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Keywords:

We study complex damped and undamped dynamics and targeted energy transfers (TETs) in systems of
coupled oscillators, consisting of single-degree-of-freedom primary linear oscillators (LOs) with vibro-
impact attachments, acting, in essence, as vibro-impact nonlinear energy sinks (VI NESs). First, the
complicated dynamics of such VI systems is demonstrated by computing the VI periodic orbits of
underlying Hamiltonian systems and depicting them in appropriate frequency–energy plots (FEPs). Then,
VI damped transitions and distinct ways of passive TETs from the linear oscillators to the VI attachments
for various parameter ranges and initial conditions are investigated. As in the case of smooth stiffness
nonlinearity [Y. Lee, G. Kerschen, A. Vakakis, P. Panagopoulos, L. Bergman, D.M. McFarland, Complicated
dynamics of a linear oscillator with a light, essentially nonlinear attachment, Physica D 204 (1–2) (2005)
41–69], both fundamental and subharmonic TET can be realized in the VI systems under consideration.
It is found that the most efficient mechanism for VI TET is through the excitation of highly energetic
VI impulsive orbits (IOs), i.e., of periodic or quasiperiodic orbits corresponding to zero initial conditions
except for the initial velocities of the linear oscillators. In contrast to NESs with smooth essential
nonlinearities considered in previous works, VI NESs are capable of passively absorbing and locally
dissipating significant portions of the energies of the primary systems to which they are attached, at fast
time scale. This renders such devices suitable for applications, like seismic mitigation, where dissipation
of vibration energy in the early, highly energetic regime of the motion is a critical requirement.
Targeted energy transfer (TET) 
Vibro-impact nonlinear energy sink (VINES)
Passive and broadband vibration absorber

1. Introduction

1.1. Background

Passive, broadband targeted energy transfer (TET) refers to the
one-way directed transfer of energy from a primary subsystem to
a nonlinear attachment; this phenomenon is realized in damped,
coupled, essentially nonlinear oscillators through resonance cap-
tures and escapes along intrinsic periodic or quasiperiodic orbits
of the underlying Hamiltonian systems [1,2]. Indeed, TET is real-
ized from primary linear or nonlinear systems to essentially non-
linear attachments, acting as nonlinear energy sinks (NESs). AnNES
generally requires twoelements: an essentially nonlinear (i.e., non-
linearizable) stiffness and a (usually, linear viscous) damper. The
former,which is smooth inmany cases, enables theNES to resonate
with any of the linearizedmodes of the primary system to which it
is attached, whereas the latter acts as dissipator of the vibrational
energy transferred through resonant modal interactions (see [3,4]
for an overview of the dynamics governing TET and its various
applications). In most previous works smooth essential (purely
cubic) stiffness nonlinearities were considered, although in some
recent works nonsmooth stiffness nonlinearities were studied as
well [5–10].
Indeed, NESs with clearances and vibro-impacts have been

considered in applications where vibration reduction at a fast time
scale is required. The consequence of the capacity of this class
of nonsmooth NESs for rapid energy absorption and dissipation
makes them applicable to applications where the energy transfer
from the directly forced primary structure to the NES(s) must
be accomplished at the early stage of the motion, if possible
immediately after the application of an external shock. Examples
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include structures under seismic excitation [5–7] and cars during
collision.
The regular and chaotic dynamics and bifurcations of vibro-

impact (VI) oscillators have been studied extensively in the li-
terature [11–16]. In a series of papers [17–24], VI dampers were
considered for reducing the vibration levels of structures under
periodic or stochastic excitation. Shaw and Holmes [25], Shaw
and Shaw [26] and Shaw [27] applied methods from the geomet-
rical theory of nonlinear dynamics to analyze the dynamics of
free and forced dynamics of systems with piecewise nonlineari-
ties, including systems with vibro-impact nonlinearities. Recently,
Gorelyshev andNeishtadt [28] discussed the extension of adiabatic
perturbation theory to VI systems; Mikhlin et al. [29] and others
[30–37] studied periodic orbits, bifurcations and chaos in discrete
and continuous oscillators with clearance nonlinearities or vibro-
impacts; Zhuravlev [38,39] investigated vibro-impact oscillations
usingnonsmooth coordinate transformations (for an additional ap-
plication of thismethod see also [40]), and Pilipchuk [41] extended
this approach by considering nonsmooth transformations of the
dependent (temporal) variable of the problem.
Pinnington [42] analyzed energy exchange and dissipation due

to collisions in a line of coupled oscillators, and Salapaka et al. [43]
studied the dynamics of a linear oscillator impacting with a vibrat-
ing platform. Quinn [44] investigated the oscillations of two para-
metrically excited pendula undergoing vibro-impacts; and Li and
Darby [45] reported experimental work on the effect of an impact
damper on an MDOF system. Murphy and Morrison [46] studied,
computationally and experimentally, instabilities and bifurcations
of a vibro-impacting string; and Hu and Schiehlen [47] discussed
multi-scale simulation of impact responses with applications from
wave propagation to rigid body dynamics. Sampaio and Soize [48]
formulated measures that quantify nonlinear effects for uncertain
systems, whereas Azeez and Vakakis [49] approached the issue of
nonlinear effects quantification using proper orthogonal decom-
position. Vedenova et al. [50] and others [51,52] examined model-
ing inelastic impacts with smooth, essentially nonlinear functions
of high degree; and Nayeri et al. [53] investigated the action of
multi-unit impact dampers in systems under stochastic excitation.
Namachchivaya and Park [54] developed an analytical approach
based on averaging for studying the dynamics of VI systems un-
der stochastic excitation; Wagg [55] used energy balance analysis
to examine multi-modal systems undergoing vibro-impacts, and
studied effective restitution coefficients; and Shaw and Pierre [56]
applied tuned impact dampers in rotating structures and assessed
their performance.
In the works by Georgiades et al. [8,9] TETs in coupled me-

chanical oscillators with NESs possessing nonsmooth stiffnesses
(referred to from now on as nonsmooth NESs or NS NESs) were
analyzed by studying the shock isolation properties of systems of
coupled nonconservative linear oscillators with NESs possessing
clearance nonlinearities (i.e., piecewise linear oscillators). Apart
from the fact that such nonsmooth stiffness elements introduce
strong nonlinearities to the systems to which they are attached,
they are rather easy to implement in practical settings as combi-
nations of linear stiffnesses. Numerical evidence of the capacity
for shock isolation of NS NESs was provided in these works; that
is, significant energy transfers from the primary systems to such
NESs can occur right from the beginning of the motion (i.e., during
the energetically high regime of the dynamics). The capacity of NS
NESs to rapidly absorb shock energy in the initial highly energetic
regime is critical to their role as shock isolators.
Karayannis et al. [10] then extended this study to the case

where a primary system experiences an impulsive excitation, with
the nonlinear attachment undergoing two-sided inelastic impacts.
Superior shock absorption by the VI NES compared to the linear
absorber is attained for intermediate clearances (i.e., away from
2

Fig. 1. Experimental setup of a 3-story building with a VI NES installed at its top
floor [5].

the two limiting linear systems corresponding to zero and large
clearances, respectively), small coupling frequencies, and large
mass ratios. Moreover, high shock absorption efficiencies was
attained for even a small total number of vibro-impacts, provided
that conditions for sufficient momentum and energy exchanges
between the primary system and the NES during vibro-impacts
were realized. It was also shown that VI NESs can be designed
as effective shock isolators, providing significant reduction of
maximum responses of the primary systems over broad frequency
ranges. Hence, appropriately designed VI NESs can act as
broadband, passive shock isolators. The results indicated that, in
designing VI NESs as shock isolators, important design parameters
are the clearances, the coupling stiffnesses and the NES masses.
Moreover, better vibro-impact shock absorption is anticipated for
weak coupling stiffness between the primary systems and the
attached NESs, and relatively large values of NESmasses compared
to the masses of the corresponding primary systems. These results
are in agreement with findings of Georgiades et al. [8].

