown phase angle introduced for the purpose of facilitating the search 
of periodic solutions. Since the function F(x~ x) is piecewise linear, the exact form of the 
analytical solution of the system can be obtained for x ~ Xs and x < Xs. Before doing this, 
the displacements are normalized by a characteristic length, Xc, i.e., y1 = xtf Xc. This length 
can be the gap length Xs, when Xs is non-zero. In addition, a normalized time is chosen 
according tor= rot. Then, the governing equations in the time intervals where the stiffness 
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and damping remain constant can be cast in the linear form 

My+ Cy+ Ky=f('r) + k, (2) 

where M, C and K are the inertia, damping and stiffness matrices, respectively, while k is 
a vector including the constant terms of equation (1). Therefore, the general solution in 
the interval considered is 

y=yh+Yp· 

The homogeneous part, Yh• is expressed in terms of the eigenvalues s, = p11 + iu11 and the 
corresponding eigenvectors fn =ex,+ ip11 , determined by 

n= 1, ... , N, 

where N is the total number of degrees of freedom. Note that the solution of the above 
eigenvalue problem is equivalent to that obtained by converting equation (2) to the classical 
first order 2N-space form. For oscillatory systems, the s,'s and y,'s appear in complex 
conjugate pairs. Making use of this, Yh is expressed in terms of real quantities as 

N 

Yh( r) = L A,( r)c," 
n "" l 

where the N x 2 matrix A, is defined by 

A,( r) =e'"T[B, cos (G,r) + C, sin (G,r)], 

while B, = [a, p,], C, = [ - p, a,] and the constants c, are determined by satisfying initial 
conditions. 

Next, the forcing vector f( r) is split in the form : f c cos ( r + </>) + f s sin ( r + </> ), and the 
particular solution of equation (2) is determined in the form 

from 

[
K - M C ](Yc)=( fc ) , 

C M-K Ys -fs 
Kp=k. 

Then, the particular equation is rewritten in the form 

yp(r)=g(r) cos </>+h(r) sin t/J+p. 

Introducing the vector 

z= [y y]\ (3) 

and combining all the above, the solution is finally expressed in the form 

z( r) = tl>( r)y+ Jl( r) cos 4> + v( r) sin 4> + l;, (4) 

where 

~=(:) . 
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3. PERIODIC STEADY STATE VIBRATIONS 

Based on the solution form (4), a methodology is presented in this section, which leads 
to exact, n-periodic solutions of the system examined in a systematic and efficient way. 
These solutions are characterized by a single change of the damping and stiffness param
eters within a response cycle. Since the system is non-linear, other vibrational modes are 
also possible. However, the motions considered are expected to be the most dominant. 
Then, the form of the solution sought is dictated by the form of u = y N, which is depicted in 
Figure 2 : namely, the solution is zl ( rl) in 0 ~ rl = r ~ rr and Zz( r z) in 0 ~ r 2 = r- rr ~ r!' 
where rr is the first contact time and r! = 2nn - rr . 

u 

Figure 2. The solution form of u = y N. 

The determination of the desired solutions is based on the fact that they satisfy the 
following set of periodicity and matching conditions : 

(5) 

(6) 

The above represent a set of 4N + 2 transcendental equations for the 4N + 2 unknowns of 
the problem (i.e., y 1 , y2 , t ~ and <P ). However, generalizing a solution procedure developed 
for similar but single-degree-of-freedom oscillators [ 13, 14], the task of solving these equa
tions can eventually be reduced to the solution of a single transcendental equation, as 
explained next. 

First, application of equation (5) leads to 

(7) 

where w = [yl y2]T. Note that for the solution form of Figure 2, ~ 1 =0. Next, for a given 
value of rr ' solution of equation (7) provides the vector w in the form 

w=wc cos q,+ws sin t/J+wo. (8) 

Then, application of equation (6) leads to two algebraic equations of the form 

bs sin q,+bc cos <P=bo. (9, 10) 
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Solving equations (9) and (10) for sin lfJ and cos t/J and applying a trigonometric identity, 
the correct value of -rf will give rise to 

(11) 

The strategy leading to a complete numerical solution of the problem is based on the 
observation that all the matrices and vectors of equation (7), as well as the a's and b's in 
equations (9) and (10), are functions of the system parameters and -rf only. Moreover, 
0 < -rt < 2Hn. Then, the solution procedure starts by assigning values to -rt within the range 
from 0 to 21rn. This permits the determination of w from equation (7) and the evaluation 
of the corresponding value of G from equation ( 11 ), independently of the value of t/J. In 
doing so, the bisection method is applied in locating a possible solution for rr, when a 
sign change of G is detected between subsequent trial values of rf. Determination of rf 
allows the calculation of t/J from equations (9) and (10), the evaluation of the w from 
equation (8) and therefore the solution histories of Zt and z2 from equation (4). 

