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MODAL ANALYSIS OF A CRACKED BEAM

M. C, R. R  S. M

Department of Theoretical and Applied Mechanics, Cornell University, Ithaca,
New York 14853, U.S.A.

This paper addresses the problem of vibrations of a cracked beam. In general, the motion
of such a beam can be very complex. This phenomenon can be attributed to the presence
of the non-linearity due to the opening and closing of cracks. The focus of this paper is
the modal analysis of a cantilever beam with a transverse edge crack. The non-linearity
mentioned above has been modelled as a piecewise-linear system. In an attempt to define
effective natural frequencies for this piecewise-linear system, the idea of a ‘‘bilinear
frequency’’ is utilized. The bilinear frequency is obtained by computing the associated
frequencies of each of the linear pieces of the piecewise-linear system. The finite element
method is used to obtain the natural frequencies in each linear region.

In order better to understand the essential non-linear dynamics of the cracked beam, a
piecewise-linear two-degree-of-freedom model is studied. Perturbation methods are used to
obtain the non-linear normal modes of vibration and the associated period of the motion.
Results of this piecewise-linear model problem are shown to justify the definition of the
bilinear frequency as the effective natural frequency. It is therefore expected that calculating
piecewise mode shapes and bilinear frequencies is useful for understanding the dynamics
of the infinite degree of freedom cracked beam.

1. INTRODUCTION

Cracks are present in structures due to various reasons. The presence of a crack could not
only cause a local variation in the stiffness, but it could affect the mechanical behavior of
the entire structure to a considerable extent. Cracks present in vibrating/rotating
components could lead to catastrophic failure. For these reasons, there is a need to
understand the dynamics of cracked structures. The vibration characteristics of cracked
structures can be useful for an on-line detection of cracks (non-destructive testing) without
actually dismantling the structure. In particular, the natural frequencies and mode shapes
of cracked beams can provide an insight into the extent of damage. As a representative
model of a cracked structure, a cantilever beam with a transverse edge crack is studied
in this paper.

In the past there have been considerable attempts to understand the dynamics of a
cracked beam [1–9]. Christides and Barr [1] developed a one-dimensional cracked beam
theory at the same level of approximation as the Bernoulli–Euler beam theory. Several
assumptions on the displacement, velocity and stress fields are built into this model. The
pair of symmetric cracks is always assumed to remain open as the beam is vibrating, so
as to avoid the non-linear characteristics of an opening and closing crack. An approximate
Galerkin solution to the one-dimensional cracked beam theory was obtained by Shen and
Pierre [2]. The comparison functions used in the Galerkin procedure consisted of mode
shapes of an uncracked beam. Shen and Chu [3] extended the cracked beam theory to
account for the opening and closing of the crack—the so-called ‘‘breathing crack’’ model.
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A Galerkin procedure was used to obtain the bilinear equation for each vibration mode.
The non-linear dynamic response of the bilinear equation to a forcing excitation was
calculated through a numerical analysis.

Chu and Shen [4] obtained a closed form solution for a forced single-degree-of-freedom
bilinear oscillator under low frequency excitation. They extended the procedure in order
to study the dynamics of cracked beams with binlinear forcing functions. Yuen [5]
proposed that the change in the stiffness of the cracked beam at the location of the crack
can be modelled as a change in the modulus of elasticity of the cracked location. The finite
element method was used to carry out the analysis. Shen and Taylor [6] developed an
identification procedure for an on-line detection of the size and location of cracks. A mean
square difference and a mini–max criterion were used to demonstrate the reliability of the
identification procedure.

Ostachowicz and Krawczuk [7] replaced the crack section with a spring and then carried
out modal analysis for each part of the beam using appropriate matching conditions at
the location of the spring. The equivalent stiffness of the spring was calculated using the
stress intensity factor at the crack location. Qian et al.[8] derived an element stiffness
matrix of a beam with a crack, based on the integration of stress intensity factors. The
finite element method was used to study the vibration response of the beam. Abraham and
Brandon [9] modelled the opening and closing of a crack using a substructuring approach.
Lagrange multipliers and time varying connection matrices were used to represent the
interaction forces between the two segments of the cantilever beam separated by the
crack. The effect of dry friction when the crack is closed has been accounted for in this
model.

A cracked vibrating beam has an inherent non-linearity present in it due to the opening
and closing of the crack. Not all of the papers mentioned above model this non-linearity.
For example, some authors assume that a crack always remains open. In this paper, we
explicitly account for this non-linear behaviour of the beam by not allowing
interpenetration of the crack faces. Some of the distinctive features of this paper are: (i)
modelling of the opening and closing of the crack as a multi-degree-of-freedom
piecewise-linear system; (ii) definition of an effective natural frequency, called the ‘‘bilinear
frequency’’; and (iii) a systematic study of a two-degree-of-freedom piecewise-linear model
to understand the essential non-linear dynamics.