1.2. Motivations for the present study

In previous works, application of VI NESs for passive seismic
mitigation was studied theoretically and experimentally in [5–7]
– e.g., Fig. 1, where an experimental model of a 3-story building
with an attached VI NES under base excitation is depicted. In
particular, Nucera et al. [5] considered a single-degree-of-freedom
linear oscillator (LO) with no viscous damping coupled to a VI NES
as a simplified model for the fixture of Fig. 1. Fig. 2(a) depicts a
VI damped transition for this system, from which we deduce that
there exist three distinct regimes for this VI damped transition.
Moreover, the instantaneous energy plot and wavelet transform
spectra of the relative displacement between the linear oscillator
and the VI NES depicted in Fig. 2(b) indicate that there occur
multi-frequency resonance captures [57,58] in the dynamics as the
energy diminishes due to energy dissipation at the impact instant.
Clearly, there is the need for developing techniques capable of
analyzing and identifying such complex VI transitions, which will
enable us to categorize and classify different types of multi-
frequency resonance captures that occur in VI orbits.
In an attempt to address these issues, in this workwewill intro-

duce some new tools that will help us understand, classify and sys-
tematically study complex transitions in the simplest possible VI
system, namely, a linear oscillator with a VI attachment. Although
these toolswill be applied exclusively to this two-DOF system, they
are rather general so they can be applied to higher-dimensional VI
systems as well. First, we will focus on the detailed computation of
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Fig. 2. Damped VI transition for a linear oscillator with a VI attachment (cf. Fig. 3): (a) Responses normalized by the clearance; (b) instantaneous total energy, energy
dissipation due to vibro-impacts, and wavelet transform (WT) spectra of the relative displacement between the linear oscillator and the VI NES.
the VI periodic solutions of the underlyingHamiltonian system and
on their depiction on a frequency–energy plot (FEP). The rich struc-
ture of periodic orbits (and impulsive orbits) of the VI system then
will become immediately apparent. In the sequence we will study
damped transitions of the VI system undergoing inelastic vibro-
impacts, by superimposing the WT spectra of transient VI damped
responses on the Hamiltonian FEP. This will allow us to detect and
understand complex nonlinear modal interactions occurring dur-
ing the VI transitions; in the process wewill study the different dy-
namical mechanisms that govern VI targeted energy transfer (TET)
in the two-DOF system; by doing so we will generalize previous
results on TET in dynamical systems with strong but smooth stiff-
ness nonlinearities. Our study will demonstrate schematically the
complex resonance captures and multi-modal interactions occur-
ring during these VI transitions. In addition, we will provide a nu-
merical study of VI TET efficiency by considering the excitation of
the two-DOF system by external impulses, and endwith some con-
cluding remarks.

2. Hamiltonian system with elastic vibro-impacts: Periodic
orbits in the frequency–energy plot (FEP)

To study the underlying dynamical mechanisms and associated
transient resonance captures (TRCs) that govern passive TET in
systems with VI NESs, and also to demonstrate the complexity
that a single VI NES can induce in the dynamics, we consider
the simplest primary system — VI NES configuration, namely a
single-degree-of-freedom (SDOF) LO coupled to a VI NES (Fig. 3).
As in the case of the NES with smooth essential nonlinearities
studied in previous works, we will show that a clear interpretation
Fig. 3. An SDOF linear oscillator coupled to a VI NES.

of damped VI transitions that govern TET in the shock-excited
system can be gained by depicting the WT spectra of these
motions on an FEP of the underlying VI Hamiltonian system
(corresponding to the system with purely elastic impacts and no
viscous damping elements). Also, we will demonstrate that, for
sufficiently weak dissipation, weakly damped VI transitions take
place near branches of periodic or quasiperiodic motions of the
correspondingundamped system.Hence, by studying the structure
of periodic orbits of the Hamiltonian system, we should be able
to understand the governing dynamics of the weakly damped
dynamics as well, and to clearly identify complex multi-frequency
transitions and resonance captures leading to energy exchanges
and TET in the weakly damped VI system.
We initiate our study by computing the periodic orbits of the

Hamiltonian system with no viscous damping dissipation and
purely elastic vibro-impacts and depicting them in a frequency–
energy plot (FEP). Considering the two-degrees-of-freedomsystem
of Fig. 3, we note that the equations of motion are linear in time
intervals between vibro-impacts (i.e., |x2 − x1| < δ), and can be
written as
mẍ1 + k1(x1 − x2) = 0
Mẍ2 + cẋ2 + kx2 + k1(x2 − x1) = 0

(1)
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or in non-dimensional form,

µü1 + σ(u1 − u2) = 0
ü2 + λu̇2 + u2 + σ(u2 − u1) = 0.

(2)

Dots in (2) denote differentiation with respect to the transformed
temporal variable ξ =

√
k/Mt; moreover, µ = m/M , denotes the

mass ratio; σ = k1/k, the stiffness ratio; and λ = c/
√
Mk, the

damping factor. In addition, in Eq. (2) we consider normalized dis-
placements through the rescalings ui = xi/δ, i = 1, 2, δ 6= 0, so
in terms of these normalized displacements vibro-impacts occur
when |u2 − u1| = 1. Note that the mass of the NES is not neces-
sarily small compared to that of the LO, so the ratio µ in Eq. (2) is
assumed to be an O(1) quantity [10].
Assuming zero viscous damping (i.e., λ = 0) and considering

purely elastic impacts (i.e., with restitution coefficient ρ = 1),
the VI system of Fig. 3 becomes Hamiltonian. The velocities of the
LO and the NES after an impact (denoted by superscripts ‘+’) are
computed in terms of the corresponding velocities before impact
(denoted by superscripts ‘−’) by the following relations:

u̇+1 =
(µ− 1)u̇−1 + 2u̇

−

2

1+ µ
, u̇+2 =

2µu̇−1 + (1− µ)u̇
−

2

1+ µ
. (3)

In the numerical algorithm used to compute the VI responses,
the linear equations (2) are integrated for as long as the no-impact
condition |u2 − u1| < 1 is satisfied. When |u2 − u1| = 1, a (purely
elastic) impact occurs, and discontinuities in the velocities take
place, whereas the displacements remain continuous throughout
the impact. The velocities immediately after the impact are com-
puted by relations (3), and the numerical integration of the lin-
ear system (2) resumes with the new initial conditions until the
next impact occurs, where this procedure is iterated. As discussed
in earlier works [5,10], precise computation of the time instants
where vibro-impacts occur is essential for the accuracy of the nu-
merical simulations. This accuracy was checked by recording the
total energy of theVImotion and ensuring its conservation through
the entire interval of the simulation. The total (conserved) normal-
ized energy H(u1, u̇1, u2, u̇2) is computed in terms of the initial
conditions of the normalized system (2) as

H(u1, u̇1, u2, u̇2) =
1
2

[
µu̇1(0)2 + u̇2(0)2

]
+
1
2

[
u2(0)2 + σ(u1(0)− u2(0))2

]
= h. (4)

Assuming zero initial velocities, the critical threshold for vibro-
impacts to occur is computed as hmin = σ/2. Throughout this
paper, the normalized mass and stiffness parameters are taken as
µ = 0.1 and σ = 0.1, respectively.
The periodic solutions of the Hamiltonian vibro-impacting

system can be computed by employing the method of nonsmooth
temporal transformations (NSTTs) first introduced by Pilipchuk
[41] and Pilipchuk et al. [59]. NSTTs were applied in [57] for
computing the periodic orbits (or nonlinear normal modes;
NNMs [60]) of the corresponding system with smooth essential
nonlinearity (i.e., with a ‘smooth’ NES). To this end, we introduce
the coordinate transformation

ui(ξ) = e(ξ/α) yi (τ (ξ/α)) , i = 1, 2 (5)

where α = T/4 represents the quarter-period of the VI periodic
motion, and the nonsmooth functions τ(·) and e(·) are defined as
(see also Fig. 4)

τ(x) =
2
π
sin−1

(
sin

π

2
x
)
, e(x) =

d
dx
τ(x). (6)

Then, we obtain the two-point nonlinear boundary value prob-
lem (NLBVP) in terms of the variables y1, y2, y3 = y′1 and y4 = y

′

2

4

Fig. 4. The two nonsmooth basis functions, τ(x) and e(x) = dτ(x)/dx.

y′1 = y3
y′2 = y4
y′3 = −σα

2(y1 − y2)/µ
y′4 = −α

2y2 − σα2(y2 − y1)
y1(±1) = y2(±1) = 0

(7)

where primes denote differentiations with respect to the nons-
mooth variable τ , and the periodic orbits are computed subject to
zero initial velocities. Vibro-impacts occur when |y2 − y1| = 1, at
which points discontinuities in the velocities through expressions
similar to Eq. (3) are imposed. The solution of the NLBVP (7) com-
putes the periodic orbit over half of its period T = 4α (i.e., for
−1 ≤ τ ≤ 1 ⇒ −α ≤ ξ ≤ α); to extend the periodic orbit over
the entire period we take into account the form of the nonsmooth
transformations (5), such that the conserved energy of the periodic
orbit is expressed as

h =
1
2α2

[
µy′1(−1)

2
+ y′2(−1)

2] . (8)