The above methodology can be modified and applied to other important cases, including 
systems with symmetric characteristics. 

4. STABILITY OF PERIODIC RESPONSE 

The information about the stability properties of a steady state motion is important 
because only stable solutions are realizable in practice. Moreover, the way in which a 
solution loses stability presents useful information in searching for other possible motions 
that may coexist. For piecewise linear systems, the classical methodologies are not appli
cable in performing the stability analysis of located periodic solutions. Here, a method 
employed before for other similar oscillators with one and two degrees of freedom will be 
generalized and applied. 

Following reference [12], the essential information about the stability of a solution of 
a piecewise linear oscillator is obtained by just analyzing the propagation of arbitrary 
perturbations of the starting conditions within a single interval of two successive contact 
times. This actually implies that the steps of the analysis that follows are general and can 
be applied to solutions of piecewise linear systems of arbitrary form. 

The stability procedure starts by letting .1 r 1 = .1 rt- .1 r3 , where .1 denotes a small 
perturbation of the variable it is applied on. Next, consider an exact periodic solution z1 

and a perturbed solution z1 , obtained by perturbing the initial conditions of z1 slightly 
(see Figure 2). Then, 

(12) 

where the vector Liz1 represents the deviation of Zt from Zt at time rt. Note that the 
corresponding variation of u1 is zero and, therefore, its position in .1z1 is filled by the time 
variation .1 -rf instead. Application of equation (12) yields 

4'.( rr + .1 r,)yt(Zo+ LiZo) + Jl( rr + .1 rt) cos 4> + v( rr + .1 tf} sin l/J = z.( rf) +Liz., (13) 

where the vector Li.zo involves the deviation from the correct initial conditions, Zo=z.(O), 
leading to z1 • These initial conditions are determined by letting r 1 =0 in equation (4), once 
a periodic motion has been located by the analysis of the previous section. Next, expanding 
the left side of the last equation and keeping up to first order terms leads to 

tPt( rt)r.Lizo+ dJ.( rf)y.L1 '• +cit( rr)Li -rf =Liz., 
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where q1 ( r 1) = p., ( r 1) cos <P + v, ( r 1) sin <j), and the matrix r 1 is formed by adding the vector 
cl> ! 1 (0) q1 (0) in the last column of the matrix cl> j" 1 (0). The zeroth order terms drop out 
because they satisfy equation (5). Then, the last equation can be put in the form 

with Q, = Rlt1 R10. The matrix R 11 is formed by adding the vector - [ <i> 1( rf)y1 +tit( rt)] in 
the last column of the identity matrix of order 2N x 2N, while R 10 is obtained by subtracting 
the vector <h1( rf)y, from the last column of the matrix cl>,( rt)r, . 

Proceeding in a similar fashion in the interval 0 < r 2 < r~ yields 

where, again, the matrix Q2 is found in terms of the system parameters only. Then, the 
relation between the perturbations at the beginning and at the end of the first response 
period is expressed by 

(14) 

where n = Q2Q1• Finally, after m response cycles, the perturbations from the correct initial 
conditions will be related to first order with the original perturbations by 

Therefore, if A. is the eigenvalue of ll with the largest modulus, the effect of the original 
error will vanish with time, provided that Ill < I. In such cases, the periodic solution 
examined is asymptotically stable. When IA.I > 1, the solution is unstable. Finally, when 
IA-1 = 1, bifurcations occur, resulting in qualitative changes of the system dynamics [15]. 
According to the results presented in the next section, three types of bifurcations were 
encountered in this study. The first type is a saddle-node bifurcation: it occurs with A.= 1 
and results in the classical jump phenomena. The second type happens with ).. = -I and is 
associated with period doubling of the response. The third type is the so-called Hopf 
bifurcation, it occurs when a pair of complex eigenvalues has modulus one and results in 
an amplitude modulated response of the system. Note that if the damping coefficients are 
non-negative, the Hopf bifurcation is excluded for single degree of freedom oscillators 
[7, 12], but it occurs for systems with N';?!::2 . 