The paper is organized as follows. In section 2, we describe the modal analysis procedure
for obtaining the effective natural frequencies for the cracked beam. In section 3, we give
the numerical results of the finite element method used to carry out the analysis. In section
4, we begin studying the bilinear two-degree-of-freedom oscillator, and in section 5, we
present a brief introduction to non-linear normal modes. In section 6, a perturbation
method is used to obtain expressions for the non-linear normal modes of the bilinear
system, and in section 7 our results are compared with the results of numerical integration.
Our conclusions are presented in section 8.

2. MODAL ANALYSIS

Consider a uniform cantilever beam, of length L, having a transverse crack at location
b of depth a (Figure 1). One can qualitatively see that the global stiffness of the cracked
beam would depend on whether the crack is open or closed. In the past (see references
[3, 4]), the cracked beam has been modelled as a bilinear single-degree-of-freedom system
(Figure 2). In what follows, we shall briefly describe the procedure for obtaining the
‘‘bilinear frequency’’ of this piecewise-linear single-degree-of-freedom system.
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Figure 1. A cantilever beam with a transverse edge crack, where a is the length of the crack, b is the location
of the crack, L is the length of the beam and d is the depth of the beam.

2.1. --- 

The system shown in Figure 2 consists of a mass m which is attached to a linear spring
k1 and which makes contact with the linear spring k2 only when xQ 0. The equations of
motion for this system are

mẍ+ k1x=0 for xq 0, (1)

mẍ+(k1 + k2 )x=0 for xQ 0, (2)

where the dots indicate differentiation with respect to time. The free vibration problem can
be easily solved analytically (see, for example, reference [4]). However, the solution is
presented here for the sake of completeness. Before we solve the free vibration problem,
let us solve for the two natural frequencies in the two linear regions, xq 0 and xQ 0. The
two frequencies are

v1 =Xk1

m
for xq 0, v2 =Xk1 + k2

m
for xQ 0. (3)

To solve equations (1) and (2), let the initial conditions be x(0)= x0 and ẋ(0)=0. Without
loss of generality, let us assume that x0 q 0. The solution to equation (1) is

x(t)= x0 cos v1 t for tQ t1 (here xq 0). (4)

At time t1 = p/2v1 , x(t1 )=0 and the mass m enters the region xQ 0 with the new initial
conditions x(t1 )=0 and ẋ(t1 )=−x0v1 . The solution to the equation (2) is given as

x(t)=−
x0v1

v2
sin v2 (t− t1 ) for t1 E tE t2 (here xQ 0). (5)

At time t2 = t1 + p/v2, x(t2 )=0 and the mass m enters the region xq 0 with the initial
conditions x(t2 )=0 and ẋ(t2 )= x0v1 . Note that the velocity with which the mass m enters
the region xQ 0 is exactly the same in magnitude as the velocity with which it left the
region xQ 0. The solution to equation (1) now is

x(t)= x0 sin v1 (t− t2 ) for t2 E tE t3 (here xq 0). (6)

Figure 2. The one-degree-of-freedom system.
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At the time t3 = t2 + p/2v1 , x(t3 )= x0 and ẋ(t3 )=0; i.e., the mass m, comes back exactly
to the same point in the state space (x, ẋ) from where the motion started at t=0. Thus,
the motion is periodic and the effective period (T0 ) of this piecewise-linear system is

T0 = t3 =
p

v1
+

p

v2
=

2p

v0
, (7)

where the effective natural frequency v0 of this piecewise-linear single-degree-of-freedom
system is defined as

v0 =
2v1v2

v1 +v2
. (8)

The effective natural frequency v0 is called the ‘‘bilinear frequency’’. The central idea
of this paper is to extend the definition of bilinear frequency from the single-degree-of-free-
dom bilinear system to the infinite-degree-of-freedom cracked beam problem. Just as the
bilinear system (Figure 2) has two linear regions (xq 0 and xQ 0), the cracked beam
problem can be modelled as having two configurations: crack open and crack closed. In
each of the individual linear regions, one can define a set of natural frequencies by solving
an eigenvalue problem. The two sets of natural frequencies can then be combined, using
equation (8), to obtain the effective natural frequencies for the cracked beam. In what
follows we shall describe the procedure for calculating the frequencies for the two
configurations of the cracked beam.

2.2.  

The eigenvalues of the cracked beam in the two configurations (crack open and crack
closed) can be extracted using a numerical method. Among the various numerical methods
present, the most popular are the finite difference method (FDM), the finite element
method (FEM) and the boundary element method (BEM). The eigenvalue problem of the
cracked beam (Figure 1) is solved using the FEM in this paper.