The NLBVP (7) is solved by a shooting method (see, for
example, [61–63]) in the bounded domain−1 ≤ τ ≤ 1. However,
unlike the shootingmethod employed for the analogous case of the
NESwith smooth nonlinearity in [57],matching at τ = 0 of the two
solutions initiated from the left and right boundaries (τ = ±1)
is not helpful in the current VI problem. This is due to the fact
that symmetric VI periodic orbits are expected to exhibit vibro-
impacts at τ = 0, so matching solutions at that point becomes
meaningless. Therefore, in the VI problem we adopt the following
alternative matching condition: For fixed quarter-period α, the set
of equations of the NLBVP is solved as an initial value problemwith
initial conditions at the left boundary, yi(−1) = 0 and y′i(−1) 6=
0, i = 1, 2. Then, performmatching at the right boundary through
the inequalities, |yi(+1−)| < ε � 1, i = 1, 2, where the tolerance
ε is taken as O(10−5)–O(10−6). This procedure ensures that the
NLBVP (7) is approximately solved (that is, within the prescribed
numerical tolerance).
It is anticipated that the seemingly simple VI system of Fig. 3

will possess a very complicated structure of periodic orbits in
the FEP. This expectation is justified by the fact that vibro-
impact nonlinearity represents a very strong (and degenerate)
form of nonlinearity. Indeed, considering the family of essentially
nonlinear stiffnesses

fn(u) = knu2n+1, n = 0, 1, . . . , (9)



Fig. 5. Vibro-impact nonlinearity as limiting case of a family of smooth, essentially
nonlinear stiffnesses.

the coefficient kn depends on the exponent n, and is selected so
that the normalization condition fn(±1) = ±1, ∀n is satisfied.
Then, the vibro-impact nonlinearity corresponding to purely elas-
tic impacts is obtained as the (degenerate) discontinuous limit
f∞(u) = limn→∞ fn(u) (Fig. 5; [50,64]). Viewed in this context,
vibro-impact nonlinearity can be considered as the ‘strongest pos-
sible’ stiffness nonlinearity of the family (9). Following this reason-
ing, Pilipchuk [41,65,66] developed an asymptotic methodology
based on nonsmooth transformations and nonsmooth generating
functions that is applicable to strongly nonlinear regimes [59,67].
The anticipated high complexity of the structure of VI periodic

orbits dictates the use of careful notation for their representation
in the FEP. In principle, the basic notation introduced in [57] for the
FEP of the dynamics of the Hamiltonian system with ‘smooth’ NES
is followed, with an additional index introduced characterizing the
pattern of the occurring vibro-impacts. To this end, we employ the
following notation for depicting the various types of VI periodic
orbits in the FEP:
Symmetric VI periodic orbits are denoted as SmnE(O)pp±, and

satisfy the conditions, ui(ξ) = ±ui(ξ + T/2),∀ξ ∈ R, i = 1, 2,
where T is the period of the motion. Similar to the ‘smooth’
NES [57], symmetric VI orbits correspond to synchronous oscilla-
tions of the LO and the VI NES, and typically are represented by
curves in the configuration plane (u1, u2) (cf. Fig. 29 in Appendix).
Unsymmetric VI periodic orbits, labeled as Umnpq±, do not satisfy
the conditions of the symmetric ones. These orbits correspond to
asynchronous motions of the two oscillators and are represented
by open or closed (Lissajous) curves in the configuration plane
(u1, u2) (cf. Fig. 30 in Appendix). The integer index m denotes the
number of half-waves in the VI NES response within a half-period,
whereas the integer index n denotes the corresponding number of
half-waves in the LO response; clearly, the ratio m:n indicates the
order of nonlinear resonance that occurs between the VI NES and
the LO for a given VI periodic orbit. Moreover, the index E or O de-
notes the symmetry pattern of the vibro-impacts, and hasmeaning
only for symmetric VI orbits: E(O)denotes an even (odd) symmetry
of occurring vibro-impacts within a half-period; it follows that the
notation E(O) implies that a vibro-impact occurs (does not occur)
at quarter-period ξ = α = T/4. The integer indices p and q de-
note the number of vibro-impacts that occur in the first and second
quarter-period, respectively, of a given VI periodic orbit; it follows
that for symmetric orbits p = q. Finally, the ‘+’ sign corresponds to
in-phase VI periodic motions, where, for zero initial displacements,
the initial velocities of the LO and the NES possess identical signs
at the beginning of both the first and second half-periods of the
periodic motion. Otherwise, the VI periodic motion is deemed to
be out-of-phase and the ‘−’ sign is used. Finally, the two in-phase
and out-of-phase linear modes of the system with zero clearance
(δ = 0) are denoted by Lmm± and are, in fact, equivalent to L11±.
The (incomplete) FEP of the Hamiltonian VI system for µ =

σ = 0.1 is depicted in Fig. 6, with some representative VI periodic
orbits presented in Fig. 7. The complexity of the bifurcations that
generate the VI periodic orbits can be inferred from the bifurcation
diagrams of Fig. 8 where the initial velocities of the LO and the VI
NES (for zero initial displacements) are depicted as functions of
the total energy h. As mentioned previously, this complexity was
anticipated in view of the degenerate vibro-impact nonlinearity of
this system.
Note that the FEP in Fig. 6 is obtained for system (2) with all

displacements being normalized with respect to the clearance δ,
Fig. 6. The frequency–energy plot (incomplete) of periodic orbits of the Hamiltonian VI system for µ = σ = 0.1; the manifold of VI IOs is indicated by small dots, whereas
the thresholds for vibro-impacts for the in-phase and out-of-phase modes are denoted by bullets; unstable branches are denoted by crosses.
5
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c

Fig. 7. Solutions of the NLBVP (7) forµ = σ = 0.1: (a) Symmetric VI periodic orbit on the backbone S13O00+ ≡ S13+ (α = 1.7, h = 0.58875); (b) Symmetric VI periodic
orbit S73O33− (α = 1.6459, h = 7.3348); (c) Unsymmetric VI periodic orbit U8853− (α = 4.9065, h = 1.9458)
so that vibro-impacts occur whenever the absolute value of the
relative displacement between the two particles becomes equal
to unity in magnitude. Considering the original system (1) with
clearance δ, its Hamiltonian is expressed as, Ĥ = δ2H where H
is the normalized Hamiltonian defined by (4). This implies that, for
fixed system parameters, µ = 0.1 and σ = 0.1, the Hamiltonian
structure of the original (non-normalized) systemwill be identical
to that of Fig. 6; it follows that for larger (smaller) clearances, the
entire structure of VI periodic orbits will be preserved but just
shifted towards higher (lower) energy regimes. So, the introduced
normalization allows us to study all possible VI responses of the
original system by considering a single ‘normalized’ FEP for fixed
mass and coupling stiffness ratios. It is interesting to note that this
normalization does not hold for the system with smooth stiffness
nonlinearity (i.e., the ‘smooth’ NES); this can be easily deduced
when noting that the introduced normalization changes the form
of the system with smooth nonlinearities. Indeed, the topological
structure of the FEP of the system with ‘smooth’ NES with pure
cubic stiffness nonlinearity (and the corresponding bifurcation
structure of the Hamiltonian periodic orbits) is affected by both the
mass ratio and the essential stiffness nonlinearity of the NES [57].
We now make some comments and remarks regarding the

‘normalized’ FEP of Fig. 6. First, we note that the two bullets
indicate the critical energy thresholds below which oscillations
without vibro-impacts occur, and the dynamics of the two-DOF
6

system is purely linear. Clearly, only the in-phase and out-of-phase
linear normal modes L11± exist below the energy thresholds.
As we increase the energy of the motion above these energy
thresholds, vibro-impacts start occurring, giving rise to two main
branches of symmetric periodic VI NNMs: the branch of out-of-
phase symmetric VI NNMs S(2m)(2m)Emm− (m ≥ 1, integer) or
S(2n+1)(2n+1)Onn− (n ≥ 0, integer), which bifurcates from the
out-of-phase linear mode L11−, after which this mode becomes
unstable (cf. Fig. 28 in Appendix); and the branch of symmetric
in-phase VI NNMs S(2m)(6m)Emm+ (m ≥ 1) or S(2n + 1)(6n +
3)Onn+ (n ≥ 0) which bifurcates out of the in-phase linear mode
L11+, after which this linear mode also becomes unstable (cf.
Fig. 27 in Appendix). For convenience, from hereon the shortened
notations, S11− and S13+, will be adopted for these two main
backbone branches, which will be referred to as backbone (global)
branches of the FEP. Both backbone branches exist over broad
frequency and energy ranges and, except for the neighborhoods of
the bifurcation points with L11±, they correspond to oscillations
that are mainly localized to the VI NES. A basic bifurcation in
the VI FEP is the saddle-node (SN) bifurcation of the backbone
branch S11− (at h ≈ 0.06), which signifies the elimination of the
unstable branch S11− bifurcating out of L11−; the stable branch
S11− generated after this SN bifurcation maintains its stability
for increasing energies. As shown below, this SN bifurcation of
the backbone branch S11− significantly affects the capacity of the
VI NES for TET. The additional in-phase backbone branch S13+
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Fig. 8. Bifurcation diagrams (incomplete) depicting the initial velocities as a function of the total energy h for µ = σ = 0.1: (a) VI NES; (b) LO (unstable branches are
marked by crosses).
bifurcating out of the in-phase linear mode L11+ is stable until
high energies where zones of instability appear.
In Fig. 7(a) we depict a typical stable VI orbit lying on the in-