5. APPLICATIONS 

This section verifies the analysis developed by presenting results for systems with two 
degrees of freedom (the system shown in Figure 1 with N = 2). The mass m1 is subjected 
to a forcing F1 cos r , while F2 = 0. For convenience, introduce the additional dimensionless 
parameters 

n.= ,.,,~ ., ""'' , 

with similar relationships holding for the primed variables (see equation (1) for their 
definition) and 
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Then, the inertia, damping and stiffness matrices and the forcing vectors are expressed by 

c=[8o, o J 
J.l82 ' K=[~' ~~J 

f=(~)'ll cos~. 
where 

The numerical results obtained for this system are presented in the following two subsec
tions. In all cases considered, y0 = -1. For other systems, the only difference in the analysis 
will be in the form of M, C, K, f and k. 

5.1. VIBRATION ABSORBERS WITH ELASTIC STOPS 

The idea of using stops in vibration absorption was presented in earlier studies [16, 1]. 
The main interest there was to limit excessive amplitudes of vibration of the auxiliary mass 
of the absorber. Here, the analysis developed is applied in order to show some further 
enhancements and some limitations in the performance of the absorber with stops. 

First, in Figure 3 is presented the response diagram of the main mass for three systems 
with parameters J.l = 0· 1, f3 = 0·1, p = 1, s 1 = 0· 01 and ( 2 = 0· 02. The influence of the stops 
is examined by choosing the values of p' to be 1, 0· 707 and 1·414, while the values of s.2 
are chosen as 0·02, 0·0141 and 0·0283, respectively. These parameters represent a linear 
oscillator and two non-linear oscillators with stops. The stops provide the auxiliary mass 
with damping and stiffness coefficients equal to half and double their corresponding origi
nal (before stops come into action) values, respectively. Physically, the first system is 

p' = 1·414 

Figure 3. The response diagram of the main mass: p' - I, 0· 707 and 1· 414. 
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originally in pretension and loses partial contact at y0 and, as a consequence, presents 
softening characteristics, while the second non-linear oscillator possesses hardening charac
teristics. The effectiveness of the stops is obvious, when comparing the response diagram 
of the linear absorber (thin line) with the softening/ hardening absorber in the lower/ 
higher forcing frequency ranges, respectively. These benefits were expected from previous 
work on absorbers with continuous non-linearities (e.g., [17-19]). In fact, the present set
up provides a practically feasible way of designing non-linear absorbers. However, in 
analogy to the non-linear absorber with continuous characteristics, the non-linearities also 
introduce some potential dangers, as explained next. 

In Figure 3, the unstable branch of the softening oscillator is generated with ).. = 1 
bifurcations, associated with jump phenomena of the response at m = 0· 789 and 0· 806, 
and coexists with two other stable periodic solutions. Similar bifurcations are captured for 
the hardening system at m = I· 244 and 1· 259. In addition, the latter system exhibits period 
doubling (l= -1) bifurcations (at 0·805 and 0·816) as well as Hopf bifurcations (at 1·034 
and 1·061). 

Response diagrams obtained by raising the non-linearity level are presented in Figure 
4. This is done by increasing p' to 1· 732 and 4, which corresponds to stops with twice and 
15 times the original stiffness of the absorber (approaching conditions of impact dampers), 
respectively, while maintaining 'i=0·02 and the values of the other parameters as before. 
All the bifurcations of the lower resonance branches occur with ).. = -1, while ).. = I gives 
rise to the unstable motions of the higher resonance branches. Branch C is common to 
both diagrams. From the last plot, the most important observation is that increasing the 
non-linearity level causes a significant expansion of the zone of the unstable solutions 
originated by Hopf bifurcations near the original resonance ro = I. This is in accordance 
with results for absorbers with continuous non-linearities [ 18, 19] and gives rise to rich 
but dangerous dynamics within that frequency range. For example, in Figure 5 are shown 
samples of the Poincare sections of y , vs. y2 , for p ' =4. These plots were obtained by direct 
integration of the equations of motion at several values of m and by sampling the long
time response once every forcing cycle. 

2·S 

2·0 

,. ,, 
I 
I p' = 4 . 
I 
I 
I 
I 
I 
I 

Figure 4. The response diagram of the main mass: p' = 1· 732 and 4. 
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Figure 5. Poincare sections: {a) ro= 1·0180; (b) ro= 1·0220; (c) ro= 1·0225; (d) ro= 1·0230; (e) m= 1·0233; 
(f) ciH ·0250. 

As expected, a quasi·periodic response, represented by the invariant circle of Figure 
5(a), appears at ro = 1·018, just after the Hopf bifurcation value of 1·017. This response 
becomes phase locked occasionally, as shown in Figure S(b) for the n = 13 solution 
obtained at 1·022. As the value of ro moves further away from the Hopfbifurcation value, 
the invariant circle expands, splits to n = 13 attractors (Figure 5( c)) and distorts (Figure 
5(d)), according to a scenario explained in reference [20]. Then, following a single torus 
doubling (Figure 5(e)), the system settles into chaotic response (Figure 5(f)) without any 
further observable torus doubling (see references [21] and [22] for similar results and 
explanations). 