The basic idea of the finite element method (see reference [10]) is to discretize a body
into an assemblage of discrete finite elements which are interconnected at the nodal points
on element boundaries. The displacement field is approximated over each finite element,
in terms of the nodal displacements. The equations of motion can then be formulated using
the displacement-based formulation in conjunction with the principle of virtual
displacements. These equations of motion can be written as

MU� +KU= 0, (9)

where overdots indicate differentiation with respect to time, M and K are the mass and
stiffness matrix respectively, and U (=[u1 v1 u2 v2 . . . un vn ]T) is the column vector of nodal
displacements. Each node i has two degrees of freedom, ui and vi , in the horizontal (x)
and vertical (y) directions, respectively.

To explain the idea of the two configurations used to calculate the natural frequencies,
consider the two crack faces shown in Figure 3. The numbers on the left and right faces
of the crack are the node numbers of the interacting nodes. For the first configuration,
assume that the crack faces remain open which basically implies that the degrees of
freedom associated with the nodes on the crack surfaces are independent. This
configuration will be referred to as the ‘‘unconstrained’’ configuration. For the second
configuration, assume that the crack is closed. Now, to prevent a physically unrealistic
situation with interpenetration of crack faces, the horizontal degrees of freedom (ui ) of
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Figure 3. Crack faces.

the nodes on the left and right faces of the crack, which are initially at the same geometric
location, need to be restricted. This condition can be stated as

uleftface
l = urightface

r , (10)

where node numbers l and r are the corresponding interacting nodes on the left and right
face of the crack. This implies that the imposed virtual displacements must also obey the
constraint (10). This configuration will be referred to as the ‘‘constrained’’ configuration.
The effect of this constraint can be taken into account by an appropriate addition of the
corresponding rows and columns of the mass and stiffness matrices. Note that there is no
constraint in the vertical direction (vi ) on the crack faces. Therefore, there could be
frictionless sliding of the crack faces, and the closed crack configuration need not
correspond to an uncracked beam, as assumed in some previous research (see, for example,
reference [3]).

Let us assume a time harmonic solution for the nodal displacements:

U=A sin vt, (11)

where A is the amplitude of the nodal displacements. Substituting equation (11) into
equation (9) leads to

[−v2M+K]{A}= 0. (12)

For non-trivial solutions,

det (K−v2M)=0, (13)

where ‘‘det’’ denotes the determinant and v is the natural frequency.
Using equation (13) for the two configurations of the cracked beam, two sets of natural

frequencies can be obtained. Let us denote the mass and stiffness matrices corresponding
to the unconstrained configuration with the subscript 1 and that of the constrained
configuration with subscript 2. For the unconstrained configuration, the eigenvalue
problem takes the form

det (K1 −v2
1i M1 )=0, (14)

where v1i is the set of natural frequencies corresponding to the unconstrained configuration
arranged in order of increasing magnitude. Similarly, for the constrained configuration,

det (K2 −v2
2i M2 )=0, (15)

where v2i is the set of natural frequencies corresponding to the constrained configuration
arranged in the order of increasing magnitude.
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In this work, we define an effective natural frequency, called the bilinear frequency,
which permits us to obtain an approximation for the frequency associated with the ith
mode of a piecewise-linear vibrating system without computing the actual mode shape. The
bilinear frequency is obtained by computing the associated frequencies of each of the linear
pieces of the piecewise-linear system. The important question that we want to address is
the relationship between the ith mode shape and natural frequency to those obtained from
a ‘‘simplified’’ finite element analysis, where one computes the mode shapes and
frequencies of the individual linear segments of the piecewise-linear system. We call the
latter the ‘‘bilinear mode shapes’’. It is expected that if the crack is sufficiently shallow,
the two results, namely the actual and bilinear ith mode shapes, will be close to each other.
In such a case, we would also expect that the overall frequency of the ith mode will be
well approximated by the bilinear frequency as we define it. According to this line of
reasoning, calculation of these bilinear mode shapes and frequencies for a vibrating
cracked beam appears meaningful. This is done later in this paper. Also, the actual and
bilinear mode shapes are computed and compared for a simplified two-degree-of-freedom
model of the cracked beam. It is seen that the bilinear mode shapes are comparable to
the actual ones. Details are given later in the paper.

The two sets of frequencies (v1i and v2i ) for the two configurations of the cracked beam
can be combined, using equation (8), to define effective natural frequencies (Vi ) of the
cracked beam as

Vi =
2v1iv2i

v1i +v2i
. (16)

3. NUMERICAL RESULTS AND DISCUSSION

Due to the presence of the crack, the beam cannot be modelled using beam elements;
but, rather, we need to use plate/shell elements. The cracked cantilever beam has been
modelled as a problem in plane stress using eight-noded quadrilateral plate elements. The
idea of using beam elements and plate elements in conjunction with transition elements
was considered, but since the amount of computational saving was limited the idea was
not pursued further. The commercially available finite element package ABAQUS was
used to obtain the numerical results. The material and geometric parameters used to carry
out the analysis are: E=210 GPa, r=7850 kg/m3, n=0·3, L=10 m and A=1 m2. The
location b and the length a of the crack have been varied to study their effect on the natural
frequencies of the cracked beam.