phase backbone branch S13+. We note that, in the corresponding
FEP of the system with ‘smooth’ NES studied in [57], there exist
two backbone branches S11±. As indicated by the time series of
Fig. 7(a), however, on the in-phase VI backbone branch three sign
changes for the LO velocity within half a period are realized, com-
pared to only one for the NES velocity; this high-frequency compo-
nent becomes more prominent at higher energies (in addition, as
will be shown in Section 3.1, this explains the 3:1 resonant modal
interactions observed in wavelet transform spectra when the dy-
namics is initiated on branch S13+ for weak damping).
A different class of VI periodic solutions of the FEP lies on

subharmonic tongues (local branches); these are multi-frequency
periodic motions, possessing frequencies that are rational multi-
ples of one of the linearized eigenfrequencies of the system. Similar
to the FEP of the systemwith ‘smooth’ NES [57], each subharmonic
tongue is defined over a finite energy range, and is composed of a
pair of branches of in- and out-of-phase subharmonic oscillations.
Depending on the behavior of these VI subharmonic tongues with
varying energy, the FEP is portioned into four main regimes, which
are labeled as (I)–(IV) in Fig. 6.
In the highest energy regime (IV), out-of-phase VI subharmonic

orbits (both symmetric and unsymmetric) bifurcate out of the
backbone branch S11−. With increasing energy they form sub-
harmonic tongues of out-of-phase motions with almost constant
frequencies, until they reach the manifold of VI IOs (see discus-
sion below) afterwhich they change to in-phasemotions until they
coalesce with the in-phase backbone branch at specific energy
7



levels; this signifies the end of these tongues and the elimination
of the corresponding subharmonic motions for higher energy val-
ues. This is similar to what was observed in the FEP of the system
with ‘smooth’ NES [57]. However, the unsymmetric subharmonic
tongues do not fold on themselves to reach back to the out-of-
phase backbone branch S11−, unlike the case of smooth essential
nonlinearity of the NES [57].
In regime (III) of the FEP the bifurcation behavior of subhar-

monic tongues is similar to regime (IV). The apparent difference
is that the manifold of VI IOs undergoes a discontinuous transi-
tion on branch S31O11−, caused by the two bifurcations of that
branch with the unsymmetric subharmonic branches U(15)578−
and U8353− in that region (see Detail I in Fig. 6).
The subharmonic orbits in regime (II) exhibit different bifur-

cation behavior than in regimes (IV) and (III). In fact, it appears
that there are no subharmonic tongues bifurcating from S11−; in-
stead, small subharmonic tongues appear to lie along the manifold
of VI IOs, and eventuallymergewith the in-phase backbone branch
S13+ with decreasing energy. For example, the in-phase unsym-
metric branch U21+ bifurcates from S13+ and transforms itself
to the out-of-phase unsymmetric branch U21− after it crosses the
manifold of VI IOs. In addition, for frequencies in between the two
linearized frequenciesω1 andω2 there exist multiple subharmonic
branches bifurcating in a degenerate (higher co-dimensional) bi-
furcation from the in-phase linear mode L11+ (see Detail II in
the FEP of Fig. 6). These subharmonic branches coexist with the
in-phase backbone branch S13+, which is unstable in most of
regime (II). Examples of this type of subharmonic branches are
U2201+,U5511+,U4421+, . . . in the FEP of Fig. 6.
Finally, the lowest energy regime (I) of the FEP is defined for

energies below the bifurcation point of the linear mode L11−. The
manifold of VI IOsmeets the stable out-of-phase linearmode L11−
at a bifurcation point that coincides with the critical energy level
hmin = σ/2; we recall that for h < hmin no vibro-impacts are
possible, and the dynamics of the system is completely linear.
As in the case of the system with ‘smooth’ NES [57], there

exists a countable infinity of subharmonic tongues, corresponding
to symmetric or unsymmetric VI subharmonic motions with
different patterns of vibro-impacts realized during a cycle of the
oscillation. Unsymmetric VI periodic orbits are represented by
closed (Lissajous) curves in the configuration plane of the system.
In Fig. 7(b) and(c) we depict two representative symmetric and
unsymmetric VI orbits on two subharmonic branches of the FEP.
There exists a third class of VI motions in the FEP, which

are denoted as VI impulsive orbits (VI IOs). These are VI periodic
solutions corresponding to zero initial conditions of the system,
except for the initial velocity of the LO. A VI IO represents, in
essence, the response of the system being initially at rest and
forced by a single impulse applied to the LO at time ξ = 0+. Apart
from the clear similarity of a VI IO to the Green’s function defined
for the corresponding linear system, the importance of studying
this class of orbits stems from their essential role regarding passive
targeted energy transfer (TET) from the linear oscillator to the
NES [57,58,68,69]. Indeed, in the case of the NES with smooth
nonlinearities, IOs (which, under some conditions are in the form
of nonlinear beats) play the role of bridging orbits occurring in the
initial phase of TET and ‘channeling’ a significant portion of the
applied impulsive energy from the linear primary system (in this
case the LO) to theNES at a relatively fast time scale; this represents
the most efficient scenario for passive TET (i.e., TET through
nonlinear beats [58,68,69]). Although the aforementioned results
refer to damped impulsive orbits, the dynamics of the underlying
Hamiltonian system determines, in essence, the dynamics of the
damped system as well, provided that damping is sufficiently
small. It follows that the IOs of the VI Hamiltonian system govern,
in essence, the initial (critical) phase of TET from the LO to the NES.
8

The numerical results indicate that VI periodic and quasiperiodic
IOs form a manifold in the FEP, containing a countable infinity of
periodic IOs and an uncountable infinity of quasiperiodic IOs.
For the system under consideration, the approximation to the

manifold of VI IOs was computed numerically, and is depicted in
Fig. 6; in general, the manifold appears as a smooth curve, with
the exception of a number of outliers (which is due to the adopted
convention for the frequency index (m:n) in the FEP). In each VI
subharmonic tongue, a VI IO is realized whenever the relative
motion between that LO and the VI NES changes from in-phase
to out-of-phase. Representative VI IOs are depicted in Fig. 9. In
general, the IOs become increasingly more localized to the VI NES
as their energy decreases, a result which is in agreement with
previous results for NESswith smooth essential nonlinearities [69].
As energy increases, the VI IOs tend towards the in-phase mode;
that is, their representation in the configuration plane (u1, u2)
tends to a straight line of slope 0.084π because the eigenvector
for L11+ on the (u1, u2) plane is equal to (1, 3.702). Moreover, we
note there is no critical energy threshold for the appearance of VI
IOs since there are no low energy VI motions (the system is linear
for low energy levels); the dominant frequency of a VI IO depends
on the clearance δ in the physical model (i.e., on the energy regime
where the VI periodic orbits exist).
Due to the degenerate VI nonlinearity of the system under con-

sideration, it is expected that higher co-dimensional bifurcations
will occur in its dynamics. One case of such degenerate bifurca-
tions in presented in Detail II of the FEP of Fig. 6, where mul-
tiple branches of symmetric and unsymmetric VI periodic orbits
(branches S95E22−,U5421−,U4520−, S55O11−,U3201−, . . .)
are noted to bifurcate from the in-phase linear mode L11+ at the
point of generation of the in-phase backbone branch S13+. In ad-
dition, VI periodic orbits below the branch S73E33− appear to lie
along the VI IO manifold; for example, tongues U21±, S95E22−,
U5421−, U4520−, S55O11−, U3401− and U44− in the FEP of
Fig. 6.
It is interesting to note that the complexity of the FEP is solely

due to the existence of the clearance δ that gives rise to vibro-
impacts. Indeed, in the limit of zero clearance, δ → 0, the entire
structure of VI orbits depicted in the FEP of Fig. 6 collapses to
two horizontal lines corresponding to the linear modes L11±. We
conclude that, due to the degeneracy of the VI dynamics, even
a small clearance can generate significant complexity, including
chaotic orbits, as discussed below.
The global dynamics of the Hamiltonian VI system (2) can

be studied by constructing Poincaré maps resulting from the
projection of the isoenergetic dynamics (i.e., of the dynamical flow
corresponding to fixed value of h) on the two-dimensional ‘cut
section’