To examine the effect of these motions on the performance of the absorber, in Figure 
6(a) is shown the steady state response history of Y• at m = 1·018, during 95 forcing 
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Figure 6. (a) The response history at w = 1·018; (b) projection onto the (j1,j2) phase plane (w = 1·018); 
(c) response history at ro = 1·025. 

cycles. Clearly, the response involves beats, which is in agreement with previously reported 
experimental results [2, 3]. In Figure 6(b) it is shown that this quasi-periodic motion rides 
on a torus in phase space co-ordinates, by plotting part of the trajectory in the phase plane 
of Y• vs. Y2, at the same value of ro. Finally, in Figure 6(c) are shown 95 forcing cycles of 
the long-time response history of Y• at ro = 1·025. This motion corresponds to that of 
Figure 5(f) and is chaotically modulated. The amplitude of the corresponding unstable 
periodic solutions at ro = 1·018 and 1·025 is only 0·052 and 0·058, respectively. Comparison 
shows that caution should be exercised in choosing the absorber parameters properly. The 
present analysis can then be used as a guide in adjusting the parameters and eliminating 
these unstable responses. 

5.2. OSCILLATORS WITH INTERNAL RESONANCE 

The systems examined above have "equivalent" linearized counterparts with close natu
ral frequencies. In this section, it is shown that some of the phenomena observed for the 
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non-linear absorber can also occur in other oscillatory systems, when their parameters are 
chosen in ways that lead to internal resonance conditions [23-26]. A number of some new 
and interesting features also appear and are analyzed. 

First, in Figure 7 is presented the response diagram for a system with parameters p = 

fJ = 0· 5, p = 0·9, p' = 0·65, '• = 0·01 and '2 = '2 = 0·02. This combination of parameters 
leads to 2: 1 internal resonance conditions. First, note that there exist two resonance peaks 
around ro = 0· 65 with very close frequencies, while the peak of the resonance branch 
around 1· 3 consists of unstable solutions, generated by A.= -1 bifurcations at 1· 203 and 
1· 348. As expected, these bifurcations give rise to a periodic response with a period equal 
two times the forcing period. To illustrate this, n = 2 solutions arising in that frequency 
range are also determined and shown. In addition, there is a branch of n = 1 unstable 
solutions in the range from ro =0·963 to 0·990, originated by a Hopf bifurcation. Again, 
this branch is located around the middle of the primary resonance frequencies. However, 
there is a qualitative difference between the response of the present system and that of the 
oscillators analyzed in the previous section: namely, varying the last set of parameters 
may result in unstable ranges near the middle of the primary resonances, generated by 
period doubling and not by Hopf bifurcations. For other sets of parameters, several 
unstable intervals may appear in the same range, some generated by period doubling and 
the others generated by Hopf bifurcations. For example, decreasing the damping ratios of 
the last example to '1 = '2 = '2 = 0· 001, apart from an order of magnitude change of the 
response amplitude and a slight bilateral expansion of the Hopf generated unstable solu
tions (which now occupy the range of w from 0·955 to 0·998), an additional unstable range 
of n = 1 solutions is generated with A. = -1 between 0·828 and 0·865. 

Similar observations are made for the response of the following example, with param
eters JJ = P = 1, p=0·4, p' =0· 35 and '• ='2 ='2=0·001, leading to 3:1 internal resonance 
conditions. The response diagram for this system is shown in Figure 8. Again, an unstable 
range of n = 1 solutions appears through A.= -1 bifurcations at ro = 0· 685 and 0· 732. The 
n = 2 solutions existing in that frequency range are also presented in order to illustrate that 

/1 
I 
I 
I 
I 
I 
I 
I 

' 

Figure 7. The response diagram of m1 (2:1 internal resonance). 
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Figure 8. The response diagram of m 1 (3 : I internal resonance). 

their amplitude is larger (by more than an order of magnitude near resonance) than the 
amplitude of the coexisting n = 1 motions. Moreover, the n = 2 solutions undergo saddle
node bifurcations, giving rise to a very narrow frequency range in which two stable and 
one unstable n = 2 solutions coexist. Finally. note the multiple peaks for both then= 1 and 
n = 2 branches. 