First, a convergence study is presented in Tables 1 and 2 for a crack location of b=5 m
and a=0·5 m. Table 1 contains the frequencies for the unconstrained configuration and
Table 2 contains the frequencies for the constrained configuration. It can be seen that the
effect of increasing the number of elements from 192 to 704 does not have a significant
effect on the natural frequencies for the first few modes. All further calculations have been
carried out using 704 elements. The undeformed mesh consisting of 704 elements, with
b=5 m and a=0·5 m, is shown in Figure 4.

Due to the presence of the crack, there is a 1/zr singularity in the stress field at the
crack tip. Usually, quarter-point elements are used to model the singular behavior in the
stress field. However, in this particular analysis, global changes in the dynamics of the
beam are desired, rather than the local variation in the stress field due to the presence of
the crack. A comparison in natural frequencies when the singular elements are used and
when they are not used is presented in Table 3. The results presented in this table are the
natural frequencies for the unconstrained configuration of the beam with b=2 m and
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T 1

A convergence study for natural frequencies (rad/s) in the unconstrained configuration

Number of elements
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

4 20 40 192 704

First transverse mode 53·40 49·83 49·63 48·33 48·24
Second transverse mode 385·17 266·51 263·79 247·24 246·40
First longitudinal mode 789·27 768·75 765·41 746·61 745·88
Third transverse mode 1165·65 827·83 826·25 825·07 820·98
Fourth transverse mode 2331·80 1369·1 1361·9 1334·60 1324·40

T 2

A convergence study for natural frequencies (rad/s) in the constrained configuration

Number of elements
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

4 20 40 192 704

First transverse mode 54·31 52·09 52·18 52·12 52·03
Second transverse mode 424·21 309·76 312·34 311·08 310·13
First longitudinal mode 815·97 806·13 811·84 809·82 809·41
Third transverse mode 1177·6 827·94 826·38 825·18 821·07
Fourth transverse mode 2492·70 1496·00 1503·30 1501·60 1487·10

T 3
A comparison of natural frequencies (rad/s) for singular versus non-singular elements

Singular Non-singular

First transverse mode 39·62 39·47
Second transverse mode 311·72 311·68
First longitudinal mode 688·57 666·96
Third transverse mode 818·76 818·67
Fourth transverse mode 1381·10 1380·50

a=0·5 m. The frequencies are quite close. Therefore, we decided not to use singular
quarter-point elements in further calculations.

The mode shapes of the beam, with b=5 m and a=0·5 m, in the two configurations
are shown in Figures 5 and 6. In Figures 5(a), (b) and (c) are shown the first, second and
third modes, respectively, for the unconstrained configuration of the beam, while in
Figures 6(a), (b) and (c) are shown the first, second and third modes for the constrained
configuration of the beam. These mode shapes will be utilized to explain the trends in the
effective bilinear frequencies with the variation of parameters such as crack location b and
crack length a.

Figure 4. The undeformed mesh.
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Figure 5. Unconstrained mode shapes for the (a) first, (b) second and (c) third mode shapes.

In Figure 7 is shown the variation in the normalized first bilinear effective frequency
with the normalized crack depth a/d. The variation shown in Figure 7 can be easily
understood if we look at the corresponding mode shapes associated with the first mode
(see Figures 5(a) and 6(a)). Since in the first mode of vibration the major contribution to
the stiffness comes from the clamped end of the beam, a crack present at b/L=0·2 results
in a substantial decrease in the bilinear frequencies, as compared to b/L=0·5 or 0·7. The
variation in the second and third effective bilinear frequencies with crack depth is shown
in Figures 8 and 9.

Figure 6. Constrained mode shapes for the (a) first, (b) second and (c) third mode shapes.
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Figure 7. The variation of the first bilinear frequency with crack depth, where b is the location of the crack
and L is the length of the beam. *, b/L=0·2; +, 0·5; ×, 0·7.

In order to justify the intuitive assertion that the bilinear frequency is a good
approximation for the effective natural frequency of the multi-degree-of-freedom
piecewise-linear system we next investigate a two-degree-of-freedom piecewise-linear
system using perturbation methods. It is shown that the bilinear frequency
a good approximation to the frequencies of the (non-linear) normal modes in this
case.

Figure 8. The variation of the second bilinear frequency with crack depth, where b is the location of the crack
and L is the length of the beam. *, b/L=0·2; +, 0·5; ×, 0·7.
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Figure 9. The variation of the third bilinear frequency with crack depth, where b is the location of the crack
and L is the length of the beam. *, b/L=0·2; +, 0·5; ×, 0·7.