Σ =
{
(u1, u2, u̇1, u̇2) ∈ R4/H(u1, u2, u̇1, u̇2) : u2 ≡ 0, u̇2 > 0

}
(10)

which is transverse to the flow except at points where u̇2 =
0. Similar Poincaré map construction for vibro-impact dynamics
were considered inMikhlin et al. [29]. The resulting Poincarémaps
are depicted in Fig. 10. Below the energy level h = hmin = σ/2 =
0.05 no vibro-impacts occur (cf. Fig. 10(a)), and the only possible
periodic solutions are the linear stable modes L11±.
At energy levels above this critical threshold (cf. Fig. 10(b)–(h)),

vibro-impacts occur (at |u2 − u1| = 1), and generate a countable
infinity of subharmonic VI orbits that replace the two linear modes
L11±; this complex structure of orbits is a direct consequence of
the non-integrability of the Hamiltonian VI dynamics.When vibro-
impacts occur, the sections of the Poincaré maps corresponding to
|u1| > 1 are cut-off from the Poincaré maps, and the last boun-
ding points that are included in the map are those for which the
conditions {u2 = 0 and |u1| = 1} hold. For increasing energies, the
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Fig. 9. Two representative VI IOs forµ = σ = 0.1 (leftU5231−; rightU4122−): (a) Displacements u1 (VI NES) and u2 (LO); (b) relative responses u1−u2; (c) representations
in the configuration plane (u1, u2).
‘stochastic seas’ (i.e., the regions of chaoticmotions) in the Poincaré
maps diminish, and the domains of regular motion expand.
An additional use of the Poincarémap is that it can help us iden-

tify or infer the existence of global features of the dynamics, such
as homoclinic and heteroclinic loops. For example, at the energy
level h = 0.06 (cf. Fig. 10(c)) we identify stable and unstable VI pe-
riodic orbits U44− in the neighborhood of the linear mode L11−
and the unstable NNM S11− (note also the location of this branch
in the FEP of Fig. 6). This infers the existence of a homoclinic loop
that connects the unstable periodic orbit S11−. The topologies of
VI IOs on branches such as U44− (which lie in the neighborhood
of the SN bifurcation of S11−) are greatly influenced by the family
of homoclinic orbits of the unstable branch S11− and significantly
affect the efficiency of TET from the LO to the NES. This is similar
to what occurs for the case of smooth nonlinearity [69], where it
was found that, close to this family of homoclinic orbits, conditions
for optimal TET are realized. Indeed, as shown in the next section,
excitation of stable VI IOs in the neighborhood of the family of
homoclinic orbits of S11− provides conditions for optimal VI TET,
since large-amplitude relative displacements between the LO and
the VI NES are realized in that region, and the time scale of the re-
sulting TET is affected as well.
Apart from the compact representation of VI periodic motions,

the FEP is a valuable tool for understanding the nonlinear reso-
nant interactions (transient resonance captures or TRCs [57,58])
that govern energy exchanges and TET during damped transitions
in the weakly dissipative VI system. This is due to the fact that, for
sufficiently weak dissipation (caused by inelastic vibro-impacts,
viscous damping or both), the damped VI dynamics is expected
to be realized in neighborhoods of branches in the FEP of the un-
derlying VI Hamiltonian system. This aspect was demonstrated
in earlier work [5], where the wavelet transform (WT) spectra of
the damped response of the (unnormalized) system were super-
imposed on the Hamiltonian FEP. The motion was initiated on a
subharmonic tongue, and three distinct stages were distinguished
in the resulting dampedVI transition: In an initial stage, themotion
9



Fig. 10. Poincaré maps of VI dynamics for µ = σ = 0.1 varying energy.
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remains in the neighborhood of the subharmonic tongue where it
is generated, yielding an initial persistent subharmonic TRC. As a
result, subharmonic VI TET takes place from the LO to the NES,
and efficient energy dissipation occurs. In the second stage of
the damped motion, the dynamics makes a transition to a differ-
ent lower energy subharmonic tongue, which signifies the occur-
rence of a different subharmonic TRC (and subharmonic TET) in the
damped dynamics. Escape from this second TRC regimes leads to a
transition of the dynamics to themanifold of VI IOs during the third
stage of the motion, before the dynamics becomes linear, and un-
dergoes a final transition to the linear mode L11+ (the final stage
of the response).
It will be shown, in the next section, that the transition of the

damped dynamics along the manifold of VI IOs during the third
stage of the motion is associated with a complex series of multiple
TRCs with subharmonic tongues existing in the vicinity of this
manifold. It follows that, by studying VI transitions in the FEP and
relating them to rates of energy dissipation by the VI NES, we should be
able to identify the most effective damped transitions from a TET point
of view. In a more general context, we will perform a systematic
study of the dynamics of TET in the two-DOF system of Fig. 3 in the
next section by assuming inelastic impacts and viscous dissipation
in the LO, and analyzing the resulting transient responses by
numerical WTs. Then, we will superimpose the resulting WT
spectra on the FEP of Fig. 6, in an effort to interpret the damped
transitions in terms of the underlying Hamiltonian dynamics, and
to identify the governing dynamical mechanisms for VI TET.

3. Vibro-impact transitions in the dissipative case: VI TET

We consider now the weakly dissipative normalized system
(2) with λ 6= 0 and inelastic impacts. Then, the relations (3)
that compute the normalized velocities of the LO and the VI
NES immediately after an impact in terms of the corresponding
velocities before impact are replaced by the following expressions

u̇+1 =
(µ− ρ)u̇−1 + (1+ ρ)u̇

−

2

1+ µ
,

u̇+2 =
µ(1+ ρ)u̇−1 + (1− ρµ)u̇

−

2

1+ µ

(11)

where 0 < ρ ≤ 1 is the coefficient of restitution. Through the
numerical simulations of this section, and unless otherwise noted,
we assume that µ = σ = 0.1, ρ = 0.7 and λ = 0.005λcr , where
λcr = 2 is the value of critical viscous damping for the LO (hence,
weak viscous damping is assumed).
Before we proceed to analyze damped transitions, we investi-

gate the competition between the two energy dissipation sources
present in the system, namely, viscous dissipation in the LO and in-
elastic impacts in the VI NES. For this purpose, the dampedmotion
was initiated on the stable VI IO lying on the subharmonic tongue
U8344−. In Figs. 11–13 we depict the damped responses for the
following cases: (a) for no viscous dissipation in the LO and inelas-
tic impacts (ρ = 0.7, λ = 0 — Fig. 11); (b) for viscous dissipation
and purely elastic impacts (ρ = 1, λ = 0.005λcr — Fig. 12); and
(c) for a combination of viscous dissipation and inelastic impacts
(ρ = 0.7, λ = 0.005λcr — Fig. 13). Comparing Figs. 11(b), (d) and
12(b), (d), we note distinct patterns of energy exchange and dis-
sipation in the damped transient dynamics. For purely elastic im-
pacts (i.e., after the last vibro-impact) the response is nearly linear
and theWT spectra lie along the two linear modes L11±; when in-
elastic impacts occur, there occurs a strongly nonlinear transition
of the VI dynamics along strongly nonlinear subharmonic tongues
and the in-phase backbone branch S13+, until, at the later stage of
the response, the dynamics settles into linearizedmotion along the
modes L11±. A similar, albeit weaker, nonlinear transition is noted
1

for the case of combined inelastic impacts and viscous dissipation
(cf. Fig. 13(b), (d)), where the damped dynamics traces, primarily
the backbone branch (i.e., there occurs an immediate 1:1 TRC of
the dynamics of the NES and the in-phase mode L11± right from
the beginning of the motion), and, secondarily, higher-frequency
subharmonic tongues. Hence, the addition of weak viscous dissipa-
tion in the LO does not appear to affect significantly the VI damped
transitions.
We focus now on the study of the mechanisms that govern VI

TET by fixing ρ = 0.7 and λ = 0.005λcr , in order to compare
the dynamical mechanisms for VI TET to the corresponding
mechanisms for the case of ‘smooth’ NES (i.e., with purely cubic
essential stiffness nonlinearity) discussed in [58]. In the smooth
case the following three mechanisms for TET were established:
(a) fundamental TET, where the damped in-phase NNM invariant
manifold S11+ is excited; (b) subharmonic TET, where a low-
frequency subharmonic tongue is excited; and (c) TET through
nonlinear beats, where an IO close to the 1:1 resonancemanifold of
the dynamics is excited. Our study of TET in the VI case will follow
similar lines, by considering energy exchanges between the LO and
the NES for alternative types of initial excitation of the system. In
particular, we will study VI TET when in-phase or out-of-phase
periodic orbits lying on backbone and subharmonic tongues are
excited, aswell aswhen the dampedmotion is initiated by exciting
VI IOs at various energy levels. In what followswe examine each of
these cases separately.