As for the 2: 1 case, changing the parameters may result in multiple frequency ranges 
involving unstable response generated by either A.= -1 or Hopf bifurcations. For 
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example, in Figure 9 is shown the response diagram obtained for the last example between 
m = 0·8 and 1·2 by increasing the value of p to 0·9. Both n = 1 (index 1) and n = 2 (index 
2) solutions are shown. The unstable branches denoted by H and D are generated by Hopf 
and period doubling bifurcations, respectively. In fact, in some cases the bifurcation takes 
place with a pair of complex conjugate eigenvalues equal to one, while a real eigenvalue has 
a value very close to -1, indicating conditions close to codimension two bifurcations [15]. 

To present a small but representative sample of some of the interesting dynamics 
encountered in that range, in Figure 10 is shown a sequence of Poincare plots (y2,j2 ) 

obtained by direct integration for the parameters of the last example. For that system, a 
Hopf bifurcation of the n = 2 solution occurs at m = 1· 1292. Poincare plots at m = 1· 130 
and 1· 129 are shown in Figure 1 0( a). Obviously, the n = 2 solution, represented by the two 
heavy dots, is replaced by two invariant circles, following the bifurcation. Moving to lower 
values of m, the solution finally locks to ann= 8 solution, as shown in Figure lO(b) for 
m = 1· 127. In the same figure, the stars indicate a coexisting n = 7 solution, resulting from 
different starting conditions. In fact, a third steady state solution, shown in Figure IO(c), 
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is also determined at the same frequency. The interesting feature of this solution is that it 
consists of nine invariant circles, possibly originated by a Hopf bifurcation of an n = 9 
solution. When m is varied, each of these invariant circles undergoes changes similar to 
those of the single circle of Figure 5(a). 

The behavior encountered in this section presents similarities and differences with the 
behavior of systems with asymmetric but continuous non-linearities [24]. Here, in addition 
to the unstable zones generated by the Hopf bifurcation between the primary resonant 
frequencies, there may exist zones that originated with A,= -1 bifurcations. This last type 
of bifurcation does not have an analog in the analysis of the steady state solutions captured 
in reference [24]. The reason is that the stability of those solutions is governed by linearized 
differential equations (flows), while here it is governed by difference equations (maps). 

6. SYNOPSIS AND CONCLUSIONS 

An investigation is carried out on the long-time response of a class of multiple-degree
of-freedom oscillators with strongly non-linear characteristics. The non-linearity of the 
system is modeled as a component with piecewise linear damping and stiffness properties. 
The solution procedure exploits the piecewise linear nature of the governing equations. 
Suitable solution forms are first developed for the response within the intervals where the 
system characteristics remain constant. Then, exact, n-periodic, single crossing steady state 
motions are determined by imposing a set of periodicity conditions. For an N-degree-of
freedom system, this results in a system of 4N + 2 transcendental equations. However, 
generalizing previous work on similar single-degree-of-freedom systems, the numerical 
effort is reduced to finding the solution of sets of linear equations and eventually to a single 
transcendental equation for the crossing time. Finally, the analytical procedure is 
complemented by a stability analysis which is appropriate for solutions of systems with 
arbitrary piecewise linear characteristics. As in the case of single-degree-of-freedom 
oscillators, this task is reduced to examining the propagation of errors in starting 
conditions within a single linear motion interval. 

The present analysis provides efficient means for performing parametric studies in a 
large number of systems encountered in engineering practice. Here, the applicability and 
effectiveness of this analysis is demonstrated by examining the response of vibration absor
bers with elastic stops, as well as the response of other non-linear oscillators with param
eters leading to 2:1 and 3:1 internal resonance conditions. At the same time, the results 
illustrate some interesting features of the dynamics of these systems: namely, the absorber 
with stops is shown to possess superior technical characteristics. It provides a way in 
which to design non-linear absorbers and to suppress vibration levels over broader forcing 
frequency ranges than the conventional absorber, on both sides of the original resonant 
frequency. However, stability considerations in conjunction with numerical integration 
reveal that high amplitude beating and chaotic response may arise near the original reson
ance, because the coexisting periodic response may become unstable due to Hopf bifurca
tions. Next, similar phenomena are observed for other piecewise linear oscillators 
exhibiting 2:1 and 3:1 internal resonances. In these cases, zones of unstable periodic 
solutions are also observed in the vicinity of the middle of the primary resonances of the 
system. The resulting motions are again of much higher amplitude than that of the coexist· 
ing unstable n = 1 response. Several unstable zones may exist, generated by either Hopf or 
period doubling bifurcations. It is shown that the Hopf bifurcation of subharmonic solu
tions results in multiple invariant circles. The coexistence of harmonic with large-period 
periodic and quasi-periodic responses is also presented. In all cases, similarities and differ
ences in the response of systems possessing continuous non-linearities are noted. 
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