4. TWO-DEGREE-OF-FREEDOM SYSTEM

In order better to understand the essential nonlinear dynamics of the cracked beam, we
study in this section a simplified piecewise-linear two-degree-of-freedom (2-DOF) system.
The system is displayed in Figure 10 and consists of two masses constrained to a straight
line and restrained by three springs. Note that spring k2 applies no force to mass m1 unless
co-ordinate x1 Q 0. This feature represents, in this simplified model, the essential character
of the cracked beam. The equations of motion for this system are

m1 ẍ1 + (k1 + k3 + k2H(x1 ))x1 − k3x2 =0, m2 ẍ2 − k3x1 + k3x2 =0, (17, 18)

where x1 and x2 are the displacements of the masses m1 and m2 respectively, dots indicate
differentiation with respect to time, and

H(x1 )=61, x1 Q 0,
0, x1 q 0.

As the mass m1 goes through x1 =0, this system switches between each of the two linear
problems, one for x1 q 0 and another for x1 Q 0. We now obtain the corresponding two

Figure 10. The two-degree-of-freedom model.
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sets of eigenvalues and eigenvectors, which will be used in what follows. For x1 q 0, the
characteristic equation is

l2 −$k1 + k3

m1
+

k3

m2%l+
k1k3

m1m2
=0, (19)

where l=v2. Equation (19) can be solved for the two natural frequencies (v11 and v12 )
and then the corresponding eigenvectors can be obtained. These frequencies would actually
be the fundamental frequencies of the system in the absence of the spring k2 .

Carrying out a similar analysis for the case when x1 Q 0, the characteristic equation takes
the form

l2 −$k1 + k2 + k3

m1
+

k3

m2 %l+
(k1 + k2 )k3

m1m2
=0 (20)

which can be solved for the two natural frequncies (v21 and v22 ) and the corresponding
mode shapes.

The eigenfrequencies in the two regions can be combined in pairs to form two effective
bilinear frequencies for this non-linear system. These are given by the same formula used
to define the effective bilinear frequency for a one-DOF bilinear system. The bilinear
frequencies are defined as

V1 =
2v11v21

v11 +v21
, V2 =

2v12v22

v12 +v22
. (21, 22)

In the next two sections we will use perturbation methods and numerical integration to
show that the frequencies for the non-linear normal modes associated with the system
shown in Figure 10 are well approximated by the bilinear frequencies (21) and (22).

5. NON-LINEAR NORMAL MODES

Non-linear normal modes are a class of special solutions of n-DOF conservative systems.
These could be considered as a non-linear analog of the classical normal modes in a linear
system. They were shown by Rosenberg [11] to be important because resonance in the
forced system typically occurs in the neighborhood of the non-linear normal modes of the
free system. Over the years since Rosenberg’s original work, there have been many studies
of non-linear normal modes. An outstanding recent book by Vakakis et al. [12] summarizes
much of the research in this area to date. We mention here a few works of non-linear
normal modes, but the reader is referred to reference [12] for a complete bibliography.

Rand [13] obtained explicit approximate expressions for normal modal curves in
non-linear two-degree-of-freedom systems by applying a perturbation method to the
modal equation. Rand et al. [14] studied the stability and bifurcation of non-linear normal
modes in a class of two-degree-of-freedom systems. King and Vakakis [15] developed an
energy-based formulation for computing non-linear normal modes in undamped
continuous systems. A partial differential equation is constructed using conservation of
energy, which is solved asymptotically using a perturbation methodology. Nayfeh et al.
[16] used two approaches to obtain the non-linear normal modes of a cantilever beam. The
same non-linear normal mode is obtained by the application of the method of multiple
scales to the discretized problem and the original boundary value problem. Shaw and
Pierre [17] extended the concept of non-linear normal modes to a multi-degree-of-freedom
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system with damping. They used the theory of invariant manifolds in conjunction with the
center manifold reduction technique.

In the problem at hand, the concept of non-linear normal modes must be applied to
a piecewise-linear system. This topic has been studied by Chen and Shaw [19], who
presented a general discussion of non-linear normal modes in piecewise-linear systems and
an example of a 2-DOF system which is similar (but not identical) to the 2-DOF system
studied in our paper. They obtained the non-linear normal modes using an invariant
manifold approach in the four-dimensional space. In contrast to their approach, we present
an analysis of a 2-DOF piecewise-linear system based on a modal equation in the
two-dimensional configuration space.

We will define non-linear normal modes as vibrations in unison; i.e., synchronous
periodic motions in which all generalized coordinates vibrate equiperiodically, achieving
instantaneous zero velocity at the same instant of time. (This is a slight generalization of
Rosenberg’s definition, suitable for the piecewise-linear system at hand.)