3.1. Fundamental VI TET

In Fig. 14 we present the damped response of the system for
initial conditions on the in-phase backbone branch S13+ and
initial normalized energy h ≈ 10.0. There are four distinct stages in
the damped response, which are denoted as stages A–D in Fig. 14.
In the highly energetic initial stage A there occurs a 1:1 TRC in
the dynamics, with the response possessing a strong harmonic
at the frequency ω1 of the in-phase linear mode and a weaker
harmonic at 3ω1. This is evident by examining the detailed plot
depicted in Fig. 15(a), where it is clear that the relative transient
response u1−u2 in stage A possesses a third harmonic component;
moreover, it is noted that theWT spectrum of the relative response
possesses two clear components, a main one at frequency ω1, and
a secondary one at 3ω1 on the subharmonic branch S31O11−. This
leads to fundamental VI TET from the LO to the VI NES, with almost
85% of the initial energy (nearly 40% by the LO and 45% by the VI
NES) being dissipated during this initial stage of the motion. The
nonlinear modal interactions that lead to fundamental VI TET will
be examined in more detail later by the method of empirical mode
decomposition (EMD), where the governing 1:1 TRC will be more
clearly identified.
Stage B (cf. Fig. 15(b)) corresponds to a regime of pure 1:1 TRC

as the third harmonic component is nearly eliminated, and the
LO and the VI NES execute in-phase oscillations with frequencies
approximately equal to ω1. It is clear that the weakly damped
dynamics follows approximately the in-phase backbone branch
S13+ until this branch becomes unstable (i.e., at the bifurcation
point where the subharmonic branches U11+ and U21± bifurcate
out of this branch; cf. Fig. 6). This provides further evidence of
the connection between the weakly damped dynamics and the
dynamics of the underlying Hamiltonian system.
During stage C of the damped motion there occurs a complex

series of TRCs along subharmonic tongues on the FEP, whereas in
the low energy stage D vibro-impacts cease to occur, the motion
is purely linear, and energy dissipation is solely due to viscous
damping in the LO. As expected, the linear dynamics consists of
a combination of the damped analogs of the linear in-phase and
1
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Fig. 11. Damped transition for ρ = 0.7, λ = 0: (a) Time series; (b) instantaneous modal energy; (c) percentage of total energy dissipated by the LO and the VI NES; (d) WT
spectrum of the relative displacement u1 − u2; (e) WT spectrum of u1 − u2 superimposed on the FEP.
out-of-phase modes L11±, with mode L11+ beingmore dominant
in the response.
We conclude that in this numerical simulation there occurs

fundamental VI TET due to 1:1 TRC of the dynamics of the VI NES at
frequency ω1. Recalling that ω1 is the natural frequency of the in-
phase linear mode L11+, we conclude that during fundamental VI
TET the LO and the VI NES engage in in-phase 1:1 resonance capture.
This VI TET mechanism is analogous to fundamental TET discussed
in the case of smooth nonlinearity [58].
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The next simulation examines the damped response of the
system for initial conditions on the out-of-phase backbone branch
S11− at h ≈ 0.8 (cf. Fig. 16). There is insignificant TET from the LO
to the NES in this case, since (as in the case of smooth nonlinearity)
the initial energy of the motion localizes predominantly to the VI
NES right from the beginning of the motion; then, localization to
the VI NES is maintained throughout, as the damped VI motion
approximately traces the backbone branch S11−. In fact, in this
case vibro-impacts occur only during a short initial stage of the



Fig. 12. Damped transition for ρ = 1, λ = 0.005λcr : (a) Time series; (b) percentage of total instantaneous modal energy; (c) percentage of total energy dissipated by the
LO and the VI NES; (d) WT spectrum of the relative displacement u1 − u2; (e) WT spectrum of u1 − u2 superimposed on the FEP.
motion (i.e., for ξ < 10; Fig. 16(a)), where almost 90% of total
energy is dissipated. In the purely linear regime where no vibro-
impacts occur (for ξ > 10) the response is mainly composed of
the damped analogue of the out-of-phase linear mode L11−, with
a weaker participation of the in-phase damped mode L11+. The
participation of these closely spaced modes in the linear response
produces a beat phenomenon, which is evidenced by the strong
energy exchanges between oscillators noted in Fig. 16(b).
1

We conclude that there is immediate escape of the transient
damped dynamics from the initially excited out-of-phase back-
bone branch S11−, followed by settlement of the response in alter-
native response regimes. This is a general conclusion drawn from
the performed numerical simulations, and holds for motions that
are initiated on all branches and tongues of the FEP other than the
in-phase backbone branch S13+ (we note that this was also the
case for the case of smooth nonlinearity [58]).
3



Fig. 13. Damped transition for ρ = 0.7, λ = 0.005λcr : (a) Time series; (b) percentage of total instantaneous modal energy; (c) percentage of total energy dissipated by the
LO and the VI NES; (d) WT spectrum of the relative displacement u1 − u2; (e) WT spectrum of u1 − u2 superimposed on the FEP.
3.2. VI TET through excitation of VI IOs

Having established the mechanism of fundamental TET in the
system with VI NES, we now consider the possibility of alternative
mechanisms for VI TET based on the excitation of VI IOs. As shown
in [58], excitation of IOs on certain energy ranges provides the
mechanism for most efficient TET in the system with an NES with
smooth nonlinearity. In the following we investigate efficiency of
TET from the LO to the NES when VI IOs are excited in the four
previously defined regimes (I)–(IV) of the FEP. We note that in the
14
case of NESwith smooth nonlinearity IOs play an important role as
far as TET is concerned; this holds especially for IOs lying in the
neighborhood of the family of homoclinic orbits of the unstable
out-of-phase damped NNMs S11−, close to the 1:1 resonance
manifold of the damped dynamics [69].
In Fig. 17 we depict the damped response of the system when

a VI IO in regime (I) is excited. Since the initial energy of the
motion is relatively low, vibro-impacts occur only during the short-
duration initial stage of the dynamics, and afterwards the dynamics
become completely linear, involving continuous energy exchanges



Fig. 14. Damped transition initiated on S13+ (ρ = 0.7, λ = 0.005λcrit ): (a) Time series; (b) percentage of total instantaneous modal energy; (c) percentage of total energy
dissipated by the LO and the VI NES; (d) WT spectrum of the relative displacement u1− u2; (e) WT spectrum of u1− u2 superimposed on the FEP; Stages A–D of the damped
transition are indicated.
between the two linear modes of the system (with no vibro-
impacts) at frequencies ω1 and ω2. Due to the closely spaced
linear natural frequencies, a linear beat develops and energy is
predominantly dissipated by viscous dissipation in the LO. In this
case insignificant TET from the LO to the VI NES occurs.
The damped responses for initial excitation of a VI IO on the

subharmonic tongue S95E22− in regime (II) of the FEP are depicted
in Fig. 18. In this case the dynamics cannot exhibit a 1:1 TRC, since
1

the in-phase backbone branch S13+ is unstable at the specific
initial energy level considered in this simulation. As a result, the
damped dynamics may be divided into four distinct stages, labeled
by A–D in Fig. 18. Stages A–C are strongly nonlinear, whereas, the
low energy stage D is linear with no vibro-impacts occurring there.
In stage A the damped dynamics follows approximately the tongue
S95E22− (where the motion is initiated) with decreasing energy.
Nearly 50% of the total initial energy is dissipated during this Stage
5



Fig. 15. Close-ups of the time series (left column) and WTs on the FEP (right column) depicted in Fig. 14.
of the response, with 33% of total energy being dissipated due to
TET from the LO to the VI NES. The damped dynamics in stages B
and C is complex, as it undergoes transitions along subharmonic
tongues such as U5421−,U4520−, S55O11− and U3201− lying
close to the manifold of IO. Finally, when sufficient energy is
dissipated and no additional vibro-impacts can occur the dynamics
settles into the linear stage D, where predominant contribution of
mode L11+ is realized.
In Fig. 19 the damped dynamics for excitation of the VI IO on

the subharmonic tongue S31O11− in regime (III) of the FEP is
presented. For the selected initial energy level for this simulation,
1:1 TRC is possible (since the backbone branch S13+ is stable at
16
the initial energy level considered), and five distinct stages of the
damped motion (labeled as A–E in Fig. 19) are inferred. In stage
A the damped motion follows the subharmonic tongue S31O11−
which acts as bridging orbit for the dynamics tomake the transition
from its initial state to 1:1 TRC (which is realized in stage B). In
stage B there occurs a 1:1 TRC as the stable in-phase backbone
branch S13+ is excited; as a result, fundamental TET from the LO
to the VI NES is realized, so that nearly 50% of the total initial
energy is dissipated by the VI NES by the end of this stage of
the motion. As energy decreases due to viscous dissipation and
inelastic impacts, the in-phase backbone branch S13+ becomes
unstable and the damped dynamics makes a transition to stages