In order to obtain the non-linear modes for the system in Figure 10, we will use
Rosenberg’s modal equation, derived as follows. Consider a conservative system for which
the potential energy V is of the form

V= 1
2 (ax2 +2bxy+ cy2), (23)

where x and y are the generalized co-ordinates. The constants a, b and c are such that
V is positive definite, and kinetic energy T is of the form

T= 1
2 (ẋ

2 + ẏ2). (24)

Then

ẍ=−Vx , ÿ=−Vy , T+V= h, (25–27)

where h is a constant equal to the total energy of the system. In what follows, we will
eliminate time t by considering y as a function of x only. Using equations (25–27) and

ẏ= y'ẋ, ÿ= y0ẋ2 + y'ẍ, (28, 29)

we obtain the governing equation for the normal modes of the system,

2(h−V)y0+(1+ y'2)(Vy − y'Vx )=0, (30)

where the primes denote differentiation with respect to x. We will define a non-linear
normal mode to a be a solution to equation (30) which is single valued and which has two
rest points; i.e., two points at which ẋ and ẏ simultaneously vanish giving T=0, or, from
equation (27), V= h. From equation (30), at such points where V= h, we find that

Vy − y'Vx =0 at V= h. (31)

Geometrically, this implies that a non-linear normal mode intersects the bounding curve
V= h orthogonally at two points, as shown in Figure 11. In what follows we shall use
a perturbation approach to obtain the nonlinear normal modes of the bilinear two degree
of freedom system (Figure 10).

6. PERTURBATION METHOD

We begin by expressing the equations (17) and (18) in normal co-ordinates x and y for
the x1 q 0 system. The modal matrix consisting of orthonormal eigenvectors obtained for
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Figure 11. The non-linear normal mode.

the region x1 q 0 is used to achieve the transfer to normal co-ordinates. This
transformation can be written in the abbreviated form as

6x1

x27=$a1

a3

a2

a4%6xy7. (32)

The coefficients ai are the components of the eigenvectors and are not listed here for
brevity. Note that we will be using the same modal matrix to affect the transformation
to the normal co-ordinates for both x1 q 0 and x1 Q 0. The equations of motion for the
region (x1 q 0) in the normal co-ordinates then take the form

ẍ=−v2
11x, ÿ=−v2

12y. (33, 34)

The potential energy is of the form

V= 1
2 (v

2
11x2 +v2

12y2) (35)

and the kinetic energy has the same form as equation (24).
The equations of motion for the region x1 Q 0 in the normal co-ordinates take the form

ẍ=−(v2
11 + a2

1 k2 )x− a1a2k2y, ÿ=−a1a2k2x−(v2
12 + a2

2 k2 )y. (36, 37)

The potential energy is of the form

V= 1
2 (v

2
11x2 +v2

12y2)+
k2

2
(a2

1 x2 +2a1a2xy+ a2
2 y2) (38)

and the kinetic energy has the same form as equation (24). Note that the presence of an
xy term in the equation (38) is due to the fact that while co-ordinates x and y are normal
co-ordinates for x1 q 0, they are not normal co-ordinates for x1 Q 0.

A perturbation method will be used to solve equation (30) approximately. We will
assume that the spring k2 is small:

k2 = ko, oW 1, (39)

where e is a small parameter. The non-linear normal mode that we desire to solve for can
be taken to be a perturbation to the linear mode (y=0). To solve for a non-linear normal
mode y(x), we assume

y(x)=6of1 (x), x1 q 0,
of2 (x), x1 Q 0

. (40)

13



Substituting equation (40) into the modal equation (30), i.e., with V as in equation (35),
we obtain, neglecting terms of order o, the differential equation governing the non-linear
normal mode for the region x1 q 0:

(2h−v2
11x2)f01 −v2

11xf'1 +v2
12 f1 =0+O(o). (41)

Similarly, for the region x1 Q 0 we obtain

(2h−v2
11x2)f02 −v2

11xf'2 +v2
12 f2 =−ka1a2x+O(o). (42)

The solution to the linear ordinary differential equation (41) is of the form (see reference
[13])

f1 (x)=C1 sin (D arcsin zpx)+C2 cos (D arcsin zpx), (43)

where C1 and C2 are arbitrary constants,

D=v11 /v12 (44)

and

p=v2
11 /2h. (45)

Equation (42) is a non-homogeneous version of equation (41). The complementary
solution to equation (42) is of the same form as equation (41),

f2,comp (x)=C3 sin (D arcsin zpx)+C4 cos (D arcsin zpx), (46)

where C3 and C4 are arbitrary constants. A particular solution to equation (42) is

f2,part (x)=
ka1a2

v2
11 −v2

12
x. (47)

Combining equations (46) and (47), the solution to equation (42) becomes

f2 (x)= f2,comp (x)+ f2,part (x). (48)

In order to solve for the constants C1 , C2 , C2 and C4, the following conditions will be
employed. Comparing equation (41) with equation (30), the boundary condition, equation
(31), becomes

f'1 =
v2

12 f1

v2
11X1

at X1 =X2h
v2

11
q 0 (49)

at a rest point (X1 , Y1 ) for which X1 q 0, where Y1 = of1 (X1 ). Similarly,

f'2 =
v2

12 f2

v2
11X2

− ka1a2 at X2 =−X2h
v2

11
Q 0 (50)

at a rest point (X2 , Y2 ) with X2 Q 0, where Y2 = of2 (X2 ). The modal curve runs from
(X1 , Y1 ) to (X2 , Y2 ).