Fig. 16. Damped transition initiated on S11− (ρ = 0.7, λ = 0.005λcrit ): (a) Time series; (b) percentage of total instantaneous modal energy; (c) percentage of total energy
dissipated by the LO and the VI NES; (d) WT spectrum of the relative displacement u1 − u2; (e) WT spectrum of u1 − u2 superimposed on the FEP.
C and D; these stages are similar to those occurring in regime (II)
of the FEP, and the dynamics follows complex transitions along
subharmonic tongues, similar to the ones depicted in Fig. 18. At
the later, low energy stage E the dynamics is linear and dominated
bymode L11+. We conclude that by exciting VI IOs lying in Regime
III of the FEP the ‘bridging orbit’ scenario is realized (as in the
case of the system with ‘smooth’ NES), leading eventually to the
fundamental VI TET. This scenario yields efficient TET from the LO
to the VI NES.
1

Finally, when IOs in the high energy regime (IV) of the FEP
are excited (cf. Fig. 20) the damped transitions are similar to
those realized in regime (III), with TET efficiency at the end of
fundamental VI TET reaching the level of nearly 55%.
In conclusion, we identify two mechanisms for VI TET, namely,

fundamental VI TET due to 1:1 TRC and VI TET through excitation
of a VI IO leading eventually to fundamental VI TET. These are sim-
ilar to the corresponding TET mechanisms for the case of ‘smooth’
NES. No subharmonic VI TET (caused by TRC of the dynamics on an
7



Fig. 17. Damped transition initiated on a VI IO in Regime (I) (ρ = 0.7, λ = 0.005λcrit ): (a) Time series; (b) percentage of total instantaneous modal energy; (c) percentage
of total energy dissipated by the LO and the VI NES; (d) WT spectrum of the relative displacement u1 − u2; (e) WT spectrum of u1 − u2 superimposed on the FEP.
isolated VI subharmonic tongue) could be realized in the numerical
simulations of the dynamics of the VI system under consideration,
as the VI dynamics seem to engage in series of TRCs involvingmul-
tiple subharmonic tongues (instead of an isolated one) lying close
to the manifold of VI IOs. However, as shown in the simulations
of [5], subharmonic VI TET is indeed possible in the VI system of
Fig. 3. Therefore, we conjecture that subharmonic VI TET can be a
18
mechanism for TET in systems with very weak viscous damping and
weakly inelastic impacts. A final conclusion drawn from the previ-
ous simulations is that lack of fundamental TET in regimes (I) and
(II) of the FEP can be attributed to the instability of the in-phase
backbone branch S13+ in the corresponding energy ranges. This is
an additional indication of the strong relation that exists between
the Hamiltonian dynamics and the weakly damped transitions.



Fig. 18. Damped transition initiated on a VI IO in Regime (II) (ρ = 0.7, λ = 0.005λcrit ): (a) Time series; (b) percentage of total instantaneous modal energy; (c) percentage
of total energy dissipated by the LO and the VI NES; (d) WT spectrum of the relative displacement u1 − u2; (e) WT spectrum of u1 − u2 superimposed on the FEP.
3.3. Fundamental VI TET mechanism by means of empirical mode
decomposition (EMD)

The specific nonlinear resonance interactions that lead to TET
in the VI system can be analyzed through EMD (for example, see
[70]). We demonstrate this by analyzing in detail the mechanism
for fundamental VI TET and showing that it is a 1:1 TRC. To this
end, we analyze the high energy damped transition of Fig. 14
for the motion initiated on the in-phase backbone branch S13+.
1

Decomposition of nonlinear damped transitions by EMD leads to
multi-scale nonlinear identification of the governing dynamics,
and provides the means for interpreting nonlinear resonance
(modal) interactions between coupled oscillators, as well as
the time (or frequency) scales where these modal interactions
occur [71].
In Fig. 21we depict the results of EMD analysis utilizingMatlab-

based codes [72], from which we conclude that both responses
of the LO and VI can be decomposed into two intrinsic mode
functions (IMFs) (Fig. 21(a) and (b)), respectively. Thus, the exact
9



Fig. 19. Damped transition initiated on a VI IO in Regime (III) (ρ = 0.7, λ = 0.005λcrit ): (a) Time series; (b) percentage of total instantaneous modal energy; (c) percentage
of total energy dissipated by the LO and the VI NES; (d) WT spectrum of the relative displacement u1 − u2; (e) WT spectrum of u1 − u2 superimposed on the FEP.
responses can be accurately reconstructed with the second IMFs,
which capture the dominant frequency components of the original
time series (Fig. 21(c)). It is interesting to observe that the first IMFs
for both oscillators detect all occurring impacts, so that the second
IMFs are smooth functions possessing frequency components
completely free of nonsmooth effects due to vibro-impacts. Fig. 22
provides a more detailed study of the first IMFs of the LO and
the VI NES, from where the patterns of vibro-impacts at different
stages of the damped response can be clearly inferred; indeed,
20
one can detect that the motions of both oscillators are out-of-
phase whenever vibro-impacts occur. This observation explains
(i) the enhanced energy dissipation due to inelastic vibro-impacts
in the system considered, and (ii) the reason behind the fact
that vibro-impacts hardly contribute to the observed nonlinear
resonance interactions, as these occur in-phase and involvemainly
1:1 resonance captures. This suggests that the seemingly 3:1
resonant interaction (particularly at the initial TET stage) indicated
by the WT spectra superimposed to the FEP (Fig. 14(e)) may be, in



Fig. 20. Damped transition initiated on a VI IO in Regime (IV) (ρ = 0.7, λ = 0.005λcrit ): (a) Time series; (b) percentage of total instantaneous modal energy; (c) percentage
of total energy dissipated by the LO and the VI NES; (d) WT spectrum of the relative displacement u1 − u2; (e) WT spectrum of u1 − u2 superimposed on the FEP.
fact, purely 1:1 TRC following the in-phaseNNMbranch S13+ from
the start.
Before demonstrating this latest argument by Hilbert spectral

analysis, we compute the (averaged) frequency of vibro-impact
occurrences in Fig. 23. First, the period of vibro-impacts on average
can be estimated by Ti = ξi+1 − ξi, i = 1, 2, . . . ,N − 1 where
N is the total number of impacts. Then, its inverse 1/Ti can be
regarded as the averaged impact frequency; and the corresponding
circular frequency can be computed by multiplying this result by
2

2π . The period and frequency of vibro-impacts evaluated this way
are assumed to correspond to the instants at (ξi+1−ξi)/2,∀i. From
Fig. 23,we observe that the three distinct VI TET regimes are clearly
represented by these two quantities. In stage A which dictates
the initial VI TET period, fluctuations of impact frequency in the
high-frequency regime above 3 are observed; that is, occurrence of
vibro-impacts is irregular. On the other hand, vibro-impacts occur
almost at a constant rate during stage B (at circular frequencies
around 1.5); and in stage C the vibro-impacts exhibit a more
1



Fig. 21. EMD analysis of the damped transition depicted in Fig. 14: (a) and (b) IMFs of the VI NES and LO responses, respectively; (c) comparison of the original responses
to the corresponding second IMFs; (d) evolution of the phase difference, θ1; (e) phase plane representation of the dynamics of the phase difference θ1; (f) refined damped
transition of the FEP where only the second IMFs of the responses are considered.
irregular pattern. In particular, the irregular occurrence of vibro-
impacts at the initial stage of the damped transition can be another
evidence that the 3:1 resonant interaction at stage A is, in fact, a
numerical artifact exclusively due to impacts, whereas in actuality
the LO and the VI NES are engaged in 1:1 in-phase transient
resonance capture.
Recalling that only the second IMFs represent accurately the

exact responses of the LO and the VI NES, we denote by φ1 the
22
instantaneous phase of the second IMF of the VI NES response
computed by application of the numerical Hilbert transform;
similarly, we denote by φ2 the corresponding phase of the second
IMF of the LO response; finally, we define θ1 = φ1 − φ2 as the
phase difference between the two oscillators. Then, TRCs occurring
between the second (dominant) IMFs of the responses of the two
oscillators can be studied in detail. Indeed, when a specific phase
difference exhibits time-like (i.e., monotonic with time) behavior



a

b

Fig. 22. Detailed depiction of vibro-impacts in the first IMFs of Fig. 21.