Using the normality conditions (equations (49) and (50)) in equations (43–48), we obtain

C1 /C2 = tan (Dp/2)0Q for x1 q 0, (51)

C3 /C4 =−tan (Dp/2)=−Q for x1 Q 0. (52)

14



Two more conditions are obtained by requiring that the modal curve be continuous and
have a continuous first derivative at x1 =0. Let (x*, y*) be the point at which x1 =0. The
matching conditions at the point x1 =0 gives that

y*=−
a1

a2
x*= of1 (x*), y*=−

a1

a2
x*= of2 (x*) (53, 54)

and

f'1 (x*)= f'2 (x*). (55)

Solving equation (51) for C1 , and substituting into equation (53), permits us to obtain the
equation for C2 in terms of x*. Similarly, solving equation (52) for C3 and substituting into
equation (54) gives an equation for C4 in terms of x*. When these expressions are
substituted into equation (55), we obtain a resulting equation for x* as

x*6[1− koa2
2 /(v2

11 −v2
12 )](Q cos z+sin z)

−Q sin z+cos z
+

Q cos z−sin z
Q sin z+cos z7

−
koa2

2 z1− px*2

(v2
11 −v2

12)Dzp
=0, (56)

where z=D sin zpx*. Equation (56) can be solved using a Taylor series approximation.
Since, from equation (56), x*=0 when o=0, we write

x*= ox*1 +O(o2). (57)
Substituting equation (57) into equation (56), and using the computer algebra package
MACSYMA to Taylor expand in o, we may collect terms and solve for x*1 . Once x* is
obtained all the constants (C1 , C2 , C3 and C4 ) can be calculated. This procedure results
in an algebraic approximation for the associated non-linear normal mode. An example
calculation will be presented in the next section.

To obtain the period associated with the non-linear normal mode, the equations of
motion need to be integrated. For the region x1 q 0, equation (33) can be integrated from
x=X1 to x= x* to give

t1 =
1

v11
arcos 0x*

X11 (58)

and, similarly, equation (36) can be integrated from x=X2 to x= x* to give

t2 =
1

zv2
11 + a2

1 ko
arccos 0x*

X21. (59)

Thus the associated period of the motion can be written as

Tp =2(t1 + t2 ). (60)

Note that t1 and t2 depend on x*, which is obtained as a Taylor series approximation (57)
to equation (56). This period could then be compared with the ‘‘bilinear period’’ defined
for the 2-DOF piecewise-linear system.

In order to obtain an approximation for the other non-linear normal mode in this
2-DOF piecewise-linear system, we may interchange the roles of x and y throughout, and
utilize a similar perturbation calculation for x= og(y).
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Figure 12. The motion of a phase point in the x1–x2 plane for a general motion, not a non-linear normal mode.

7. NUMERICAL RESULTS

The results obtained using the perturbation method will be presented for the 2-DOF
piecewise-linear system. The values for the parameters in the 2-DOF model (Figure 10)
are chosen as k1 = k3 =1·0 and m1 =m2 =1·0, and the spring constant k2 is varied. The
equation for the non-linear normal mode is computed to be (cf. equation (40)):

f1 (x)=−0·0874032zhk sin (D arcsin zpx)−0·0597945zhk cos (D arcsin zpx),

f2 (x)=0·0874032zhk sin (D arcsin zpx)−0·0597945zhk cos (D arcsin zpx)−0·2kx,

where D=2·618034 and p=0·190983/h.

Figure 13. The first mode: x1 versus x2 . The dashed curve represents the eigenvectors in each of the linear
regions. Note that the bilinear frequency is a better approximation than the mode shape. –––, Non-linear normal
mode; · · ·, bilinear mode shape.
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Figure 14. The first mode: –––. x1 ; ---, x2 ; versus time.

In order to verify the results obtained by the perturbation method, the equations of
motion are integrated numerically using the fourth order Runge–Kutta method. For any
given initial conditions (x0 , ẋ0 , y0, ẏ0 ), the equations of motion can be integrated
numerically. To obtain the modal curve, we need to choose an approximate starting point
on the V= h curve. However, the process of choosing the appropriate initial conditions
for numerical simulation is that of trial and error. If any other initial condition is chosen
the motion of the phase point is quasi-periodic, as shown in Figure 12. In Figures 13 and
15 are shown the non-linear normal modes, obtained using numerical integration, and the
bilinear mode shapes for k2 =1·0. In Figures 13 and 15, the eigenvectors of the individual
linear modes (i.e., the modes for x1 q 0 and x1 Q 0) are shown as dotted lines. The
computation of the bilinear frequency is based upon approximating actual non-linear

Figure 15. The second mode: x1 versus x2 . The dashed curve represents the eigenvectors in each of the linear
regions. Note that the bilinear frequency is a better approximation than the mode shape. –––, Non-linear normal
mode, · · ·, bilinear mode shape.
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Figure 16. The second mode: –––, x1 ; ---, x2 ; versus time.

Figure 17. A comparison of the numerical integration and perturbation methods: k2 =0·1. –––, Numerical
integration; ---, perturbation method.

normal modes by these bilinear shapes. Note that these non-linear normal modes do not
pass through the origin x1 = x2 =0. This could be attributed to the fact, that, due to the
piecewise-linearity, the bounding curve V= h and associated vector field is unsymmetric

T 4

A comparison of the period (s) using various methods

k2 Bilinear formula Numerical integration Perturbation method

0·01 10·148 10·148 10·148
0·1 9·997 9·997 9·991
0·5 9·526 9·530 9·429
1·0 9·188 9·201 8·922
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Figure 18. The Poincaré map for k2 =1·0, h=1·0 and surface of section x1 =0, ẋ1 q 0; h is the total energy
of the conservative system.

about the origin. The corresponding motions of x1 and x2 with time are shown in Figures 14
and 16.

A comparison of the non-linear normal modes obtained by the perturbation method,
and by numerical integration, is presented in Figure 17 for k2 =0·1. We see that the
resultsagree well. The mismatch between the perturbation method and the numerical
results could be attributed to the fact that the results of the perturbation method are based
on an order o approximation.

In Table 4 we present a comparison of the period associated with the first non-linear
normal mode obtained using the bilinear formula, numerical integration and the
perturbation method. It is clearly seen that the bilinear formula provides a good
approximation for the period associated with the non-linear normal mode. The
perturbation method is seen to do well, as expected, for small values of k2 .

Figure 19. A special kind of non-linear normal mode corresponding to points C, D and E in Figure 18. V
is the potential energy of the system and h is the total energy of the system.
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Figure 20. The Poincaré map for k2 =0·0, h=1·0 and surface of section x1 =0, ẋ1 q 0. This figure
corresponds to a linear system; in contrast to Figure 18, which corresponds to a piecewise-linear system: h is
the total energy of the system.

Our understanding of the non-linear dynamics of this piecewise-linear system may be
further enhanced by examining a numerically generated Poincaré map corresponding to
total energy h=1·0 and a surface of section x1 =0, ẋ1 q 0 (see reference [18]). The
non-linear normal modes that we have investigated in the foregoing correspond to the fixed
points A and B in the Poincaré map of Figure 18. We note that, in addition to these priodic
motions, we expect to see other periodic motions in this piecewise-linear system. As an
example, see Figure 18, where C, D and E lie on a 3-cycle. This motion corresponds to
a kind of non-linear normal mode; see Figure 19. However, the associated linear system
with k2 =0 would exhibit no such periodic motion; see Figure 20.

Generalizing this phenomenon from the 2-DOF system to the infinite-dimensional
cracked beam, we expect in the case of the latter that there will exist additional non-linear

Figure 21. The Poincaré map for k2 =10·0, h=1·0 and surface of section x1 =0, ẋ1 q 0: h is the total energy
of the system.
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normal modes to those discussed in this paper (i.e., in addition to those associated with
the bilinear frequencies, Vi ; equation (16)). Their significance is that resonance is expected
to occur in their neighborhood, i.e., at forcing frequencies close to their natural
frequencies. In addition, we expect that chaotic behavior will occur for large crack depths,
in analogy to the behavior of the 2-DOF system for large k2 ; cf., Figure 21.

8. CONCLUSIONS

The main goal of this paper is to understand cracked beam dynamics. An eigenvalue
problem cannot be formulated for the cracked beam, due to the non-linear boundary
conditions associated with the crack being open or closed. However, by modelling the
cracked beam as two linear configurations (crack open and crack closed), a definition for
the effective natural frequency, called the ‘‘bilinear frequency’’, is developed.

The bilinear period is obtained by adding the half-periods of the individual linear modes
in the constrained and unconstrained configurations. The reason that this is an
approximation rather than an exact result is as follows: if initial conditions were chosen
corresponding to the ith linear normal mode of the unconstrained configuration then,
when the crack first closes, this would give rise to a motion in the constrained configuration
which would in general consist of a superposition of all associated linear modes rather than
just the ith constrained mode. However, we have shown that if the initial conditions were
appropriately chosen, a periodic motion would result. If the crack depth is not too large,
this initial condition would be close to that of the ith unconstrained mode, and the resulting
frequency would be close to the ith bilinear frequency. Furthermore, the use of the bilinear
frequency as the effective natural frequency was justified through a systematic study of a
simplified model of the cracked beam.

A two-degree-of-freedom piecewise-linear system was studied in order to model and
understand the essential non-linear dynamics associated with the cracked beam. The
non-linear normal modes associated with the model system and also the associated period
are predicted using the perturbation method. It is seen that the bilinear formula is indeed
a good approximation for the effective natural frequency, especially when the difference
between the linear regions is small, i.e., for small values of k2 . For large values of k2 ,
simulation of the 2-DOF system shows that more complicated motions are possible
including chaos.
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