Fig. 23. Period and frequency of impacts.

over a specified time interval, it may be regarded as a ‘fast’ angle,
and, hence, may be averaged out of the dynamics; this eliminates
the possibility of resonance interaction between the corresponding
IMFs. On the contrary, non-time-like behavior of a phase difference
2

precludes the direct application of the averaging theorem with
respect to that angle, and the possibility for resonance interaction
between the corresponding IMFs exists.
In Fig. 21(d) we note non-time-like behavior of the phase dif-

ference during the entire VI damped motion, which indicates that
a 1:1 TRC between the two oscillators occurs. The phase plane
(θ1, θ̇1) in Fig. 21(e) more clearly depicts this non-time-like be-
havior, indicated by the spirals in the dynamics during the en-
tire regime of the VI transition. Finally, the wavelet transform
of the difference between the two second IMFs of the two os-
cillators, superimposed on the FEP, clarifies the true nonlinear
resonant interactions without being ‘polluted’ by the occurring
vibro-impacts (Fig. 21(f)). It is interesting to note that the EMD
results can separate effects of vibro-impacts from the occurring
nonlinear resonance interactions, so that the residuals represent
smooth functions that describe true nonlinear resonant interac-
tions between the two oscillators. This demonstrates that the EMD
technique, although applied (by construction) in an ad hoc manner,
can still lead to physically relevant results. Currently, efforts towards
a rigorous physical interpretation of EMD results in terms of the
slow-flow dynamics of a system, and application of EMD in the
context of nonlinear nonparametric system identification are in
progress [71].
We end this section by mentioning that the presented VI TET

results are by no means optimized; that is, higher TET efficiencies
may be achieved when alternative sets of initial conditions or
system parameters are considered. This leads us naturally to the
discussion of TET efficiency in the system with VI NES carried out
in the next section.

4. Efficiency of VI TET

We aim to study the efficiency of VI TET in the system of Fig. 3
by introducing certain definitions related to the capacity of the VI
NES to passively absorb and dissipate vibration energy from the
LO, as well as the time required for this VI dissipation to occur.
Specifically,we denote by ξLI the normalized time instantwhen the
last vibro-impact in a given simulation occurs (that is, for ξ > ξLI
the transient response is purely linear); by ξ95% the time required
for 95% of the initial energy of the system to get dissipated by
viscous damping and inelastic vibro-impacts; and by EVINES the
percentage of initial energy eventually dissipated by the VI NES
due to inelastic vibro-impacts (i.e., during the entire duration of
the dampedmotion). In this context, the ratio EVINES/ξLI represents
the average measure of the percentage of energy dissipated by
the VI NES per unit time, whereas the ratio 95/ξ95% the average
percentage of energy dissipated per unit time until 95% of total
energy is dissipated. It follows that the ratio EVINES/ξLI provides a
measure of VI TET efficiency per unit time as long as vibro-impacts
occur (i.e., for ξ ≤ ξLI ), and is used as a means of judging the rate
(time scale) of energy dissipation (efficiency) by the VI NES only.
Alternatively, the measure 95/ξ95% is used to study the overall rate
of energy dissipation in the system (including the combined effects
of inelastic vibro-impacts and viscous damping dissipation).
Clearly, higher values of the energymeasure EVINES , and/or lower

values of the time measure ξ95%, indicate more efficient VI TET in
the system under consideration. Moreover, if there are no other
sources of dissipation, higher values of the average rate EVINES/ξLI
indicate high VI TET efficiency in the nonlinear regime of the
damped response; i.e., in the regime where vibro-impacts are
realized. However, in the presence of additional viscous damping
dissipation in the LO, the average rate 95/ξ95% provides a better
indicator of the overall efficiency of TET to dissipate a significant
portion of the total initial energy of the system throughout the
damped motion.
3
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Fig. 24. Study of efficiency of TET in the VI system when VI IOs are excited: (a) measures ξLI , ξ95% and EVI NES as functions of total energy; (b) average rates EVI NES/ξLI and
95/ξ95% as functions of total energy (ρ = 0.7, λ = 0.005λcrit ).
In Fig. 24 we depict the measures ξLI , ξ95%, EVINES , and the
average rates EVINES/ξLI and 95/ξ95% as functions of initial energy,
for damped VI responses initiated on VI IOs over a wide energy
range of the FEP. The systemparameters used for these simulations
are ρ = 0.7, λ = 0.005λcr and µ = σ = 0.1. As expected, with
increasing energy more vibro-impacts occur, as indicated by the
increase of the normalized timemeasure ξLI with increasing energy
in Fig. 24(a). Judging from the dependence of the energy measure
EVINES on energy, we conclude that most efficient VI TET is realized
when VI IOs are excited in regimes (III) and (IV) of the FEP (the
highest VI TET efficiency is above 65% for this series of simulations).
Moreover, VI TET in these regimes occurs at a relatively fast time
scale, as indicated by the relatively small values of the normalized
time measure ξ95% in the corresponding energy ranges.
24
Focusing now on the average rates depicted in Fig. 24(b), we
deduce again that the most efficient rates of the overall energy
dissipation measure 95/ξ95%, are realized in regimes (III) and (IV),
although the highest rates of energy dissipated by the VI NES
during vibro-impacts (EVINES/ξLI ) are realized in the lower energy
regimes (I) and (II). We conclude that, although in these regimes
there occurs strong TET from the LO to the VI NES as long as
vibro-impacts last (i.e., there is more efficient energy dissipation
per vibro-impact), the overall duration of vibro-impacts is small
(due to the small level of overall energy), as reflected by the rela-
tively small values of the corresponding overall TET efficiency rates
95/ξ95%.
In an additional series of numerical simulations we com-

puted the previous energy dissipation measures for simulations



Fig. 25. Efficiency of TET in the VI system when VI IOs are excited: (left column) measures EVI NES , ξLI , ξ95% as functions of total energy and coefficient of restitution for
λ = 0.01; (right column) corresponding projections in the plane of total energy versus coefficient of restitution.
corresponding to excitations of VI IOs at varying energies and
restitution coefficients ρ, and fixed viscous damping coefficient
λ = 0.005λcr = 0.01. This study identified the regimes of ef-
ficient VI TET when both the energy of the excited VI IO and the
coefficient of restitution of vibro-impacts are varied. The results
are presented in Figs. 25 and 26, from which we conclude that the
most efficient TET takes place when highly energetic VI IOs are ex-
cited in regimes (III) and (IV) of the FEP, and for smaller restitution
coefficients, i.e., for highly inelastic vibro-impacts. This last result
is not as obvious as it might seem from a first reading; indeed, al-
though it is clear that the average rate EVINES/ξLI increaseswhen the
restitution coefficient increases (as this results in increased energy
dissipated per vibro-impact), this does not necessarily imply that
the overall TET efficiency as measured by the average rate 95/ξ95%
2

also increases (for example, refer to the average rates depicted in
Fig. 24(b)).

5. Conclusions

We showed that an SDOF primary linear oscillator (LO) with
an attached vibro-impact nonlinear energy sink (VI NES) possesses
very complicated dynamics. In the absence of energy dissipation,
vibro-impacts produced by even small clearances give rise to a
variety of periodic (and quasiperiodic) motions, which produce
a complex topology of periodic orbits when represented in a
frequency–energy plot (FEP). In the limit of zero clearance the
entire FEP degenerates to two linear modes. By superimposing
wavelet transform (WT) spectra of weakly damped responses
5



Fig. 26. Efficiency of TET in the VI systemwhen VI IOs are excited: (left column) average rates EVI NES/ξLI and 95/ξ95% as functions of total energy and coefficient of restitution
for λ = 0.01; (right column) corresponding projections in the plane of total energy versus coefficient of restitution.
a b

c d

Fig. 27. S13+ branch: (a) h = 11.4294; (b) h = 5.1365; (c) h = 0.76989; (d) h = 0.1184.
on the Hamiltonian FEP we were able to study complicated
transitions, and deduce the different mechanisms for passive
targeted energy transfer (TET) from the LO to the VI NES. As
in the case of smooth stiffness nonlinearity, both fundamental
26
and subharmonic TET can be realized by the VI NES. The most
efficient mechanism for TET, however, is through the excitation of
highly energetic VI impulsive orbits (IOs), similar to the case of the
NES with smooth (cubic) stiffness nonlinearity. In contrast to the
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Fig. 28. S11− branch: (a) h = 4.5636; (b) h = 0.14673; (c) h = 0.069495; (d) h = 0.086339.
a b

c d

Fig. 29. Symmetric branches: (a) S51O22−; (b) S21− 5− O− 10− 10−; (c) S31E22+; (d) S55E22+.
NESs with smooth essential nonlinearities, however, VI NESs are
capable of passively absorbing and locally dissipating significant
portions of the energy of the primary systems to which there are
attached, at sufficiently fast time scales. This renders them suitable
for applications like seismic mitigation, where shock elimination
in the early, highly energetic regime of the motion is a critical
requirement.
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Appendix. VI periodic orbits

A.1. Main backbones

See Figs. 27 and 28.

A.2. Subharmonic tongues

See Figs. 29 and 30.
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Fig. 30. Unsymmetric branches: (a) U6133−; (b) U9254−; (c) U4122−; (d) U8344−.
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